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Abstract
An element a of a ring R is said to have left central stable range one if whenever 
Ra + Rb = R for any b ∈ R , there exists z ∈ Z(R) (the center of R) such that a + zb 
is a unit of R. A ring R has left central stable range one if all its elements have it. 
In this work, elements and rings with left central stable range one are studied. The 
condition is left-right symmetric for such rings.
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1 Introduction

All rings considered in this work are assumed to be associative with an identity 
element.

For any subset S of a ring R, an element a is said to have  left S-stable range 1 if, 
whenever Ra + Rb = R (for any b), there exists s ∈ S such that a + sb is a unit. We 
denote the set of all left S-stable range 1 elements of R by srS(R) . When S is R itself, 
U(R) (the units of R), Id(R) (the idempotents of R), or N(R) (the nilpotents of R), 
this corresponds to the notions of left stable range 1 of R (due to Bass [1]), left unit 
stable range 1 of R (due to Goodearl and Menal [8]), left idempotent stable range 1 
of R (due to Chen [3]), and recently, left nilpotent stable range 1 of R (due to Zhou 
[19]). To simplify notation, sr1 will be used to abbreviate left stable range one. The 
corresponding elements are customarily denoted sr(R), the left sr1 elements, usr(R), 
the left unit sr1 elements, isr(R), the left idempotent sr1 elements and nsr(R), the 
nilpotent sr1 elements. Clearly, left S-stable range 1 elements have stable range 1.
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This paper discusses the special case S = Z(R) , the center of R. An element a is 
said to have left central stable range 1 if, whenever Ra + Rb = R (for any b), there 
exists z ∈ Z(R) such that a + zb is a unit. A ring has left central stable range 1 if 
all its elements have this property. Right central stable range 1 elements and rings 
are defined symmetrically, considering right principal ideals instead of left principal 
ideals.

In what follows, central sr1 will be used to designate left central stable range 1 
(unless otherwise stated). More precisely, csr(a) = 1 means a has left central sr1 , and 
csr(R) denotes the set of all the left central sr1 elements of R.

It is easy to see that if srS(a) = 1 , then a is the sum of a unit and an element in S 
(take b = −1 in a + yb).

Then, for various choices of S:

• For S = U(R) , usr(R) ⊆ U(R) + U(R) ={2-good elements},
• For S = Id(R) , isr(R) ⊆ U(R) + Id(R) ={clean elements},
• For S = N(R) , nsr(R) ⊆ U(R) + N(R) ={fine elements},
• For S = Z(R) , csr(R) ⊆ U(R) + Z(R).

Rings for which R = U(R) + Z(R) were studied in [11] (called CU rings).
Our main results are as follows:

• in any ring R with S ⊆ R , we prove the left-right symmetry of S-stable range 1, 
whenever 1 − S ⊆ S,

• in any ring R, we show 0 has central sr1 in a ring R if and only if R is Dedekind 
finite,

• we relate csr(R) with csr(R/I) for ideals I of R,
• we provide a sufficient condition for the product of two elements with central sr1 

to have central sr1,
• in any matrix ring, we show that idempotent matrices 

∑k

i=1
Eii , for any 

1 ≤ k ≤ n − 1 , do not have central sr1 in R,
• we determine csr(𝕄2(ℤ)) : only zero and invertible integral matrices have central 

sr1,
• we identify the central sr1 elements in products of rings, rings of formal power 

series, trivial extensions of a ring R by an R-module M, formal triangular matrix 
rings and rings of triangular matrices, respectively.

The structure of the paper is as follows: Section 2 provides general definitions and 
results related to S-stable range 1, which are specialized for S = Z(R) in Section 3.

The left-right symmetry of elements with S-stable range 1, in relationship with 
the so-called Super Jacobson’s lemma, is discussed in Section  2. The left-right 
symmetry of rings with S-stable range 1 is proved whenever 1 − S ⊆ S.

