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THE X-SEMIPRIMENESS OF RINGS

GRIGORE CĂLUGĂREANU, TSIU-KWEN LEE, JERZY MATCZUK

Abstract. For a nonempty subset X of a ring R, the ring R is called X-
semiprime if, given a ∈ R, aXa = 0 implies a = 0. This provides a proper
class of semiprime rings. First, we clarify the relationship between idempotent
semiprime and unit-semiprime rings. Secondly, given a Lie ideal L of a ring
R, we offer a criterion for R to be L-semiprime. For a prime ring R, we
characterizes Lie ideals L of R such that R is L-semiprime. Moreover, X-
semiprimeness of matrix rings, prime rings (with a nontrivial idempotent),
semiprime rings, regular rings, and subdirect products are studied.

1. Introduction

Throughout the paper, rings are always associative with identity. For a ring R,
U(R) (resp. Id(R)) denotes the set of all units (resp. idempotents) of R, and Z(R)
stands for the center of R.

A ring R is called semiprime if, given a ∈ R, aRa = 0 implies a = 0. Also, it
is called prime if, given a, b ∈ R, aRb = 0 implies that either a = 0 or b = 0. The
purpose of the paper is to study a more general notion concerning semiprimeness
and primeness of rings.

Definition. Let X be a nonempty subset of a ring R. The ring R is called X-
semiprime (resp. X-prime) if, given a ∈ R, aXa = 0 implies a = 0 (resp. if, given
a, b ∈ R, aXb = 0 implies either a = 0 or b = 0).

AnX-semiprime (resp. X-prime) ring withX = {1} is reduced (resp. a domain).
Also, a reduced ring (resp. domain) is X-semiprime (resp. X-prime) if 1 ∈ X .

Proposition 1.1. Given a subset X of a ring R, if R is a prime X-semiprime
ring, then it is X-prime.

Proof. Indeed, let aXb = 0, where a, b ∈ R. Then bxaXbxa = 0 for all x ∈ R. The
X-semiprimeness of R implies that bxa = 0 for all x ∈ R. By the primeness of R,
either a = 0 or b = 0, as desired. �

According to Proposition 1.1, it suffices to study the X-semiprime case. In this
way, we can make our statements more concise.

In [6] the case X = U(R) was considered, the ring R is called unit-semiprime
if it is U(R)-semiprime. This turned out to be an interesting class of semiprime
rings. In this paper we first consider the special case X = Id(R). A ring R is
called idempotent semiprime if it is Id(R)-semiprime. Let X+ denote the additive
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subgroup of R generated by X . Clearly, a ring R is X-semiprime if and only if it
is X+-semiprime. Let E(R) := Id(R)+. Thus the E(R)-semiprimeness of R just
means that R is idempotent semiprime.

In this paper we will be concerned with the following

Problem 1.2. Given a semiprime or prime ring R, find subsets X of R such that
R is X-semiprime, that is, given a ∈ R,

aXa = 0 =⇒ a = 0.

We organize the paper as follows.
In §2 it is proved that every idempotent semiprime ring is unit-semiprime (see

Theorem 2.1). The converse is in general not true by an example from A. Smok-
tunowicz in [21]. Applying Theorem 2.1 we give an example of a prime ring, which
is not idempotent semiprime (see Theorem 2.3).

In §3 we establish a criterion for Lie ideals L of a semiprime (resp. prime) ring
R such that R is L-semiprime (see Theorem 3.6) and, in particular, matrix rings
are studied. We also conclude that idempotent semiprime is not a Morita invariant
property.

In §4 we give a complete characterization of the L-semiprimeness of a prime ring
R for any given Lie ideal L (see Theorem 4.5). Also, in a prime ring R possessing
a nontrivial idempotent, its additive subgroups X , which are invariant under all
special automorphisms of R, are characterized by Chuang’s theorem and hence R
is X-prime [3] (see Theorem 4.7).

In §5 we characterize the d(R)-semiprimeness of a given prime ring R, where d
is a derivation of R. Moreover, we also study the d(L)-semiprimeness of R for L a
Lie ideal of R. See Theorems 5.2 and 5.7.

In §6 and §7 we are concerned with the problem whether, given a Lie ideal N of
a semiprime ring R, ℓR(N) = 0 is a sufficient condition for R to be N -semiprime,
where ℓR(N) denotes the left annihilator of N in R. It is in general not true.
However, it is indeed true if either N = [E(R), R] or N = [L,R] when R is 2-
torsion free and L is a Lie ideal of R (see Theorems 6.1 and 6.4).

In §8 it is proved that every regular ring is idempotent semiprime but is in
general not [E(R), R]-semiprime (see Theorem 8.2 and Example 8.3). Finally, in
§9, we study the subdirect product properties of X-semiprime rings.

Whenever it is more convenient, we will use the widely accepted shorthand “iff”
for “if and only if” in the text.

2. Idempotent semiprime

We begin with clarifying the relationship between “idempotent semiprime” and
“unit-semiprime”.

Theorem 2.1. If R is an E(R)-semiprime ring, then it is U(R)-semiprime.

Proof. Let a ∈ R be such that aua = 0 for all u ∈ U(R). In particular, a2 = 0. Let
e = e2 ∈ R and x ∈ R. Since 1 + ex(1 − e), 1 + (1− e)xe ∈ U(R), we have

a
(
1 + ex(1− e)

)
a = 0 = a

(
1 + (1− e)xe

)
a.

Thus aeR(1− e)a = 0 and a(1− e)Rea = 0. The semiprimeness of R implies that
(1−e)ae = 0 = ea(1−e) and so ae = ea. Hence aea = ea2 = 0, that is, aE(R)a = 0
and so a = 0, as desired. �
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The converse implication of Theorem 2.1 does not hold.

Example 2.2. Let K be a countable field and let S be the simple nil K-algebra
constructed by A. Smoktunowicz in [21]. Let R be the unital algebra obtained by
adjoining unity to S using K. Then R is a local prime ring with maximal ideal S
and every element of R is a sum of (two) units. Thus R is unit-prime. However, R
is not idempotent prime as it has only trivial idempotents and it is not a domain.

The following offers a prime ring which is not idempotent semiprime.

Theorem 2.3. Let R = k
〈
x, y|x2 = 0

〉
, where k is a field. Then R is a prime ring

which is not idempotent semiprime.

Proof. It is known that R is a prime ring (see [7, p.92]). In view of [6, p.28],
R is not unit-semiprime. It follows from Theorem 2.1 that R is not idempotent
semiprime. �

In fact, Id(R) = {0, 1} for the ring R in Theorem 2.3. It is an immediate
consequence of Theorem 3.13.

3. Lie ideals

Let R be a ring. Given x, y ∈ R, let [x, y] := xy − yx denote the additive
commutator of x and y. Also, let A,B be subsets of R. We denote [A,B] (resp.
AB) the additive subgroup of R generated by all [a, b] (resp. ab) for a ∈ A and
b ∈ B. Also, let I(A) be the ideal of R generated by A.

An additive subgroup L of R is called a Lie ideal of R if [L,R] ⊆ L. Given Lie
ideals L,K of R, it is known that both [L,K] and KL are Lie ideals of R. Recall
that, given a subset A of R, we denote by A+ the additive subgroup of R generated
by A.

Lemma 3.1. Let R a ring. Then E(R) is a Lie ideal of R and [E(R), R] ⊆ U(R)+.

Proof. Indeed, let e = e2 ∈ R and x ∈ R. Then e+ ex(1− e) and e+ (1− e)xe are
idempotents of R. So

[e, x] = e+ ex(1− e)− (e+ (1 − e)xe) ∈ E(R).

