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Abstract. First, unit-regular matrices are characterized up to similarity over

any ID ring, that is, a ring in which every idempotent matrix is similar to a
diagonal matrix. Second, the structural properties of unit-regular matrices
are investigated across several classes of rings, including certain commutative
rings.

1. Introduction

In [4] (1968), with further development in [5] (1976), Gertrude Ehrlich introduced
and studied a special class of von Neumann regular rings, which she termed unit-
regular rings. An element a of a unital ring R is called unit-regular if there exists
a unit u in R such that a = aua. Denote by U(R) the set of all the units of R
and by ureg(R) the set of all unit-regular elements in R. A unital ring is called
unit-regular if all its elements are unit-regular.

The relationship between unit-regular rings and their matrix rings is well estab-
lished. Henriksen [7] (1973) demonstrated that matrix rings over unit-regular rings
are also unit-regular. Conversely, if the matrix ring Mn(R) is unit-regular for some
n ≥ 2, then R is unit-regular. This result was attributed to Kaplansky in the 1971
paper by Hartwig and Luh [6]. (In fact, if R is any unit-regular ring, then any
corner ring eRe is also unit-regular; see Ex. 21.9 in [10]).

A natural question, not addressed in Gertrude Ehrlich’s papers, is to characterize
the unit-regular matrices over the broadest possible classes of rings. As far as we
could determine, aside from one very specific case, no prior work has explicitly
stated or proved such characterizations. The exception can be found in [9] (2004),
which examines 2 × 2 matrices with zero second row over commutative (unital)

rings. Specifically, a matrix

[
a b
0 0

]
is unit-regular if and only if (a, b) = e(a′, b′)

for some idempotent e and some unimodular row (a′, b′).
In the second section of this work, we describe, up to similarity, the unit-regular

matrices of any size over an ID ring. Following Steger [12] (1966), a ring R is called
an ID ring if every idempotent matrix over R is similar to a diagonal matrix. Ex-
amples of ID rings include division rings, local rings, projective-free rings, principal
ideal domains, elementary divisor rings, unit-regular rings and serial rings.

In the third section, characterizations are provided for unit-regular matrices over
commutative ID rings. The final section presents a characterization over pre-Scheier
domains.

Keywords: unit-regular element, matrix, similarity, ID ring, pre-Schreier domain. MSC 2010
Classification: 16U99, 15B33, 15D99 Orcid: 0000-0002-3353-6958, 0000-0003-2777-7541, Grigore

Călugăreanu, corresponding author.

1
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To elaborate, an n-tuple (a1, ..., an) forms a unimodular row if a1R+ ...+anR =
R, or equivalently, if there exist x1, ..., xn ∈ R such that a1x1 + ... + anxn = 1.
We denote this by (a1, ..., an) ∈ Um(Rn). A 2× 2 matrix A = [aij ] is said to have
unimodular entries if (a11, a12, a21, a22) ∈ Um(R4).

The inner rank of an n×n matrix A over a ring is defined as the smallest integer
m such that A can be expressed as the product of an n×m matrix and an m× n
matrix. For instance, over a division ring, this notion aligns with the standard
definition of rank. A square matrix is called full if its inner rank equals its order
and non-full otherwise.

Throughout this paper, the term regular, when referring to elements or rings,
will denote von Neumann regular. Two elements a, b in a ring R are equivalent if
there exist units p, q such that b = paq.

2. The characterization

The following well-known facts are recalled for the reader’s convenience.

Lemma 2.1. a) If a is regular and a = axa then both ax and xa are idempotents.
The converses fail.

b) If a is unit-regular and a = aua with some unit u then both au and ua are
idempotents. Both converses hold, i.e., if au (or ua) is idempotent then a is unit-
regular.

c) An element a is unit-regular iff a = eu (or a = ue) with e2 = e ∈ R and unit
u ∈ R.

d) If R is a connected ring (i.e., has only the trivial idempotents 0 and 1) then
the only unit-regular elements of R are 0 and the units.

(e) Unit-regular elements are invariant under equivalences.

Proof. a) In Z12, 2 · 2 = 4 = 42 but 2 is not regular in Z12.
e) If a = aua then (paq)(q−1up−1)(paq) = paq, for any units p, q and u. □
Since our characterization of unit-regular matrices is up to similarity, we adopt

the notation ∼ to denote the conjugation (binary) relation in a ring R. More

precisely, for elements a, b ∈ R, we write a
v∼ b if there exists a unit v ∈ R such

that b = vav−1; in this case, we say that b is conjugate to a via v. The following
straightforward results will be useful.