Idempotents, units, and more generally, unit-regular elements, all have sr1 . 
Examples and results on central sr1 for such elements in arbitrary (unital) rings, 
including nilpotents and idempotent matrices, are discussed in Section  3. The 
behavior of central sr1 towards some well-known Ring Theory constructions is 
described in Section 4.
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In closing, an open question is stated.
As customarily, for any positive integer n ≥ 2 , Eij denotes the n × n matrix with 

all entries zero except for the (i, j)-entry, which equals 1. A diagonal square matrix 
is called scalar if all diagonal entries are equal. A ring R is called a GCD ring if the 
greatest common divisor of every pair of elements of R exists.

2  S‑stable range one

In this section we gather general definitions and results related to stable range one, 
relative to a subset S of a ring R. As already mentioned, an element a in R is said 
to have left S-stable range 1 if, whenever Ra + Rb = R (for any b ∈ R ), there exists 
s ∈ S such that a + sb ∈ U(R) . We write srS(a) = 1 , meaning that a has left S-stable 
range 1.

Proposition 2.1 Consider the following conditions for an element a ∈ R : 

(1) srS(a) = 1,
(2) for every x, y, b ∈ R , if xa + yb = 1 then there exists s ∈ S such that a + sb ∈ U(R),
(3) for every x, b ∈ R , if xa + b = 1 then there exists s ∈ S such that a + sb ∈ U(R),
(4) for every x ∈ R , there exists s ∈ S such that a + s(1 − xa) ∈ U(R).

Then (1) ⇔ (2) ⇒ (3) ⇔ (4), but (3) ⇒ (2) may fail.
Proof As Ra + Rb = R is equivalent to 1 ∈ Ra + Rb , it follows that (1) ⇔ (2). Elimi-
nating b from (3) (i.e., b = 1 − xa ), it follows that (3) ⇔ (4). Clearly, taking y = 1 , 
(2) ⇒ (3). However, in [19] it is shown that, for S = N(R) , (3) ⇏ (2) and this shows 
that (1) ⇒ (4) but (4) ⇒ (1) may fail.   ◻

Remarks 1) A sufficient condition which makes (2) and (3) equivalent is SR ⊆ S , 
that is, S is a right ideal in the multiplicative monoid (R, ⋅) . It is readily seen that 
none of the subsets U(R), Id(R), N(R), reg(R) (the von Neumann regular elements of 
R), ureg(R) (the unit-regular elements of R), sreg(R) (the strongly regular elements 
of R) and even the subring Z(R), is such a right ideal.

However, for S = U(R) , that is, for unit-sr1 elements, without any other 
hypothesis, (2) and (3) were proved to be equivalent (see Lemma 1.1, [8]).

2) The denial of (4) can be used when showing that an element has not central 
sr1.

A recent result of Khurana and Lam shows that an element a in a ring has 
left stable range 1 iff it has right stable range 1 (see [10],  Theorem  3.1). The 
proof uses the so-called Super Jacobson’s lemma, which states that for any three 
elements a,  b,  x of a ring R, a + b − axb ∈ U(R) iff a + b − bxa ∈ U(R) (see 
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[10], Lemma 3.2). In [10] it is proved that this holds replacing U(R) by reg(R) or 
ureg(R) but fails replacing by sreg(R).

Below we show that this also fails replacing U(R) by Z(R), that is, we give an 
example for a + b − axb ∈ Z(R) but a + b − bxa ∉ Z(R).

Example In the ring R = 𝕄2(ℤ) , let A = E11 , B =

[
1 −2

0 2

]
 and the unit 

X = −E12 − E21 . Then A + B − AXB = 2I2 ∈ Z(𝕄2(ℤ)) (it is a scalar matrix). 

However, A + B − BXA =

[
0 −2

2 2

]
∉ Z(𝕄2(ℤ)) (it is not a scalar matrix).

For any subset S of a ring R, the Super Jacobson’s lemma has the following 
consequence

Proposition 2.2 Let a, x ∈ R and s ∈ S . Then a + s(1 − xa) ∈ U(R) iff 
a + (1 − ax)s ∈ U(R) .