Hence [E(R), R] ⊆ E(R). Thus E(R) is a Lie ideal of R.
On the other hand, 1 + ex(1 − e) and 1 + (1− e)xe are units of R. Thus

[e, x] = 1 + ex(1− e)− (1 + (1− e)xe) ∈ U(R)+.

Hence [E(R), R] ⊆ U(R)+. �

Clearly, if X ⊆ Y ⊆ R, then the X-semiprimeness of R implies that R is Y -
semiprime. By Lemma 3.1 and Theorem 2.1, we have the following

Proposition 3.2. If a ring R is [E(R), R]-semiprime, then R is E(R)-semiprime
and hence is U(R)-semiprime.

A natural question is the following

Problem 3.3. Let R be a semiprime ring. Find a sufficient and necessary condition
for R to be [E(R), R]-semiprime.
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We note that Problem 3.3 is completely answered by Theorem 7.11 below. Mo-
tivated by Proposition 3.2, we proceed to study the L-semiprimeness of a ring R,
where L is a Lie ideal of R. The first step is to establish a criterion for a ring R to
be L-semiprime (see Theorem 3.6).

Lemma 3.4. If L is a Lie ideal of a ring R, then I([L,L]) ⊆ L+ L2.

See, for instance, [16, Lemma 2.1]) for its proof. Given a subset A of a ring R,

let Ã denote the subring of R generated by A. We continue with the following

Lemma 3.5. Let R be a semiprime ring with a Lie ideal L. Suppose that aLb = 0,
where a, b ∈ R. The following hold:

(i) aI([L,L])b = 0 and aL̃b = 0;
(ii) If R be a prime ring and [L,L] 6= 0, then either a = 0 or b = 0.

Proof. (i) Since a[L,RaL]b = 0 and aLb = 0, we get aRaL2b = 0. The semiprime-
ness of R implies aL2b = 0 and so a(L + L2)b = 0. By Lemma 3.4, we get
aI([L,L])b = 0. Note that L + L2 is also a Lie ideal of R. Repeating the same

argument, we finally get aL̃b = 0 as L̃ =
∑∞

i=1 L
i.

(ii) It follows directly from (i) and the primeness of R. �

The following gives a criterion for a ring R to be L-semiprime.

Theorem 3.6. Let R be a ring, and let L be a Lie ideal of R. Then:

(i) If R is semiprime and L̃ = R, then R is L-semiprime;
(ii) If R is prime and [L,L] 6= 0, then R is L-prime.

Proof. (i) Let aLa = 0, where a ∈ R. By Lemma 3.5 (i), aL̃a = 0 and so aRa = 0.
The semiprimeness of R implies a = 0.

(ii) Let aLb = 0, where a, b ∈ R. By Lemma 3.5 (ii), either a = 0 or b = 0, as
desired. �

The following lemma is well-known. For the convenience of the reader, we give
its proof.

Lemma 3.7. Let R be a noncommutative prime ring, and let I, J be nonzero ideals
of R. Then

[
[I, J ], [I, J ]

]
6= 0.

Proof. Replacing I, J by I ∩ J , we may assume that I = J . By [8, Lemma 1.5] for
the prime case, if

[
a, [I, I]

]
= 0 where a ∈ R then a ∈ Z(R).

Suppose that
[
[I, I], [I, I]

]
= 0. We have [I, I] ⊆ Z(R) and so

[
[I, I], R

]
= 0.

Thus R ⊆ Z(R). That is, R is commutative, a contradiction. �

The following is a consequence of Theorem 3.6 (ii) and Lemma 3.7.

Theorem 3.8. Let R be a noncommutative prime ring. If I and J are nonzero
ideals of R, then R is [I, J ]-prime.

Lemma 3.9. Let R be a ring. We have

(i) If A is an additive subgroup of R, then [A,R] = [Ã, R];
(ii) If L is a Lie ideal of R, then [I([L,L]), R] ⊆ [L,R] ⊆ L.

Proof. (i) Let a1, . . . , an ∈ A and x ∈ R. By induction on n, we get

[a1a2 · · · an, x] = [a2 · · ·an, xa1] + [a1, a2 · · ·anx] ∈ [A,R].

Thus [A,R] = [Ã, R].
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(ii) By Lemma 3.4 and (i), we have

[I([L,L]), R] ⊆ [L+ L2, R] ⊆ [L̃, R] = [L,R] ⊆ L,

as desired. �

The following is a slight generalization of [16, Theorem 1.4] with V = R.

Theorem 3.10. Let R be a ring with a Lie ideal L. If I([L,L]) = R, then [L,R] =
[R,R] and R = [R,R]2. In addition, if R is semiprime, then it is [L,R]-semiprime.

Proof. By Lemmas 3.4 and 3.9 (i), we have

[R,R] = [I([L,L]), R] ⊆ [L+ L2, R] = [L,R].

Hence [R,R] = [L,R]. Since I([L,L]) = R, it is clear that I([R,R]) = R and so,
by [16, Theorem 1.4], R = [R,R] + [R,R]2. Thus we have

[R,R] =
[
[R,R] + [R,R]2, [R,R] + [R,R]2

]

=
[
[R,R], [R,R]

]
+
[
[R,R] + [R,R]2, [R,R]2

]

=
[
[R,R], [R,R]

]
+
[
R, [R,R]2

]

⊆ [R,R]2 + [R,R]2

= [R,R]2,

where we have used the fact that [R,R]2 is a Lie ideal of R. Hence

R = [R,R] + [R,R]2 ⊆ [R,R]2 + [R,R]2 = [R,R]2,

as desired.
In addition, assume that R is semiprime. Since

R = [R,R]2 = [L,R]2 ⊆ [̃L,R],

we have R = [̃L,R]. In view of Theorem 3.6(i), R is [L,R]-semiprime. �

Remark 3.11. (i) In Theorem 3.10, R is in general not [L,L]-semiprime. For
instance, let R := M2(F ), where F is a field of characteristic 2, and let L := [R,R].
In view of [16, Lemma 2.3], we have 0 6= [L,L] ⊆ F . Thus I([L,L]) = R but R is
not [L,L]-semiprime as R is not a domain.

(ii) In Theorem 3.10, if the assumption I([L,L]) = R is replaced by I([L,R]) =
R, we cannot conclude that R is [L,R]-semiprime. See Remark 6.2 (i) and (ii) in
the next section, and a related result [17, Theorem 1.1].

The equality [L,L] = [L,R] is in general not true. However, we always have the
following

Lemma 3.12. Let R be a ring. Then [E(R), R] = [E(R), E(R)].

Proof. Indeed, let e = e2 ∈ R and x ∈ R. Then

[e, x] =
[
e, [e, [e, x]]

]
∈
[
E(R), [E(R), R]

]
⊆ [E(R), E(R)].

So [E(R), E(R)] = [E(R), R]. �

Theorem 3.13. Let R be a prime ring with a nontrivial idempotent. Then R is
[E(R), R]-prime.
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Proof. Let E := E(R). Clearly, we have E * Z(R). By Lemma 3.12, we have
[E,E] = [E,R] 6= 0. Let I := I([E,E]), a nonzero ideal of R. It follows from
Lemma 3.9 (ii) that

0 6= [I, R] = [I([E,E]), R] ⊆ [E,R] = [E,E].