Lemma 2.2. If a
v∼ b and c

v∼ d then ac
v∼ bd.

Lemma 2.3. Suppose e
v∼ f and a = eu for a unit u ∈ R. There exists a unit

w ∈ R such that a
v∼ b = fw.

Proof. Just a special case of the previous lemma. If f = vev−1 then w = vuv−1.
Indeed b = fw = vev−1vuv−1 = veuv−1 = vav−1. □

In particular, if a = eu is unit-regular and f is an idempotent conjugate to e via
v, there is a unit w such that the unit-regular b = fw is conjugate to a via v.
Recall that, for matrices, conjugation is traditionally referred to as similarity.

This completes the necessary groundwork to state and prove the characterization.
For the reader’s convenience, we present the result separately for 2 × 2 matrices.

First of all, the case of a 1× 1 matrix A = [a] is obvious (by Lemma 2.1, (c)): A
is unit-regular iff a = eu for some idempotent e and unit u.
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Proposition 2.4. Up to similarity, the unit-regular 2×2 matrices over an ID ring

are of form e

[
x y
0 0

]
or e

[
x y
0 0

]
+ e′

[
0 0
z w

]
with idempotents e, e′ and

invertible

[
x y
z w

]
.

Proof. When describing, up to similarity, the unit-regular matrices A = EU over
an ID ring, by Lemma 2.3, we can suppose E is diagonal (with idempotent entries).

Up to similarity these are

[
e 0
0 0

]
or

[
e 0
0 e′

]
. Thus, if U =

[
x y
z w

]
is invert-

ible, these are e

[
x y
0 0

]
where (x, y) ∈ Um(R2) or else

[
e 0
0 e′

] [
x y
z w

]
=[

ex ey
e′z e′w

]
with invertible

[
x y
z w

]
(and so (x, y), (z, w) ∈ Um(R2)). In the

second case, the product decomposes as e

[
x y
0 0

]
+ e′

[
0 0
z w

]
. □

Remarks. 1) If U =

[
x y
z w

]
is invertible then (x, y), (z, w) ∈ Um(R2), but

the converse may fail (even if the base ring is supposed commutative).

2) However, for the first type e

[
x y
0 0

]
, it suffices to assume (x, y) ∈ Um(R2),

since every unimodular 2-row is completable to an invertible 2× 2 matrix. Indeed,

if xr − ys = 1 then

[
x y
s r

]
is invertible.

3) Note that

[
0 0
z w

]
= U2

[
w z
0 0

]
U2 where U2 = U−1

2 =

[
0 1
1 0

]
, is also

a similarity.

The n× n case is analogous.

Theorem 2.5. Up to similarity, the n×n unit-regular matrices over an ID ring are

of form e1


u11 · · · u1n

0 · · · 0
... · · ·

...
0 · · · 0

 or e1


u11 · · · u1n

0 · · · 0
... · · ·

...
0 · · · 0

+e2


0 · · · 0
u21 · · · u2n

... · · ·
...

0 · · · 0

 or

... or e1


u11 · · · u1n

0 · · · 0
... · · ·

...
0 · · · 0

+ e2


0 · · · 0
u21 · · · u2n

... · · ·
...

0 · · · 0

+ ...+ en


0 · · · 0
... · · ·

...
0 · · · 0

un1 · · · unn


for some idempotents e1, e2, ..., en and an invertible matrix U = [uij ]1≤i,j≤n.

In a more compact form, a matrix U remains invertible after any permutation of

rows or columns whence any subsum
k∑

i=j

eiUi is unit-regular where 1 ≤ j ≤ k− 1 ≤

n − 1 and Ui denotes the matrix whose i-row is the i-row of U and all the other
entries are 0.

Remark. The matrices above, which have only one nonzero row, are similar to
the matrices which have only the first nonzero row. To simplify the writing we give
the details in the n = 3 case.
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Denoting U3 =

 0 0 1
0 1 0
1 0 0

 (for which U2
3 = I3) note the similarity

U3

 u11 u12 u13

u21 u22 u23

u31 u32 u33

U3 =

 u33 u32 u31

u23 u22 u21

u13 u12 u11

 .