Rephrasing, the "left" condition (4) (see above Proposition 2.1) is equivalent to 
the "right" condition (4). Clearly this holds also for S = Z(R) .

However, since the condition (4) is not equivalent to (1), the left-right 
symmetry of S-stable range one of elements for all the subsets S = Id(R) , N(R) and 
even for the subring Z(R), cannot be proved using the previous proposition.

However, for rings we can prove the left-right symmetry of S- stable range 1, 
just adding the condition 1 − S ⊆ S.

First we just recall from [3] the following notations and results (Theorems 4, 5 
and Corollary 6).

Over any (unital) ring R, denote some special 2 × 2 units by B12(x) ∶= I2 + xE12 , 
B21(y) ∶= I2 + yE21 and [u, v] ∶= diag(u, v) = uE11 + vE22 for x, y ∈ R and 
u, v ∈ U(R).

Theorem 2.3 The following are equivalent: 

(a) R has idempotent stable range 1.
(b) For any A ∈ GL2(R) ,  there is  an idempotent e ∈ R such that 

A = [∗, ∗]B21(∗)B12(∗)B21(−e).
(c) For any x, y ∈ R , there is an idempotent e ∈ R such that xy − xe + 1 ∈ U(R).

Corollary 2.4 A ring has right idempotent sr1 iff it has left idempotent sr1.

A careful reading of the proofs shows that (a) and (b) are equivalent replacing 
Id(R) by any subset S of R, (a) ⇒ (c) holds for any subset S of R and if 1 − S ⊆ S 
then also (c) ⇒ (a) holds. Therefore the corollary holds replacing Id(R) by any 
subset S of R, if we only add the condition 1 − S ⊆ S . Therefore
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Theorem 2.5 Let S be a subset of a ring R and suppose S ⊆ 1 − S . Then R has left 
S-stable range one iff it has right S-stable range one.

Finally, a general definition and some straightforward observations, to be used in 
the next section.

Definition Let S be a subset of a ring R. The ring R is called S-central if S ⊆ Z(R) , 
and S-commuting if every two elements of S commute.

Lemma 2.6 Let S and T be subsets of a ring R. 

(a) If R is S-central and T-central then it is also (S + T)-central and ST-central.
(b) If S ⊆ T ⊆ R and R is T-central then R is also S -central.
(c) If R is S-central then R is also S-commuting.
(d) For S = Id(R) , note that R is Id(R)-central iff it is Id(R) -commuting. Such rings 

were called Abelian.

Proof (d) One way is covered by (c). As for the converse, let e = e2 ∈ R be an idem-
potent. Then e ∈ Z(R) iff e commutes with all the idempotents or R which are iso-
morphic to e (see 22.3.A in [12]).   ◻

3  Central stable range one

In this section we specialize the results from the previous section to S = Z(R) , the 
center of a ring R. First some

3.1  Examples

(1) Since zero is central in any ring, units have left and right central sr1.
(2) In any commutative ring, an element has (left or right) central sr1 iff it has sr1.
(3) A nonunit example with csr(a) = 1 is any nontrivial idempotent in ℤn for any 

n ≥ 2 , say 3 in ℤ6 (this ring is also unit-regular, so (c)sr(ℤ6) = 1).

It is easy to provide classes of central sr1 rings by mixing classes which were 
already studied. 

 (i) The unit sr1 rings which are unit-central (discussed in [8] and [9]).
 (ii) The idempotent sr1 rings which are Abelian (discussed in [3] and [17]).
 (iii) The nilpotent sr1 rings which are nilpotent-central (discussed in [19] and [15]).

Among these, the local rings, and for Abelian rings, the  clean rings or equivalently 
the exchange rings (i.e., a special class of strongly clean rings called topologically-
Boolean in [5]; see also [4]).
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Or else, also for Abelian rings, the weakly P-exchange rings. A ring R was called 
weakly P-exchange if every right R-module has finite exchange property (cf. [14]). 
It is well known that regular rings, right perfect rings and weakly right perfect 
rings are all weakly P-exchange. In particular, it follows that Abelian regular, or 
equivalently, strongly regular rings have central sr1.