By Lemma 3.7,
[
[E,R], [E,R]

]
6= 0. It follows from Theorem 3.6 (ii) that R is

[E,R]-prime. �

Theorem 3.13 is also an immediate consequence of Theorem 7.11.

Corollary 3.14. Every prime E(R)-semiprime ring R is either a domain or an
[E(R), R]-prime ring.

Proof. Assume that R is not a domain. Since R is a prime ring, it contains nonzero
square zero elements. Let a2 = 0, where 0 6= a ∈ R. Since R is E(R)-semiprime,
this implies that E(R) 6= {0, 1}. It follows from Theorem 3.13 that R is [E(R), R]-
prime. �

We now apply Theorem 3.10 to the case of matrix rings.

Theorem 3.15. Let R := Mn(A), where A is a semiprime ring and n > 1. Then
R is [E(R), R]-semiprime.

Proof. Let E := E(R). By [14, Theorem 2.1], we have I([E,E]) = R. Since A is a
semiprime ring, so is R. By Theorem 3.10, R is [E,R]-semiprime. �

The following corollary is a consequence of Theorem 3.15 and Proposition 3.2.

Corollary 3.16. Let R := Mn(A), where A be a semiprime ring and n > 1. Then
R is idempotent semiprime.

The above corollary is also a generalization of [6, Theorem 10] which allows to
prove easily the following result.

Corollary 3.17. The idempotent semiprime property does not pass to corners.

Proof. Choose a semiprime ring R, which is not idempotent semiprime, and n > 1
an integer. Then e11Mn(R)e11 ∼= R and so Mn(R) is idempotent semiprime but R
itself is not. �

Corollary 3.18. Idempotent semiprime is not a Morita invariant property of rings.

Throughout, we use the following notation. Let R be a semiprime ring. We can
define its Martindale symmetric ring of quotients Q(R). The center of this ring,
denoted by C, is called the extended centroid of R. It is known that Q(R) itself is
a semiprime ring and C is a regular self-injective ring. Moreover, C is a field iff R
is a prime ring. We refer the reader to the book [1] for details.

4. Prime rings

In this section, given a Lie ideal L of a prime ring R, we obtain a complete
characterization for R to be L-prime (see Theorem 4.5). The following is a special
case of [9, Theorem], which will be used in the proofs below.

Lemma 4.1. Let R be a prime ring, a, b ∈ R with b /∈ Z(R). Suppose that
[a, [b, x]] = 0 for all x ∈ R. Then a2 ∈ Z(R). In addition, if charR 6= 2, then
a ∈ Z(R).



THE X-SEMIPRIMENESS OF RINGS 7

The following is well-known.

Lemma 4.2. Let R be a prime ring. If [a,R] ⊆ Z(R) where a ∈ R, then a ∈ Z(R).

Lemma 4.3. Let R be a prime ring. If a ∈ RC \ C, then dimC [a,RC] > 1.

Proof. Suppose not. We have dimC [a,RC] = 1 and [a,RC] = Cw for some w ∈
[a,RC]. In particular,

[
w, [a,RC]

]
= 0. In view of Lemma 4.1, we have w2 ∈ C.

Thus w[a,RC] = Cw2 ⊆ C.
Let x ∈ RC. Then w[a, xa] = w[a, x]a ∈ C. Since w[a, x] ∈ C, we get w[a, x] = 0.

Thus w[a,R] = 0. The primeness of R forces w = 0 and so a ∈ C. This is a
contradiction. �

Definition.A noncommutative prime ringR is called exceptional if both charR = 2
and dimC RC = 4. Otherwise, R is called non-exceptional.

A Lie ideal L of a ring R is called proper if [I, R] ⊆ L for some nonzero ideal I
of R. We need the following lemma (see [11, Lemma 7]).

Lemma 4.4. Let R be a prime ring with a Lie ideal L. Then L is noncentral iff
[L,L] 6= 0 unless R is exceptional.

Clearly, if L is a nonzero central Lie ideal of R, then R is L-prime if and only if
R is a domain.

Theorem 4.5. Let R be a prime ring, and let L be a noncentral Lie ideal of R. If
R is not a domain, then R is L-prime if and only if one of the following holds:

(i) L is a proper Lie ideal of R;
(ii) R is exceptional, [L,L] = 0, dimC LC = 2 and LC = [a,RC], where a ∈ L

such that a+ β is invertible in RC for all β ∈ C.

Proof. Clearly, R is not commutative. By Lemma 3.9 (ii), [I([L,L]), R] ⊆ L.
“=⇒”: Suppose that R is L-prime. If I([L,L]) 6= 0, then L is a proper Lie ideal

of R and (i) holds. Assume next that I([L,L]) = 0, that is, [L,L] = 0. Since L is
a noncentral Lie ideal of R, it follows from Lemma 4.4 that R is exceptional. Also,
R is not a domain and so RC ∼= M2(C). Clearly, LC is a commutative Lie ideal of
RC.

Since LC is noncentral, 0 6= [LC,RC] ⊆ LC and, by Lemma 4.2, [LC,RC] * C.
Choose a nonzero element a ∈ [LC,RC] \ C. Then 0 6= [a,RC] ⊆ LC. It is well-
known that Z(R) 6= 0 and C is the quotient field of Z(R). Hence we may choose
a ∈ L. It follows from Lemma 4.3 that dimC [a,RC] > 1.

Suppose that dimC LC = 3. Then RC = LC + Cz for some z ∈ RC. Thus

[RC,RC] = [LC + Cz, LC + Cz] = [LC,Cz] ⊆ LC.

In particular,
[
[RC,RC], [RC,RC]

]
= 0, a contradiction (see Lemma 3.7). Hence

LC = [a,RC] and dimC LC = 2.
Suppose on the contrary that a+β is not invertible in RC for some β ∈ C. Then

we can choose nonzero b, c ∈ RC such that b(a+ β) = 0 and (a+ β)c = 0. We may
choose b, c ∈ R. Given x ∈ RC, we have

b[a, x]c = b[a+ β, x]c = b(a+ β)xc− bx(a+ β)c = 0.

Hence b[a,RC]c = 0. That is, bLCc = 0 and so bLc = 0. This is a contradiction as
R is L-prime. So (ii) holds.
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“⇐=”: Suppose that (i) holds. Then [I, R] ⊆ L for some nonzero ideal I of R.
In view of Theorem 3.8, R is [I, R]-prime and so it is L-prime. We next consider
the case (ii). Let b, c ∈ R be such that bLc = 0. Then bLCc = 0 and so b[a, x]c = 0
for all x ∈ RC. That is,

baxc− bxac = 0

for all x ∈ RC. Suppose first that ba and b are C-independent. In view of [19,
Theorem 2], c = 0 follows, as desired. Suppose next that ba and b are C-dependent.
That is, there exists β ∈ C such that ba = βb. So b(a−β) = 0. Since, by assumption,
a− β is invertible in RC and we get b = 0. Hence R is L-prime. �

Remark 4.6. The case (ii) of Theorem 4.5 indeed occurs. Let R := M2(F ), where
F is a field of characteristic 2.

(i) Let

L = {

[
α β
β α

]
| α, β ∈ F} = [a,R],

where a :=

[
1 1
1 1

]
. Then L is a noncentral Lie ideal of R satisfying [L,L] = 0.

Since a ∈ L and a2 = 0, we get aLa = 0 but a 6= 0. Thus, R is not L-prime.
(ii) We choose F such that there exists η ∈ F satisfying η /∈ F (2) := {µ2 | µ ∈ F}.