As special case of this similarity, U3

 0 0 0
0 0 0
u31 u32 u33

U3 =

 u33 u32 u31

0 0 0
0 0 0

.
Also V3

 0 0 0
u21 u22 u23

0 0 0

V 2
3 =

 u22 u23 u21

0 0 0
0 0 0

 for V3 =

 0 1 0
0 0 1
1 0 0

 (for

which V 3
3 = I3).

3. Over commutative rings

In this section, as indicated by the title, the ring R is assumed to be (unital and)
commutative.

The role of idempotents in the general description of unit-regular matrices (not
restricted to those with unimodular entries or over connected rings) was foreseeable,

due to the result on matrices of the form

[
a b
0 0

]
mentioned in the Introduction

(see [9]), as well as the existing characterization of regular matrices given by the
theorem below, proved in [11].

For any matrix A ∈ Mn(R), let Di(A) (1 ≤ i ≤ n) denote the i-th determinantal
ideal of A, that is, the ideal in R generated by the i× i minors of A (see [1]). We
have a descending sequence of ideals

D0(A) ⊇ D1(A) ⊇ ... ⊇ Dn(A) = det(A)R ⊇ (0),

where, by convention, D0(A) = R.

Theorem 3.1. A matrix A = (aij) ∈ Mn(R) over a commutative ring R is regular
iff each determinantal ideal Di(A) (0 ≤ i ≤ n) is idempotent (or equivalently, each
Di(A) is generated by an idempotent in R).

Note that if R is a connected ring, the theorem shows that A is regular iff each
Di(A) is either (0) or R.

Suppose A is unit-regular and det(A) is not a zero divisor. Then A = AUA
for some invertible matrix U and from det(A) det(U) det(A) = det(A) we get
det(AU) = det(UA) = 1. Hence both AU , UA are invertible and so is A. Therefore

Proposition 3.2. Over any integral domain, only invertible or zero determinant
matrices may be unit-regular.

For pre-Schreier integral domains the converse also holds (see Theorem 4.2).

Also note that

Proposition 3.3. If A is unit-regular then det(A) is unit-regular too. The converse
may fail.
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Proof. We just provide examples regarding the failure of the converse for 2 × 2
matrices.

Over any commutative ring R, suppose 0 ̸= a is such that a2 is idempotent and
a2 does not divide a. Consider aI2 in M2(R). Then det(aI2) = a2 is idempotent
(so trivially unit-regular) but aI2 is not even regular. Indeed, (aI2)X(aI2) = aI2
amounts to a2X = aI2 and further to a2x = a for some x, with no solution. For
example take aI2 = 2I2 in M2(Z12). Then 4 = 22 is idempotent but 4x = 2 has no
solutions in Z12.

Alternatively, let 0 ≠ a with a2 = 0. Then det(aI2) = a2 = 0 (is trivially unit-
regular) but again aI2 is not even regular. Indeed, (aI2)X(aI2) = aI2 amounts
to a2X = 02 ̸= aI2. For example take aI2 = 6I2 in M2(Z12). Then 62 = 0 and
(6I2)X(6I2) = 02 ̸= 6I2.

Less trivially, A =

[
2 0
0 1

]
is not (even) regular over Z12, as AXA = A amounts

again to 4x = 2 (with no solutions), but here det(A) = 2 is a zero divisor that is
not idempotent nor zero-square. □

It follows that - excluding the invertible matrices - we only need to describe
the unit-regular matrices whose determinant is a zero divisor. In particular, this
includes unit-regular matrices with idempotent determinants, and more specifically,
those with determinant zero.

As already noted in [11] (in the context of regular matrices), the classification of
unit-regular matrices can be reduced to the case where the determinant is zero.

For n = 2, Theorem 3.1 can be stated as follows:

Theorem 3.4. A matrix A = (aij) ∈ M2(R) over a commutative ring R is regular
iff there exist idempotents e, e′ ∈ R such that D1(A) = eR and D2(A) = (detA)R =
e′R.

The reduction is as follows.
If a matrix A ∈ M2(R) has D1(A) = eR and D2(A) = (detA)R = e′R, where

e, e′ are idempotents, then R splits into e′R × (1 − e′)R, and in the component
e′R, the projection e′A of A is invertible (and so also unit-regular). Thus, for
unit-regular 2 × 2 matrices, it suffices to analyze the projection of A in the other
component (1− e′)R, which has determinant zero.