Central sr1 rings need not be semilocal. Indeed, a direct product of an infinite 
family of fields has central sr1 (see Proposition 4.2) but is not semilocal.

Semilocal rings have sr1, but may not have central sr1. Indeed, let D be a division 
ring and R = �n(D) . Then R is left Artinian and so semilocal. However (see 
Corollary 3.7), csr(R) = {0} ∪ U(R) ≠ R.

Clearly, also commutative unit (or idempotent or nilpotent) sr1 rings are central 
sr1.

From [18], we know that commutative exchange rings and exchange PI-rings 
have stable range 1.

Hence, commutative exchange rings have also central sr1.
Finally, if R is unit-central then N(R) ⊆ Z(R) . Hence unit-central nilpotent sr1 

rings are also central sr1.

3.2  Central sr1 elements

In [19] it was noticed that for S = N(R) , srN(R)(0) ≠ 1 . As for S = Z(R) we have the 
following result.

Proposition 3.1 0 has central sr1 in a ring R iff R is Dedekind finite.

Proof By (2) in the Proposition 2.1, csr(0) = 1 iff cb = 1 implies the existence of 
some z ∈ Z(R) such that zb ∈ U(R).

To show the condition is necessary, notice that as z is central, both z, b must 
be units. Hence, 0 may have central sr1 only if the ring is Dedekind finite (one-
sided invertible elements are units). The condition is also sufficient. Indeed, if R is 
Dedekind finite and cb = 1 then b is a unit and we can choose z = 1 ∈ Z(R) .   ◻

Corollary 3.2 Division rings have central sr1.

There are many classes of rings for which 0 has central sr1.
A ring is unit-central if U(R) ⊆ Z(R) and nilpotent-central if N(R) ⊆ Z(R) . In all 

the classes of rings in the following diagram, 0 has central sr1.

Here a ring was called uni (see [2]) if all units commute with all nilpotents and DF 
stands for Dedekind-finite.

commuting.units

↗ ↘

unit.central → nilp.central → uni → commuting.nilp

↓ ↓

Abelian ⟶ DF



São Paulo Journal of Mathematical Sciences           (2025) 19:26  Page 7 of 13    26 

Lemma 3.3 

(1) If csr(a) = 1 then a ∈ U(R) + Z(R).
(2) csr1 elements are invariant under equivalences.
(3) If a ∈ crs(R) and I ⊆ J(R) is an ideal of R then a + I ∈ csr(R∕I) . The converse 

holds if central elements lift modulo I. In particular, csr(R) = 1 implies 
csr(R∕J(R)) = 1 and the converse holds if central elements lift modulo J(R).

Proof 

(1) Since Ra + R(−1) = R , there is z ∈ Z(R) such that a − z ∈ U(R) . Hence 
a ∈ U(R) + Z(R).

(2) S u p p o s e  R(uav) + Rb = R  f o r  s o m e  u n i t s  u ,  v .  T h e n 
R = Rv−1 = Rua + Rbv−1 = Ra + Ru−1bv−1 .  By hypothes is ,  there  i s 
z ∈ Z(R) with a + zu−1bv−1 ∈ U(R) . By left and right multiplication 
u(a + zu−1bv−1)v = uav + uzu−1b = uav + zb ∈ U(R).

(3) Denote R = R∕I  and a = a + I  .  Assume that Ra + Rb = R  .  Then 
Ra + Rb + I = R , so Ra + Rb = R as I ⊆ J(R) . Hence, a + zb ∈ U(R) for some 
z ∈ Z(R) . It follows that a + zb ∈ U(R) with z ∈ Z(R).