Let

L = {

[
α β
βη α

]
| α, β ∈ F} = [a,R],

where a :=

[
1 1
η 1

]
. Then L is a noncentral Lie ideal of R satisfying [L,L] = 0.

Note that a+ β is invertible for all β ∈ F . Hence R is L-prime.

We follow the notation given in [3]. A subset X of a ring R is said to be invariant
under special automorphisms if (1+t)X(1+t)−1 ⊆ X for all t ∈ R such that t2 = 0.
Clearly, if X ⊆ R is invariant under special automorphisms, then so is X+. Also,
R is X-prime if and only if it is X+-prime.

Theorem 4.7. Let R be a prime ring with a nontrivial idempotent and let X be
a subset of R invariant under special automorphisms. If X 6⊆ Z(R), then R is
X-prime.

Proof. Without loss of generality we can replace X by X+ and assume that X is
an additive subgroup of R. Clearly, R is not commutative.

Case 1: R is non-exceptional. Then, as X * Z(R), we can apply [3, Theorem 1]
to get that X contains a proper Lie ideal L of R. In view of Theorem 4.5 (i), R is
L-prime and hence is X-prime.

Case 2: R is exceptional. It follows from [3, Lemma 11] that XZ(R) contains
a proper Lie ideal of R. Thus, using Theorem 4.5 (i) again, we obtain that R is
XZ(R)-prime and hence is X-prime. �

The following are natural examples of X : potent elements, potent elements of a
fixed degree, nilpotent elements, nilpotent elements of a fixed degree (in particular,
elements of square zero), [E(R), R], U(R), E(R) etc. Moreover, if A,B are invariant
under special automorphisms, then so are AB and [A,B].

Let N(R) denote the set of all nilpotent elements of R. We end this section with
the following corollary, which is a consequence of Theorem 4.7.
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Corollary 4.8. Let R be a ring possessing a nontrivial idempotents. The following
are equivalent:

(i) R is a prime ring;
(ii) R is U(R)-prime;
(iii) R is N(R)-prime.

5. Derivations

By a derivation of a ring R we mean an additive map d : R → R satisfying

d(xy) = d(x)y + xd(y)

for all x, y ∈ R. A derivation d of R is called inner if there exists b ∈ R such that
d(x) = [b, x] for all x ∈ R. In this case, we denote d = adb. Otherwise, d is called
outer. In this section we characterize the d(R)-semiprimeness of a given prime ring
R. Moreover, we also study the d(L)-semiprimeness of R for L a Lie ideal of R.

Let R be a prime ring with a derivation d. It is known that d can be uniquely
extended to a derivation, denoted by d also, of Q(R) (by applying a standard
argument). We say that d is X-inner if d is inner on Q(R) and d is called X-outer,
otherwise.

We need a preliminary proposition due to Kharchenko (see [10, Lemma 2]).

Proposition 5.1. Let R be a prime ring with a derivation δ. Suppose that there
exist finitely many ai, bi, cj, dj ∈ Q(R) such that

∑

i

aiδ(x)bi +
∑

j

cjxdj = 0

for all x ∈ R. If δ is X-outer, then
∑

i aixbi = 0 =
∑

j cjxdj for all x ∈ R.

Given b ∈ Q(R), let ℓR(b) := {x ∈ R | xb = 0}, the left annihilator of b in R.
Similarly, we denote by rR(b) the right annihilator of b in R.

We are now ready to prove the first main theorem in this section.

Theorem 5.2. Let R be a noncommutative prime ring with a derivation d. Then
R is d(R)-semiprime iff one of the following conditions holds

(i) d is X-outer;
(ii) d = adb for some b ∈ Q(R), and for any β ∈ C, either ℓR(b + β) = 0 or

rR(b+ β) = 0.

Proof. “=⇒”: Suppose that R is d(R)-semiprimeness. Assume that d is X-inner.
Thus there exists b ∈ Q(R) such that d(x) = [b, x] for all x ∈ R. We claim that
given any β ∈ C, either ℓR(b + β) = 0 or rR(b + β) = 0. Otherwise, there exist
β ∈ C and nonzero elements a, c ∈ R such that a(b + β) = 0 = (b + β)c. By the
primeness of R, w := cya 6= 0 for some y ∈ R. Then

wd(z)w = w[b + β, z]w = cya(b+ β)zw − wz(b+ β)cya = 0

for all z ∈ R. That is, wd(R)w = 0 with w 6= 0. So R is not d(R)-semiprimeness,
a contradiction.

“⇐=”: (i) Assume that d is X-outer. Let ad(x)a = 0 for all x ∈ R. By Propo-
sition 5.1, we get aya = 0 for all y ∈ R. The primeness of R implies a = 0. This
proves that R is d(R)-semiprime.

(ii) Let ad(x)a = 0 for all x ∈ R. Since d(x) = [b, x] for all x ∈ R, we get

0 = ad(x)a = abxa− axba
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for all x ∈ R. In view of [19, Theorem 2], there exists β ∈ C such that ab = −βa,
i.e. a ∈ ℓR(b + β). Thus ax(b + β)a = 0 for all x ∈ R. Hence (b + β)a = 0, i.e.,
a ∈ rR(b+ β). Since either ℓR(b+ β) = 0 or rR(b+ β) = 0, we get a = 0. Hence R
is d(R)-semiprime. �

As a direct application of the above theorem we get the following

Corollary 5.3. Let R := Mm(D), where D is a noncommutative division ring,
m ≥ 1, and let d = adb, where b :=

∑m

i=1 µieii, where µi ∈ D for all i. Then R is
d(R)-semiprime iff µi /∈ Z(D) for any i.

Let x ∈ Mm(F ), where F is a field. We denote by det (x) the determinant of x.

Corollary 5.4. Let R := Mm(F ), where F is a field, m > 1, and let d be a
derivation of R. Then R is d(R)-semiprime iff either d is outer or d = adb for
some b ∈ R such that det (b+ β) 6= 0 for any β ∈ F .

In addition, if F is algebraically closed, then R is d(R)-semiprime iff d is outer.

In Corollary 5.4, let F be the algebraic closure of the field F . It is known that
the matrix b can be upper triangularizable in Mm(F ), that is, there exists a unit u
ofMm(F ) such that ubu−1 =

∑
1≤i≤j≤n µijeij , where µij ∈ F . Thus det (b+β) 6= 0

for any β ∈ F iff µii ∈ F \ F for all i.

Motivated by the above two results, it is natural to raise the following

Problem 5.5. Let R := Mm(D), where D is a noncommutative division ring,
m ≥ 1. Characterize elements b ∈ R such that b+ β ∈ U(R) for any β ∈ Z(D).

The problem seems to be related to the triangularizability of the element b. We
next deal with the d(L)-semiprimeness of a prime ring R, where L is a Lie ideal of
R and d is a derivation of R.

Lemma 5.6. Let R be a prime ring with a nonzero ideal I, and ai, bi ∈ Q(R) for
i = 1, . . . ,m. Then:

(i)
∑m

i=1 aixbi = 0 for all x ∈ I iff
∑m

i=1 bixai = 0 for all x ∈ I;

(ii)
∑m

i=1 aiwbi = 0 for all w ∈ [I, I] iff
∑m

i=1 bixai ∈ C for all x ∈ R.