Note that det(A) = 0 implies det(E) = 0, whenever A = EU is unit-regular
with idempotent E and invertible U . By the characterization above, (say) in the

2 × 2 case, this can only happen, up to similarity, when A ∼ e

[
x y
0 0

]
with

(x, y) ∈ Um(R2) or A ∼
[

e 0
0 e′

] [
x y
z w

]
with orthogonal (in particular, com-

plementary) idempotents e, e′ and invertible matrix

[
x y
z w

]
.

For completeness, we collect here some basic results concerning unimodular rows
and invertible matrices.

Lemma 3.5. A non-full matrix A = [aij ] =

[
s
t

] [
a b

]
has unimodular entries

iff both (a, b), (s, t) ∈ Um(R2).
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Proof. “⇐” If aα+ bβ = 1 = sσ+ tτ then we get a11ασ+a12βσ+a21ατ +a22βτ =
(aα+ bβ)(sσ + tτ) = 1.

“⇒” If there exist (as)x+ (bs)y + (at)z + (bt)w = 1 we can choose α = sx+ tz,
β = sy + tw and similarly σ = ax+ by, τ = az + bw. □

Lemma 3.6. If U =

[
x z
y w

]
∈ GL2(R) then

(i) (x, z), (y, w) ∈ Um(R2);
(ii) for any r ∈ R, (x, z) + r(z, w) ∈ Um(R2).

Proof. (i) Suppose xR+ zR = δR with δ /∈ U(R). Since x, z ∈ δR we have x = δx′,
z = δz′ and so det(U) = δr for some r. Then since δ /∈ U(R) so is det(U) /∈ U(R),
and U /∈ GL2(R).

(ii) This corresponds to an elementary transformation: rrow2(U)+row1(U),
which does not change the determinant, but only the first row. Now we apply
(i). □

A symmetric statement holds for columns.

Lemma 3.7. If
[
a b

]
and

[
x
z

]
are unimodular there exists a matrix U with

det(U) = 1 such that
[
a b

]
U

[
x
z

]
= [1].

Proof. Write aa′ + bb′ = 1 = xx′ + zz′ = 1, and consider the matrices A and X

in SL2(R) such that A =

[
a′ −b
b′ a

]
and X =

[
x′ z′

−z x

]
. If we take U = AX,

then
[
a b

]
U

[
x
z

]
=

[
1 0

] [ 1
0

]
= [1] and det(U) = 1. □

We have shown that over an ID ring, a unit-regular 2 × 2 matrix is similar

either to a matrix of form e

[
a b
0 0

]
for some idempotent e and unimodular (a, b)

(type 1), or to a matrix of form

[
e 0
0 e′

] [
a b
c d

]
for some idempotents e, e′

and invertible matrix

[
a b
c d

]
(type 2). Since our analysis is restricted to zero

determinant matrices, in the type 2 we assume e and e′ are orthogonal idempotents.
Over commutative ID rings, we first characterize the type 1 unit-regular matrices.

Clearly, all such matrices have zero determinant.

Theorem 3.8. Over a commutative ID ring R, a zero determinant 2 × 2 matrix
A is unit-regular of type 1 iff there exists an idempotent e ∈ R such that A = eBV
with

(i) B is unimodular non-full (i.e., a column-row product),
(ii) V is invertible,

(iii)

[
x y
z w

]
= V −1 and B =

[
x
z

] [
a b

]
for a unimodular row

[
a b

]
.
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Proof. In one direction, reversing the similarities, the unit-regular matrices of this

type are just products A = eU

[
a b
0 0

]
U−1 with invertible U . If U =

[
x y
z w

]
,

then by computation A = e

[
x
z

] [
a b

]
U−1. Thus V = U−1 gives (iii).

Conversely, we are searching for an invertible matrix U such that A = AUA,
that is, eBV = eBV UeBV . It suffices to find U such that B = BV UB, by right
multiplication with V −1 and e2 = e. As already done in Lemma 3.7, suppose

aa′ + bb′ = 1 = xx′ + zz′ and consider M =

[
a′ −b
b′ a

]
, N =

[
x′ z′

−z x

]
and

W = MN . It is readily checked that
[
a b

]
W

[
x
z

]
= [1] so, if we choose

U = V −1W , we get B = BWB = BV UB, as desired. □

Examples. 1) For the matrices considered in [11],

[
a b
0 0

]
, we have the

decomposition e

[
1
0

] [
a′ b′

]
I2 with unimodular

[
a′ b′

]
.