For the converse, assume that Ra + Rb = R . Then Ra + Rb = R . So a + zb ∈ U(R) 
for some z ∈ Z(R) . By hypothesis we can assume z ∈ Z(R) and so a + zb ∈ U(R) , 
since units lift mod I, if I ⊆ J(R) .   ◻

If central elements do not lift modulo some ideal I, then the converse may fail.

Examples (1) First an example of central element which does not lift modulo the 
Jacobson radical.

Consider R = �2(F) , the upper triangular matrices over a field F and 
J(R) = {aE12 ∶ a ∈ F} , the strictly upper triangular matrices (i.e., the matrices with 
zero diagonal entries). Central elements do not lift modulo J(R).

Indeed, recall that R∕J(R) ≅ diag2(F) is the commutative ring of the diagonal 
2 × 2 matrices over F. Since Z(diag2(F) = diag2(F) , any not scalar diagonal does not 
lift to a scalar matrix in R (the center Z(�2(R)) = {aI2 ∶ a ∈ F}).

However csr(R) = 1 according to Corollary 4.4, (4).
(2) Secondly, an example of a ring R for which central elements do not lift 

modulo some ideal I and an element a ∈ R such that csr(a + I) = 1 but csr(a) ≠ 1.
Now take R = �2(S) , the upper triangular matrices over a ring S which is not DF, 

take the ideal I =
[
S S

0 0

]
 and take a = E22 ∈ R . According to Corollary 4.4, (4), 

csr(E22) ≠ 1 (as, by Proposition 3.1, 0 has not csr1). However E22 + I is the identity 
in R/I so csr(E22 + I) = 1.

For products of central stable range 1 elements we can prove the following 
result.
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Proposition 3.4 Let a, a� ∈ R . If csr(a) = csr(a�) = 1 and a ∈ Z(R) then csr(aa�) = 1.

Proof We first show that for any element a of a ring R, csr(a) = 1 iff for any b ∈ R, 
Ra + Rb = R implies that csr(a + zb) = 1 for some z ∈ Z(R).

⇒ is obvious, as we can take z = 0 . As for ⇐ , suppose Ra + Rb = R . Then 
there exists z ∈ Z(R) such that for a� = a + zb we have csr(a�) = 1 . It follows 
that Ra� + Rb ⊇ Ra + Rb = R implies that there exists z0 ∈ Z(R such that 
a� + z0b ∈ U(R) . As a� + z0b = a + (z + z0)b this shows csr(a) = 1.

Secondly, for the proof of the proposition, suppose Raa� + Rb = R . Then 
Ra� + Rb = R and so there exists z ∈ Z(R) such that u ∶= a� + zb ∈ U(R) . By left 
multiplication, aa� + azb = au with csr(au) = 1 (equivalent to a). Since a ∈ Z(R) , 
according to the first part, this shows that sr(aa�) = 1 .   ◻

3.3  Central sr1 matrices

In order to give examples of idempotents with central sr1, we start with the ring 
R of upper triangular matrices with constant diagonal over a division ring k. It 
is well-known that R is a local (noncommutative) ring with N(R) = J(R) , the 
matrices with zero diagonal. As already mentioned in the examples subsection it 
follows that

Proposition 3.5 The ring of upper triangular matrices with constant diagonal over 
any division ring has central sr1.

Proof The claim follows using also Proposition 3.1. Indeed, local rings are Dede-
kind finite.   ◻

In matrix rings over unital rings, left (or right) central sr1 matrices are scarce, 
due to the special form of the central matrices. Indeed, it is well-known that 
Z(�n(R)) = {zIn ∶ z ∈ Z(R)} , that is, the center consists of the so called scalar 
matrices.

First we prove the following result.

Theorem 3.6 Let R = �n(S) for some (unital) ring S. The idempotent n × n matrices 
A =

∑k

i=1
Eii , for any 1 ≤ k ≤ n − 1 , have not central sr1 in R.

Proof We provide B ∈ R such that RA + RB = R but A + ZB is not a unit, for any 
Z ∈ Z(R).