Proof. (i) If follows directly from [18, Corollary 2.2].
(ii) Applying (i) we have

m∑

i=1

ai[x, y]bi = 0 ∀x, y ∈ I ⇔

m∑

i=1

aix(ybi)− (aiy)xbi = 0 ∀x, y ∈ I

⇔

m∑

i=1

(ybi)xai − bix(aiy) = 0 ∀x, y ∈ I

⇔
[
y,

m∑

i=1

bixai
]
= 0 ∀x, y ∈ I

⇔

m∑

i=1

bixai ∈ C ∀x ∈ I

⇔

m∑

i=1

bixai ∈ C ∀x ∈ R,
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where the last equivalence holds as R and I satisfy the same GPIs with coefficients
in Q(R) (see [4, Theorem 2]). �

The following is the second main result in this section.

Theorem 5.7. Let R be a non-exceptional prime ring, not a domain, with a non-
central Lie ideal L, and let d be a derivation of R. Then:

(i) If d is X-outer, then R is d(L)-semiprime;
(ii) If d is X-inner, then R is d(L)-semiprime iff it is d(R)-semiprime.

Proof. Since R is non-exceptional, either charR 6= 2 or dimC RC > 4. In view of
Lemma 4.4, we have [L,L] 6= 0. Thus, by Theorem 3.6 (ii), R is L-semiprime.

(i) Assume that ad(L)a = 0, where a ∈ R. Let x ∈ L and r ∈ R. Then
ad([x, r])a = 0 and so

a
(
[d(x), r] + [x, d(r)]

)
a = 0.

Since d is X-outer, applying Proposition 5.1 we get

a
(
[d(x), r] + [x, z]

)
a = 0

for all x ∈ L and all r, z ∈ R. In particular, a[x, z]a = 0 for all x ∈ L and z ∈ R.
That is, a[L,R]a = 0.

In particular, a[L,RaR]a = 0. Since a[L,R](aR)a = 0, we get aR[L, aR]a = 0.
By the primeness of R, we have [L, aR]a = 0 and so [L, a]Ra = 0. Thus [a, L] = 0.
By the fact that a[L,R]a = 0 and [L,R] ⊆ L, we have a2[L,R] = 0. This implies
a2 = 0 as L is noncentral.

It follows from a[L, aR]a = 0 and a2 = 0 that aLaRa = 0, implying aLa = 0.
Since R is L-semiprime, we get a = 0, as desired.

(ii) Assume that d is X-inner. Clearly, if R is d(L)-semiprime, then it is d(R)-
semiprime. Conversely, assume that R is d(R)-semiprime. Since d is X-inner,
there exists b ∈ Q(R) such that d(x) = [b, x] for all x ∈ R. In view of Lemma 4.4,
[L,L] 6= 0. Hence, by Lemma 3.9 (i), we have 0 6= [K,R] ⊆ L, whereK := I([L,L]).

Let ad(L)a = 0, where a ∈ R. The aim is to prove a = 0. Then a[b, x]a = 0 and
so

(1) abxa = axba

for all x ∈ [K,K] ⊆ L. Since R is non-exceptional, the proof is divided into the
following two cases.

Case 1: dimR C > 4. Applying Lemma 5.6 (ii) to Eq.(1), we have

(2) ayab− baya ∈ C

for all y ∈ R.
Suppose first that ay0ab− bay0a 6= 0 for some y0 ∈ R. Applying [5, Fact 3.1] to

Eq.(2), we get Q(R) = RC and dimC RC < ∞. It follows from [5, Theorem 1.1]
that dimC RC ≤ 4, a contradiction. Thus ayab − baya = 0 for all y ∈ R. In view
of Lemma 5.6 (i), abya− ayba = 0 for all y ∈ R. That is, ad(R)a = 0. Since R is
d(R)-semiprime, we get a = 0, as desired.

Case 2: dimR RC = 4 and charR 6= 2. Since R is not a domain, we have
RC ∼= M2(C). Note that KC = RC in this case. Moreover, [KC,KC] + C = RC
as charR 6= 2. Clearly, Eq.(1) holds for all x ∈ [KC,KC].

Let y ∈ RC. Then y = x+ β for some x ∈ [KC,KC] and β ∈ C. By Eq.(1) we
have

abya = abxa+ abβa = axba+ βaba = a(x+ β)ba = ayba.
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Thus a[b, y]a = 0 for all y ∈ RC. In particular, ad(R)a = 0. Since R is d(R)-
semiprime, we get a = 0, as desired. �

By Theorems 5.7 and 5.2, we have the following

Corollary 5.8. Let R be a non-exceptional prime ring, not a domain, with a
noncentral Lie ideal L, and let d be a derivation of R. Then R is d(L)-semiprime
if one of the following conditions holds:

(i) d is X-outer;
(ii) There exists b ∈ Q(R) such that d(x) = [b, x] for all x ∈ R. Moreover, given

any β ∈ C, either ℓR(b+ β) = 0 or rR(b+ β) = 0.

Example 5.9. Let R := M2(F ), where F is a field of characteristic 2. We choose
F such that there exists η ∈ F satisfying η /∈ F (2) := {µ2 | µ ∈ F}. Let

L = {

[
α β
β α

]
| α, β ∈ F} = [a,R],

where a :=

[
1 1
1 1

]
. Then L is a noncentral Lie ideal of R satisfying [L,L] = 0.

Since a ∈ L and a2 = 0, we get aLa = 0 but a 6= 0. Thus, R is not L-prime. Let

d(x) := [b, x] for all x ∈ R, where b :=

[
1 1
η 1

]
. Then d is an inner derivation of R.

Since d(L) ⊆ L and R is not L-semiprime, it follows that R is not d(L)-semiprime.
Notice that b + β is a unit of R for all β ∈ F . In view of Theorem 5.2 (ii), R is
d(R)-semiprime.

6. Semiprime rings I: main results

Recall that, given a semiprime ring R, we denote by Q(R) the Martindale sym-
metric ring of quotients of R and by C the extended centroid of R. The following
two sections are about proving Theorems 6.1 and 6.4.

Theorem 6.1. Let R be a semiprime ring, and let L be a Lie ideal of R. Suppose
that ℓR([L,R]) = 0. Then there exists an idempotent e ∈ C such that

(i) ex2 ∈ C for all x ∈ L̃, and
(ii) (1− e)R is (1 − e)L-semiprime.

In addition, if R is 2-torsion free, then e = 0 and so R is L-semiprime.

Remark 6.2. In Theorem 6.1, since ℓR([L,R]) = 0, R is L-semiprime iff it is
[L,R]-semiprime (see Corollary 7.4 below). However, we cannot conclude that R is
[L,R]-semiprime unless R is 2-torsion free (see Remark 4.6 (i)).

Applying Corollary 7.4 and the 2-torsion free case of Theorem 6.1, we have the
following

Corollary 6.3. Let R be a 2-torsion free semiprime ring, and let L be a Lie ideal
of R. Then R is [L,R]-semiprime iff ℓR([L,R]) = 0.

When B is a subset of Id(R) such that B+ is a Lie ideal of R, we can get better
conclusions for arbitrary semiprime rings as follows.

Theorem 6.4. Let R be a semiprime ring, and let B be a subset of Id(R) such
that B+ is a Lie ideal of R. Then ℓR([B,R]) = 0 iff R is [B,R]-semiprime.
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The meaning of the two results above deserves further understanding. Clearly,
given a Lie ideal L of a ring R, the assumption ℓR(L) = 0 is necessary to ensure
the L-semiprimeness of R but is in general not sufficient. Thus Corollary 6.3 and
Theorem 6.4 are indeed very special and have good conclusions. It is natural to
raise the following

Problem 6.5. Let R be a semiprime ring with a subset X, and let

X(n) := {xn | x ∈ X},

where n is a positive integer.
(i) Characterize Lie ideals L of R such that R is L-semiprime iff ℓR(L) = 0.
(ii) Find subsets X of R such that R is X-semiprime iff ℓR(X) = 0.
(iii) Let L be a Lie ideal of R. If R is L-semiprime, is then it L(n)-semiprime?
(iv) If ℓR([E(R), R]) = 0, is then R an [E(R), R](n)-semiprime ring?
(v) Let R be 2-torsion free and let L be a Lie ideal of R. If ℓR(L,R]) = 0, is

then R a [L,R](n)-semiprime ring?