2) For zero determinant idempotent 2 × 2 matrices E, by Cayley-Hamilton’s
theorem, we have E = Tr(E)E and since similar matrices have the same trace,

in the type 1 case, Tr(E) = e, an idempotent. Thus, eE = E =

[
a b
c e− a

]
with a(e − a) = bc and a = ea, b = eb, c = ec. Hence E = e

[
a b
c 1− a

]
with

a(1− a) = bc.

Further note that since E′ =

[
a b
c 1− a

]
is conjugate to a diagonal matrix

(the base ring is supposed ID commutative) there exist x, y, x0, y0 ∈ R such that
a = xy, c = xx0 and b = yy0 (see Proposition 18, [3]). This is because assuming E is

conjugate to

[
1 0
0 0

]
, it follows that R2 has a basis {(y, x0)

T , (−y0, x)
T } such that

EU = E

[
y −y0
x0 x

]
=

[
y 0
x0 0

]
, where we may assume that xy + x0y0 = 1.

Therefore E =

[
y 0
x0 0

] [
x y0

−x0 y

]
. This gives right away a = xy,b = yy0,

c = xx0, as desired. Finally E = e

[
y
x0

] [
1 0

]
U−1 = e

[
y
x0

] [
x y0

]
I2

with invertible U =

[
y −y0
x0 x

]
.

We mention that if R is a GCD domain (greatest common divisors exist) then
x = gcd(a, c) and if a = xy, c = xx0 with gcd(y, x0) = 1 then y | b and so b = yy0
for some y0.

Next, we characterize the type 2 unit-regular matrices. Since the idempotents
involved are orthogonal, these matrices also have zero determinant. To proceed, we
require the following key lemma.
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Lemma 3.9. Let A =

[
a b
c d

]
and X =

[
x y
z w

]
be invertible matrices and

B =

[
x
z

] [
a b

]
, B′ =

[
y
w

] [
c d

]
. There exists an invertible matrix U

such that B = BUB and B′ = B′UB′.

Proof. Since rows and columns of invertible matrices are unimodular, there exist
a′, b′, x′, z′ such that xx′ + zz′ = 1 = aa′ + bb′. Multiplying on left with

[
x′ z′

]
and on right with

[
a′

b′

]
, the first equality reduces to [1] =

[
a b

]
U

[
x
z

]
.

Similarly, the second equality reduces to [1] =
[
c d

]
U

[
y
w

]
. Now note that

for any matrix U , the (1,1) entry of the product AUX is
[
a b

]
U

[
x
z

]
and the

(2,2) entry is [1] =
[
c d

]
U

[
y
w

]
. Therefore we can choose U = A−1X−1, as

AA−1X−1X = I2 has the required diagonal entries. □

Remark. We can choose U = A−1

[
1 − det(A) det(B) + 1
1 1

]
B−1 ∈ SL2(R).

Here is the characterization for type 2 unit-regular matrices.

Theorem 3.10. Over a commutative ID ring R, a zero determinant 2× 2 matrix
A is unit-regular of type 2 iff there exist two orthogonal idempotents e, e′ such that
A = (eB + e′B′)V where

(i) B, B′ are unimodular non-full matrices,
(ii) V is an invertible matrix,

(iii) if B =

[
x
z

] [
a b

]
, B′ =

[
y
w

] [
c d

]
then

[
a b
c d

]
and

[
x y
z w

]
are invertible, and

(iv)

[
x y
z w

]
= V −1.

Proof. In one direction, recall that up to similarity, these matrices are of form

e

[
a b
0 0

]
+ e′

[
0 0
c d

]
with invertible

[
a b
c d

]
. Reversing the similarity, the

unit-regular matrices of this type are A = eU

[
a b
0 0

]
U−1 + e′U

[
0 0
c d

]
U−1,

with invertible U .

Hence, if U =

[
x y
z w

]
we get A = (e

[
x
z

] [
a b

]
+ e′

[
y
w

] [
c d

]
)U−1

with orthogonal idempotents e, e′ and invertible

[
a b
c d

]
. From V = U−1 we

obtain (iv).
Conversely, we are searching for an invertible matrix U such that A = AUA,

that is, (eB + e′B′)V = (eB + e′B′)V U(eB + e′B′)V . Equivalently, eB + e′B′ =
(eB+ e′B′)V U(eB+ e′B′) and since ee′ = 0, eB+ e′B′ = eBV UeB+ e′B′V Ue′B′.
It suffices to find an invertible matrix W such that B = BWB and B′ = B′WB′.
This is done as in Lemma 3.9. □
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Example. For zero determinant idempotent matrices, by Cayley-Hamilton the-
orem we know that E = Tr(E)E and since similar matrices have the same trace, in
the type 2 case, Tr(E) = e+ e′, is also an idempotent, as e and e′ are orthogonal.