Consider B = Ek,k+1 + ... + En−1,n , a lower part of the superdiagonal. Left 
multiplying B by U = In + Ek+1,k + ... + En,n−1 (equivalently, adding the n − 1 
row to the nth, the n − 2 row to the n − 1 , ..., the k th row to the k + 1 row) we get 
A + UB = In + B and so RA + RB = R . Finally, for any z ∈ D and Z = zIn ∈ Z(R) , 
the matrix A + ZB = A + zB is not a unit (in R). Indeed, it has the form
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and any (upper triangular or not) matrix with a zero row is not invertible in R.   ◻

Corollary 3.7 If R = �n(D) where D is a division ring and n ≥ 1 , then 
csr(R) = U(R) ∪ {0}.

Proof There is nothing to prove if n = 1 , so we assume n ≥ 2 . Let 0 ≠ A ∈ R and 
assume that A is not a unit. Then A is equivalent to 

∑k

i=1
Eii where 1 ≤ k ≤ n − 1 . 

Hence, by Lemma 3.3, (2) we can assume that A =
∑k

i=1
Eii and the result follows 

from the previous theorem.   ◻

Since division rings have central sr1, it follows that matrix rings over csr1 rings 
may not be csr1. Hence, the central sr1 condition is not Morita invariant. However, it 
passes to corners (see next section).

Corollary 3.8 Over any GCD integral domain, the nontrivial idempotent 2 × 2 matri-
ces have not left (nor right) central sr1.

Proof It suffices to recall (e.g., see Proposition 18, [7]) that every nontrivial idempo-
tent 2 × 2 matrix over a GCD integral domain R is similar to E11 .   ◻

Following Steger [13], we say that a ring R is an ID ring if every idempotent 
matrix over R is similar to a diagonal one. Examples of ID rings include: division 
rings, local rings, projective-free rings, principal ideal domains, elementary divisor 
rings, unit-regular rings and serial rings. Then

Corollary 3.9 Over any connected ID ring, the nontrivial idempotent matrices have 
not left (nor right) central sr1.

Finally, a consequence for integral matrices.

Corollary 3.10 Let R = 𝕄2(ℤ) . Then csr(R) = 02 ∪ U(R) ⊊ U(R) + Z(R).

Proof Since matrix rings over commutative rings are Dedekind finite, 02 ∈ csr(R) . 
As U(R) ⊆ csr(R) generally holds, we start with 02 ≠ A ∈ csr(R) and show that 
A ∈ U(R) . As ℤ is an elementary divisor domain, A is equivalent to a diagonal 

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 ⋯ 0 0 0 ⋯ 0 0 0

0 1 ⋯ 0 0 0 ⋯ 0 0 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋯ ⋮ ⋮ ⋮

0 0 ⋯ 1 z 0 ⋯ 0 0 0

0 0 ⋯ 0 0 z ⋯ 0 0 0

0 0 ⋯ 0 0 0 z 0 0 0

⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋱ ⋱ ⋮ ⋮

0 0 ⋯ 0 0 0 ⋯ 0 0 z

0 0 ⋯ 0 0 0 ⋯ 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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matrix 
[
a1 0

0 a2

]
 with a1 ≥ 1 , a2 ≥ 0 and a1 ∣ a2 . By Lemma 3.3, (2), we may assume 

A =

[
a1 0

0 a2

]
 . By Theorem 11, [6], a matrix A ∈ R⧵U(R) has sr1 iff det(A) = 0 , so A 

is a unit or det(A) = 0 . We show that the later leads to a contradiction. If det(A) = 0 
we may assume A = aE11 with a ≥ 1 ( crs(a) = 1 iff crs(−a) = 1 in any ring).

Let B =

[
1 − a 0

0 1

]
 . Then Ra + Rb = R and there exists Z = nI2 ∈ Z(R) such that 

U ∶= A + ZB ∈ U(R) . Thus U =

[
a + n(1 − a) 0

0 n

]
 and det(U) = n[a + n(1 − a)] 

whence it follows that n = 1 or n = −1 . In the first case, U = A + B = E22 is not a 
unit and, in the second case a = 1 (as a ≠ 0 ), that is, A = E11 , case which was 
covered by the previous theorem.