The following is clear.

Lemma 6.6. Let R be a ring with subsets X,Y . Then:
(i) If R is both X-semiprime and Y -semiprime, then R is XY -semiprime;
(ii) If R is X-semiprime, then R is Xn-semiprime for any positive integer n.

We give some examples of Problem 6.5 (ii).

Example 6.7. Let R be a semiprime ring, and let ρ be a right ideal of R.
(i) The ring R is ρn-semiprime iff ℓR(ρ) = 0, where n is a positive integer.

Indeed, it is clear that R is ρ-semiprime iff ℓR(ρ) = 0. Thus, if ℓR(ρ) = 0, then R is
ρ-semiprime and hence is ρn-semiprime (see Lemma 6.6 (ii)). Conversely, assume
that f is ρn-semiprime. Then ℓR(ρ

n) = 0 and so ℓR(ρ) = 0 as ρn ⊆ ρ.
(ii) Let X be a subset of R such that, for any x ∈ ρ, xn(x) ∈ X for some positive

integer n(x) ≤ m, a fixed positive integer. Assume that aXa = 0, where a ∈ R.
Then axn(x)a = 0 for all x ∈ R. In view of [12, Theorem 2], we get aρa = 0. Thus
R is X-semiprime iff ℓR(X) = 0 iff ℓR(ρ) = 0.

(iii) Let X be a subset of R such that, for any x ∈ ρ, xn(x) ∈ X for some positive
integer n(x). If R has no nonzero nil one-sided ideals, then R is X-semiprime iff
ℓR(ρ) = 0 (see [12, Theorem 1]).

7. Semiprime rings II: proofs

We begin with some preliminaries. Given an ideal I of Q(R), it follows from the
semiprimeness of Q(R) that, for a ∈ Q(R), aI = 0 iff Ia = 0. Thus ℓQ(R)(I), the
left annihilator of I in Q(R), is an ideal of Q(R).

By an annihilator ideal of Q(R), we mean an ideal N of Q(R) such that N =
ℓQ(R)(I) for some ideal I of Q(R). The following is well-known (see, for instance,
[15, Lemma 2.10]).

Lemma 7.1. Let R be a semiprime ring. Then every annihilator ideal of Q(R) is
of the form eQ(R) for some idempotent e ∈ C.

Let R be a ring with a Lie ideal L. Given x ∈ R, xLR ⊆ ([L, x] + Lx)R ⊆ LR.
This proves that LR is an ideal of R. This fact will be used in the proof below.
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Lemma 7.2. Let R be a semiprime ring, and let L be a Lie ideal of R. Then

ℓQ(R)(L) = ℓQ(R)

(
Q(R)LQ(R)

)
= eQ(R)

for some idempotent e ∈ C.

Proof. Let Q := Q(R). For a, b ∈ Q, it is easy to prove that aRb = 0 iff aQb = 0
(it follows from the definition of Q). It suffices to claim that, given a ∈ Q, aL = 0
iff aQLQ = 0. The converse implication is trivial. Suppose that aL = 0. Then
aLR = 0. Note that LR is an ideal of the semiprime ring R. We get LRa = 0 and
hence LQa = 0. So QLQa = 0 and the semiprimeness of Q forces aQLQ = 0. It
follows from Lemma 7.1 that

ℓQ(L) = ℓQ(QLQ) = eQ

for some idempotent e ∈ C. �

Lemma 7.3. Let R be a semiprime ring with a Lie ideal L. The following hold:
(i) If aLa = 0 where a ∈ R, then [a, L] = 0;
(ii) If ℓR([L,R]) = 0, then given a ∈ R, a[L,R]a = 0 implies aLa = 0.

Proof. (i) Since aLa = 0, we have a[L,RaR]a = 0. By the fact that a[L,R](aR)a =
0, we get aR[L, aR]a = 0. The semiprimeness of R implies that [L, aR]a = 0. Since
a[L,R]a = 0, we have [L, a]Ra = 0. It follows from the semiprimeness of R again
that [a, L] = 0, as desired.

(ii) Assume that ℓR([L,R]) = 0 and a[L,R]a = 0. Since [L,R] is a Lie ideal of
R, it follows from (i) that

[
a, [L,R]

]
= 0 and so a2[L,R] = 0. Hence a2 = 0 as

ℓR([L,R]) = 0. Now, it follows from a[L, aR]a = 0 that aLaRa = 0 and so, by the
semiprimeness of R, aLa = 0, as desired. �

As an immediate consequence of Lemma 7.3 (ii), we have the following

Corollary 7.4. Let R be a ring with a Lie ideal L satisfying ℓR([L,R]) = 0. Then
R is L-semiprime iff it is [L,R]-semiprime.

Clearly, if R is a prime ring and a[b, R] = 0, where a, b ∈ R, then either a = 0 or
b ∈ Z(R). The following is a consequence of Corollary 7.4.

Corollary 7.5. Let R be a prime ring with a noncentral Lie ideal L. Then R is
L-semiprime iff it is [L,R]-semiprime.

The next aim is to study semiprime rings R with a Lie ideal L satisfying
ℓR([L,R]) = 0. We need a technical lemma.

Lemma 7.6. Let R be a semiprime ring with a Lie ideal L, and n a positive integer.

Assume that xn ∈ Z(R) for all x ∈ L̃. Then I([L,L]) ⊆ Z(R). In addition, if R is
2-torsion free, then L ⊆ Z(R).

Proof. In view of Lemma 3.4, we have I([L,L]) ⊆ L+L2 ⊆ L̃. Thus [xn, R] = 0 for
all x ∈ I([L,L]). In view of [13, Lemma 2], we have [x,R] = 0 for all x ∈ I([L,L]).
That is, I([L,L]) ⊆ Z(R). In particular, [L,L] ⊆ Z(R).

In addition, assume that R is 2-torsion free. Let P be a prime ideal of R such
that charR/P 6= 2. Working in R := R/P , we get [L,L] ⊆ Z(R) and so L ⊆ Z(R)
(see [2, Lemma 6]). That is, [L,R] ⊆ P . Since R is 2-torsion free, the intersection
of prime ideals P of R with charR/P 6= 2 is zero, it follows that [L,R] = 0 and so
L ⊆ Z(R), as desired. �
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Let R be a semiprime ring, and let L be a Lie ideal of R. We denote ℓR(L) :=
{a ∈ R | aL = 0}, the left annihilator of L in R. In view of Lemma 7.2,

ℓR(L) = R ∩ ℓQ(R)(L),

implying that ℓR(L) is an ideal of R.

Proof of Theorem 6.1.

Let Q := Q(R). In view of Lemma 7.2, there exists an idempotent e ∈ C such
that

ℓQ

(∑

x∈L̃

R[x2, R]R
)
= eQ.

Clearly, ex2 ∈ C for all x ∈ L̃. This proves (i). We next prove (ii), i.e., (1− e)R is
(1− e)L-semiprime.

Since ℓR([L,R]) = 0, it is clear that

(3) ℓ(1−e)R([(1 − e)L, (1− e)R]) = 0.

Let b(1 − e)Lb = 0, where b = (1 − e)a ∈ (1 − e)R for some a ∈ R. The aim is
to prove b = 0. By b ∈ (1 − e)R, we get a(1 − e)La = 0. Note that (1 − e)L
is a Lie ideal of the semiprime ring (1 − e)R. In view of Lemma 7.3 (i), we get
[a, (1− e)L] = 0. In particular,

[
a, [(1− e)L,R]

]
= 0.

Also, 0 = a(1− e)La = a2(1− e)L, implying

(1 − e)a2
[
(1 − e)L, (1− e)R

]
= 0.

It follows from Eq.(3) that (1 − e)a2 = 0, that is, b2 = 0. By Lemma 3.9 (i), we

have [L,R] = [L̃, R] and so
[
a, [(1− e)L̃, R]

]
= 0, implying

(4)
[
(1 − e)L̃, [b, (1− e)R]

]
= 0.

Let P be a prime ideal of (1− e)R and let (1− e)R := (1 − e)R/P . By Eq.(4),
we have [

(1− e)L̃+ P/P, [b, (1− e)R]
]
= 0.

If b /∈ Z((1− e)R), it follows from Lemma 4.1 that x2 ⊆ Z(R) for all x ∈

(1− e)L̃. Otherwise, b ∈ Z(R) and so b = 0 as b2 = 0. In either case, we have

b[x2, (1− e)R] ⊆ P

for all x ∈ (1 − e)L̃. Since P is arbitrary, the semiprimeness of (1 − e)R forces

b[x2, R] = 0 for all x ∈ L̃. Hence

b
∑

x∈L̃

R[x2, R]R = 0.

Thus b ∈ ℓQ

(∑
x∈L̃

R[x2, R]R
)
= eQ. Since b = (1− e)a, we get b = 0, as desired.

Finally, assume that R is 2-torsion free. Since (i) holds, we have ex2 ∈ C for

all x ∈ L̃. Note that eL is a Lie ideal of the 2-torsion free semiprime ring eR. It
follows from Lemma 7.6 that eL ⊆ C. This implies that e[L,R] = 0 and so e = 0
as ℓR([L,R]) = 0. Thus R is L-semiprime. �

The following extends Theorem 6.1 to the general case without the assumption
ℓR([L,R]) = 0.
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Theorem 7.7. Let R be a semiprime ring, and let L be a Lie ideal of R. Then
there exist orthogonal idempotents e1, e2, e3 ∈ C with e1 + e2 + e3 = 1 such that

(i) e1L ⊆ C,

(ii) e2x
2 ∈ C for all x ∈ L̃, and

(iii) e3R is e3L-semiprime.
In addition, if R is 2-torsion free, then (e1 + e2)L ⊆ C.

Proof. Let Q := Q(R). In view of Lemma 7.2, there exists an idempotent e1 ∈ C
such that

ℓQ([L,R]) = e1Q.

Clearly, we have e1L ⊆ C. This proves (i). Let f := 1−e1. Then fQ is the Martin-
dale symmetric ring of quotients of fR (see [1]). It is clear that ℓfQ([fL, fR]) = 0.

In view of Theorem 6.1, there exists an idempotent e2 ∈ fC such that e2x
2 ∈ C

for all x ∈ L̃. This proves (ii). Moreover, e3R is e3L-semiprime, where e3 := f − e2
and hence (iii) is proved.

Finally, assume that R is 2-torsion free. By Theorem 6.1, e2L ⊆ C and hence
(e1 + e2)L ⊆ C, as desired. �

In a prime ring R, a Lie ideal L of R is noncentral iff ℓR([L,R]) = 0. Thus we
have the following (see also Theorem 4.5 (i)).

Corollary 7.8. Let R be a prime ring of characteristic 6= 2, and let L be a non-
central Lie ideal of R. Then R is L-semiprime.

Remark 7.9. There exists a prime ring R of characteristic 2 and a Lie ideal L of
R such that ℓR([L,R]) = 0 but R is not L-semiprime (see Remark 6.2 (i)).

Proof of Theorem 6.4.

“=⇒”: Clearly, [B,R] = [B+, R]. Let a[B+, R]a = 0, where a ∈ R. The aim is
to prove a = 0.

Let e ∈ B and x ∈ R. Then ex(1−e) = [e, ex(1−e)] ∈ [B,R] and so aex(1−e)a =
0. Hence aeR(1 − e)a = 0 and the semiprimeness of R implies (1 − e)ae = 0.
Similarly, we have ea(1 − e) = 0 and so [e, a] = 0. That is, [a,B] = 0 and so
[a,B+] = 0. Since B+ is a Lie ideal of R, we get

[
a, [B+, R]

]
= 0 and hence

[
B+, [a,R]

]
= 0.

Let e ∈ B, and let P be a prime ideal of R. Then
[
e, [a,R]

]
= 0, where R := R/P .

If e = e2 /∈ Z(R), by Lemma 4.1 we get a ∈ Z(R) and so [a,R] ⊆ P . Oth-
erwise, we have e ∈ Z(R). That is, [e,R] ⊆ P . In either case, we conclude that
[a,R][B,R] ⊆ P . Since P is an arbitrary prime ideal of R, the semiprimeness of R
implies [a,R][B,R] = 0. Since ℓR([B,R]) = 0, we get [a,R] = 0 and so a ∈ Z(R).

By the fact that a[B,R]a = 0, we get a2[B,R] = 0 and so a2 = 0. Since the
center of a semiprime ring is reduced, we have a = 0, as desired.

“⇐=”: Suppose not. Then ℓR([B,R]) 6= 0. Choose a nonzero a ∈ ℓR([B,R]).
Then a[B,R]a = 0, a contradiction. �

The following extends Theorem 6.4 to the general case without the assumption
ℓR([B,R]) = 0.

Theorem 7.10. Let R be a semiprime ring, and let B be a subset of Id(R) such
that B+ is a Lie ideal of R. Then there exists an idempotent e ∈ C such that
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(i) eB+ ⊆ C, and
(ii) (1− e)R is (1 − e)[B,R]-semiprime.

Proof. Let Q := Q(R). It follows from Lemma 7.2 that

ℓQ([B,R]) = ℓQ(Q[B+, R]Q) = eQ

for some e = e2 ∈ C. Then [eB+, R] = 0, implying eB+ ⊆ C and this proves (i).
Note that (1− e)B ⊆ Id((1− e)R) and (1− e)B+ is a Lie ideal of the semiprime

ring (1 − e)R. Let a ∈ (1 − e)R be such that a[(1 − e)B+, (1 − e)R] = 0. Then
a[B+, R] = 0 and so a ∈ eQ. Hence a = 0 follows. In view of Theorem 6.4, (1−e)R
is (1− e)[B,R]-semiprime and this proves (ii). �

The following complements Proposition 3.2 (see Problem 3.3).

Theorem 7.11. Let R be a semiprime ring. Then ℓR([E(R), R]) = 0 iff R is
[E(R), R]-semiprime.

Corollary 7.12. If R is a semiprime ring such that [E(R), R] contains a unit of
R, then R is [E(R), R]-semiprime.

8. Regular rings

When dealing with idempotent semiprime rings, it is natural to consider rings
having many idempotents. Since regular rings also have many idempotents, a com-
parison is in order. Note that regular rings are unit-semiprime (see [6]).

Theorem 8.1. Let R be a semiprime ring. Suppose that, given any prime ideal
P of R, either R/P is a domain or there exists an idempotent e ∈ R such that
e /∈ Z(R), where R := R/P . Then R is idempotent semiprime.