To show that the right inclusion may be proper, it is easy provide a 2 × 2 integral 
matrix in U(R) + Z(R) which has no sr1 (and so neither crs1). Indeed, I2 + I2 = 2I2 
has not sr1 (see again Theorem 11, [6]).   ◻

Remark In Proposition 2.1, we saw that the condition (4), that is, for every x ∈ R , 
there exists z ∈ Z(R) such that a + z(1 − xa) ∈ U(R) , may be more general than 
crs(a) = 1.

However, for R ∶= 𝕄2(ℤ) , (with entries bounded by 50) the computer did not 
find A ≠ 02 , det(A) = 0 such that for all X ∈ 𝕄2(ℤ) there exists n ∈ ℤ (depending 
on A and X) such that

So in this case (note that Z = nI2 ) it seems that (1) and (4) are equivalent.

Question. Can we prove that for 2 × 2 integral matrices (1) and (4) are equivalent 
?

As the reader has already noticed, for many (DF) rings, csr(R) = U(R) ∪ {0} . 
Another well-known example is any polynomial ring S[x] over a commutative 
domain S. The set of (central) stable range one elements is just {0} ∪ U(S).

4  Ring theoretic constructions

As an immediate consequence of Theorem 2.5, we record the left-right symmetry 
for rings of the central sr1, that is

Corollary 4.1 A ring has left central sr1 iff it has right central sr1.

Observe that the theorem does not apply for S ∈ {U(R),N(R)}.
As ℤ has not sr1 and ℚ has sr1, it follows that  subrings of rings which have 

(central) sr1 may not have (central) sr1.

det[A + n(I2 − XA)] = ±1.
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Proposition 4.2 Let R =
∏

i≥1 Ri be a direct product of rings, and � = (ai) ∈ R . 
Then � ∈ csr(R) iff ai ∈ csr(Ri) for all i.

Proof Let � = (ai) ∈ csr(R) and assume that R1a1 + R1b1 = R1 . With 
� = (b1, 1, 1, ...) ∈ R , R� + R� = R . So � + �� ∈ U(R) for some � = (zi) ∈ Z(R) . 
It follows that a1 + z1b1 ∈ U(R1) with z1 ∈ Z(R1) . So a1 ∈ csr(R1) . Similarly, 
ai ∈ csr(Ri) for each i ≥ 2.

Conversely, let � = (ai) ∈ R with ai ∈ csr(Ri) for all i , and assume that 
R� + R� = R where � = (bi) ∈ R . Then, for each i, Riai + Ribi = Ri , so there 
exists zi ∈ Z(Ri) such that ai + zibi ∈ U(Ri) . It follows that � + �� ∈ U(R) , where 
� = (zi) ∈ Z(R) .   ◻

Remark Subdirect products of central sr1 rings may not be central sr1. For example 
ℤ is a subdirect product of the fields �p ( p = 2, 3, 5, ... ), but of course ℤ has not (cen-
tral) sr1.

Proposition 4.3 Let R = S + J where S is a unital subring of R and J ⊆ J(R) is an 
ideal such that S ∩ J = 0 . Let a = s + j ∈ R with s ∈ S and j ∈ J . Then a ∈ csr(R) 
iff s ∈ csr(S).

Proof First note that the assumptions imply that 1 ∈ S . Let a = s + j ∈ csr(R) where 
s ∈ S and j ∈ J and assume that Ss + Ss� = S . Then xs + ys� = 1 where x, y ∈ S . 
Thus xa + ys = (xs + ys�) + xj = 1 + xj ∈ U(R) . So Ra + Rs� = R , and hence 
a + zs� ∈ U(R) where z ∈ Z(R) . Write z = r1 + j1 where r1 ∈ S and j1 ∈ J.