Proof. We let E := E(R). Let aEa = 0,where a ∈ R. The aim is to prove a = 0.
Let P be a prime ideal of R. We have aE a = 0 in R := R/P . We divide the

argument into two cases.
Case 1: R is a domain. Then aE a = 0 and so a ∈ P .
Case 2: There exists an idempotent e ∈ R such that e /∈ Z(R). Then aE a = 0

in R. Note that E is also a Lie ideal of the prime ring R. By Lemma 3.12 we have

[E,R] = [E,R] = [E,E] = [E,E].

Thus [E,E] 6= 0 since e /∈ Z(R). By Theorem 3.6 (ii), the prime ring R is E-prime.
Thus a = 0 in R and so a ∈ P .

In either case, we have a ∈ P . Since P is arbitrary, we get a = 0. Thus R is
idempotent semiprime. �

Theorem 8.2. Every regular ring is idempotent semiprime.

Proof. Let R be a regular ring and let P be a prime ideal of R. Let R := R/P .
Suppose that e ∈ Z(R) for any idempotent e ∈ R.

Let a ∈ R. Since R is regular, aba = a for some b ∈ R and so ab is an idempotent
of R. Hence ab ∈ Z(R) and so ba2 = a. Therefore R is a reduced ring. By the
primeness of R, R is a domain.

The above shows that every regular ring satisfies the assumptions of Theorem
8.1. Thus Theorem 8.1 implies that R is idempotent semiprime. �
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Example 8.3. (i) There exists a regular ring R which is E(R)-semiprime but is
not [E(R), R]-semiprime. For instance, let R := R1 ⊕R2, where R1 = Mn(A) with
A a regular ring, n > 1, and R2 is a division ring. Clearly, R is a regular ring.
Then

ℓR([E(R), R]) = ℓR1
([E(R1), R1])⊕ ℓR2

([E(R2), R2]) = 0⊕R2 6= 0.

In view of Theorem 7.11, R is not [E(R), R]-semiprime. However, by Theorem 8.2,
R is E(R)-semiprime.

(ii) In the ring R given in (i), it is easy to check that, given any prime ideal
P of R, either R/P is a domain or there exists an idempotent e ∈ R such that
e /∈ Z(R), where R := R/P . Thus, in Theorem 8.1, we cannot conclude that R is
[E(R), R]-semiprime.

9. Subdirect products

We always assume that, given any ring R, there exists a subset X(R) associated
with R. For instance, let X(R) be E(R), U(R), [E(R), R], [R,R] etc. The following
is clear.

Theorem 9.1. Given rings Rβ, β ∈ J , an index set, if X(
∏

β∈J Rβ) =
∏

β∈J X(Rβ),

then
∏

β∈J Rβ is X(
∏

β∈J Rβ)-semiprime iff Rβ is X(Rβ)-semiprime for all 1β ∈
J .

An idempotent semiprime ring R just means that it is Id(R)-semiprime. The
following is a direct consequence of of Theorem 9.1 by applying the property
Id(

∏
β Rβ) =

∏
β Id(Rβ) for rings Rβ .

Proposition 9.2. A direct product of rings is idempotent semiprime iff each com-
ponent is idempotent semiprime.

Theorem 9.3. Let R be a semiprime ring. Suppose that, given any prime ideal P
of R, there exists an idempotent e ∈ R such that e /∈ Z(R), where R := R/P . Then
the following hold:

(i) R is [E(R), R]-semiprime;
(ii) R is [E(R), R]-prime for any prime ideal P of R, where R := R/P ;
(iii) R is a subdirect product of prime rings Rβ, β ∈ I, an index set, such that

each Rβ is [E(Rβ), Rβ ]-prime.

Proof. (i) Let E := E(R). By Theorem 7.11, it suffices to show that ℓR([E,R]) = 0.
Suppose not, that is, ℓR([E,R]) 6= 0. There exists a nonzero a ∈ R such that
a[E,R] = 0. In particular, a[E,R2] = 0 and so aR[E,R] = 0. Since R is a
semiprime ring, a /∈ P for some prime ideal P of R. Then aR[E,R] ⊆ P , implying
[E,R] ⊆ P . Hence e ∈ Z(R) for any idempotent e ∈ R, where R := R/P , a
contradiction.

(ii) In view of Theorem 7.11, it suffices to show that ℓR([E(R), R]) = 0. Suppose

that a[E(R), R] = 0, where a ∈ R. Since E(R) ⊆ E(R), we get a[E(R), R] = 0

and so aR[E(R), R] = 0. Since, by assumption, [E(R), R] 6= 0, it follows from
the primeness of R that a = 0, as desired. Thus R is [E(R), R]-semiprime. The
primeness of R implies that R is [E(R), R]-prime.

(iii) Since every semiprime ring is a subdirect product of prime rings, (iii) follows
directly from (ii). �
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Notice that Theorem 3.15 is also an immediate consequence of Theorem 9.3 (i).

Theorem 9.4. Let R be a semiprime ring. Suppose that E(R) = E(R) for any
prime homomorphic image R of R. If R is a subdirect product of [E(Rβ), Rβ ]-prime
rings Rβ, β ∈ I, an index set, then R itself is [E(R), R]-semiprime.

Proof. Write Rβ = R/Pβ, where Pβ is a prime ideal of R, for each β ∈ I. By
Theorem 7.11, it suffices to prove that ℓR([E(R), R]) = 0. Otherwise, a[E(R), R] =
0 for some nonzero a ∈ R. Since

⋂
β∈I Pβ = 0, there exists β ∈ I such that a 6= 0

in Rβ = R/Pβ.

By assumption, we have E(Rβ) = E(R). So a[E(Rβ), Rβ ] = 0 and hence
ℓRβ

([E(Rβ), Rβ ]) 6= 0. Theorem 7.11 implies that Rβ is not [E(Rβ), Rβ ]-prime,
a contradiction. �

Motivated by Theorem 9.4, it is natural to ask the following

Problem 9.5. Characterize semiprime rings R satisfying the property that E(R) =
E(R) for any prime homomorphic image R of R.

Recall that if A is an additive subgroup of a ring R, we say that idempotents
can be lifted modulo A if, given x ∈ R with x − x2 ∈ A, there exists e = e2 ∈ R
such that e− x ∈ A.

A ring R is called suitable (or exchange [20]) if, given any x ∈ R, there exists
e = e2 ∈ R with e − x ∈ R(x − x2). Nicholson proved that a ring is suitable iff
idempotents can be lifted modulo every left ideal (see [20, Corollary 1.3]). Hence
we have

Proposition 9.6. Let R be a suitable ring. Then E(R) = E(R) for any prime
homomorphic image R of R.

The class of suitable rings is large: every homomorphic image of a suitable ring,
semiregular rings, clean rings and many others (see [20]).

Theorem 9.7. Let R be a semiprime suitable ring. Assume that R/P contains a
nontrivial idempotent for any prime ideal P of R. Then R is [E(R), R]-semiprime.

Proof. Since R is a semiprime ring, R is a subdirect product of prime rings Rβ,
β ∈ I, an index set. By the fact that R is suitable, it follows from Proposition 9.6
that [E(R), R]+Pβ/Pβ = [E(Rβ), Rβ ] for any β ∈ I. In view of Theorem 3.13, every
Rβ is [E(Rβ), Rβ ]-prime. Hence, by Theorem 9.4, R is [E(R), R]-semiprime. �
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