Then r1 ∈ Z(S) . Indeed, if � is arbitrary in S then z� = �z , so 
(r1 + j1)� = �(r1 + j1) . Hence r1� − �r1 = �j1 − j1� ∈ S ∩ J = 0 and 
s + r1s

� = (a − j) + (z − j1)s
� = (a + zs�) − (j + j1s

�) ∈ U(R) ∩ S = U(S) . So 
s ∈ csr(S).

Conversely, let a = s + j ∈ R where s ∈ csr(S) and j ∈ J and assume 
that Ra + Rb = R . Then xa + yb = 1 for some x, y ∈ R . Write b = s� + j� , 
x = s1 + j1 and y = s2 + j2 , where s�, s1, s2 ∈ S and j�, j1, j2 ∈ J. Then 
s1s + s2s

� = 1 − (j1s + j2s
� + xj + yj�) ∈ U(R) ∩ S = U(S) , so Ss + Ss� = S . Thus, 

s + zs� ∈ U(S) for some z ∈ Z(S) , and so a + zb = (s + zs�) + (j + zj) ∈ U(R) . Hence 
a ∈ csr(R) .   ◻

The previous Proposition has some important consequences.

Corollary 4.4 Let R, A, B be rings, M an (R, R)-bimodule, V an (A, B) -bimodule and 
n ≥ 1. Then

(1) For � ∶=
∑

i≥0 ait
i ∈ R[[t]] , � ∈ csr(R[[t]]) iff a0 ∈ csr(R).

(2) For � ∶= (a, x) ∈ R ∝ M , � ∈ csr(R ∝ M) iff a ∈ csr(R).

(3) If R =

[
A V

0 B

]
 is the formal triangular matrix ring and � =

[
a x

0 b

]
∈ R , then 

� ∈ csr(R) iff a ∈ csr(A) and b ∈ csr(B).
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(4) For � = (aij) ∈ �n(R) , � ∈ csr(�n(R)) iff aii ∈ csr(R) for i = 1, ..., n.
Finally we can prove (in a similar way to the sr1 case, see [16]) that the central 

sr1 condition passes to corners. Moreover, we prove this elementwise.

Proposition 4.5 Let e2 = e ∈ R and let a ∈ eRe If csrR(a) = 1 then csreRe(a) = 1 .

Proof Let a and b be in R� ∶= eRe and R�a + R�b = R� . Con-
sider a + 1 − e and b in R. We have R�(1 − e) = 0 , so 
R(a + 1 − e) + Rb ⊇ R�a + R�b ∋ e . On the other hand, (1 − e)a = 0 = (1 − e)b 
and so R(a + 1 − e) + Rb ∋ (1 − e)(a + 1 − e) + (1 − e)b = 1 − e . Thus, 
R(a + 1 − e) + Rb ∋ e + 1 − e = 1.

Since csrR(a) = 1 , there is z ∈ Z(R) such that a + zb + 1 − e ∈ U(R) . We have 
(1 − (1 − e)zb)(1 + (1 − e)zb) = 1 = (1 + (1 − e)zb)(1 − (1 − e)zb) , so 1 − (1 − e)zb 
is a unit of R, whence (a + zb + 1 − e)(1 − (1 − e)zb) = a + ezb + 1 − e ∈ U(R) . 
Therefore (indeed, U(eRe) = (eRe) ∩ (1 − e + U(R)) ) a + ezeb ∈ U(R�) . Note that 
since z ∈ Z(R) , clearly eze ∈ Z(eRe) .   ◻

In closing, motivated by the well-known fact that a regular ring has stable range 
one (sr1) if and only if it is unit-regular, we propose the following open question for 
further investigation:

How can we characterize regular rings with central stable range one (csr1)?
As noted in Section 3, strongly regular rings (equivalently, Abelian regular rings) 

possess central stable range one. This naturally leads to the question:
Does the converse hold?
That is, are regular rings with central stable range one necessarily strongly 

regular?
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