Thus, E =

[
e+ x y
z e′ − x

]
with (e + x)(e′ − x) = yz. Since (e + e′)E = E we

get x = (e+ e′)x, y = (e+ e′)y, z = (e+ e′) and so E = (e+ e′)E = eE + e′E. A
decomposition is provided as in example 2, after Theorem 3.8 (since again the base
ring is supposed to be ID commutative).

We finally characterize the zero determinant 2 × 2 matrices whose entries form
a unimodular row. In the proof we use, only for 2 × 2 matrices, the equality

det(A+B) = det(A) + det(B) + Tr(A)Tr(B)− Tr(AB).

Theorem 3.11. Let A =

[
a b
c d

]
be a nonzero 2×2 matrix with zero determinant

over a commutative ring R. If its entries form a unimodular row and among the

solutions of ax + by + cz + dw = 1, there is one such that det

[
x z
y w

]
= 0 or

det

[
x z
y w

]
is a unit, then A is unit-regular. If R is connected (in particular, an

integral domain), the converse also holds.

Proof. If among the solutions of ax + by + cz + dw = 1 there is one such that

det

[
x z
y w

]
is a unit then X =

[
x z
y w

]
is a unit inner inverse for A. If there

is one solution such that det

[
x z
y w

]
= 0, we show that U = X + adj(A) (the

adjugate) is a unit inner inverse for A (with det(U) = 1).
Indeed

AUA = A(X + adj(A))A = AXA+Aadj(A)A = A+ det(A)A = A

and
det(U) = det(X + adj(A)) =

det(X) + det(adj(A)) + Tr(X)Tr(adj(A))− Tr(Xadj(A)) =
0 + 0 + ax+ by + cz + dw = 1.

Conversely, suppose A is unit-regular. Then it is regular, the entries form a
unimodular row (Theorem 3.1, in the connected case) and so ax+ by+ cz+dw = 1
has solutions. Each solution yields an inner inverse for A, that is, A = AXA for

X =

[
x z
y w

]
. Since A is unit-regular, it has a unit inner inverse U such that

A = AUA. Since U is invertible, det(U) is a unit. □

4. Over pre-Schreier domains

A commutative ring R is called pre-Schreier, if every nonzero element r ∈ R is
primal, i.e., if r divides xy, there are r1, r2 ∈ R such that r = r1r2, r1 divides x
and r2 divides y.

Recall from [2] that

Theorem 4.1. Over a pre-Schreier domain a 2 × 2 matrix has zero determinant
iff it is non-full, that is, it admits a column-row decomposition.
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Proof. Indeed, such matrices have (rank 1 and) dependent rows (or columns), that

is, have the form A = [aij ] =

[
sa sb
ta tb

]
=

[
s
t

]
a b . □

For pre-Schreier domains, we can prove the following characterization (including
a converse for Proposition 3.2).

Theorem 4.2. Let R be a pre-Schreier (commutative) domain. A nonzero 2 × 2
matrix with zero determinant is unit-regular iff its entries form a unimodular row.

Proof. According to Theorem 4.1 and Lemma 3.5, we can start with a column-

row product A =

[
s
t

] [
a b

]
such that both (a, b), (s, t) ∈ Um(R2). We have

to find an invertible matrix U such that A = AUA. Pre-Schreier domains are
Bézout, so since (s, t) ∈ Um(R2), there are σ, τ such that sσ + tτ = 1, that is,[
σ τ

] [ s
t

]
= [1] and similarly, there exist α, β such that aα + bβ = 1, that

is
[
a b

] [ α
β

]
= [1]. Finally U =

[
bt+ σα −bs+ τα
−ta+ βσ sa+ βτ

]
is the required

invertible matrix.
Indeed, (bt + σα)(sa + βτ) − (−bs + τα)(−ta + βσ) = (aα + bβ)(sσ + tτ) = 1

and
[
a b

]
U =

[
σ τ

]
is readily checked.

Conversely, assume a non-full 2 × 2 matrix A =

[
s
t

] [
a b

]
is unit regular.

Thus there exists an invertible matrix U such that[
s
t

] [
a b

]
=

[
s
t

] [
a b

]
U

[
s
t

] [
a b

]
.

Again, by Lemma 3.5, we have to show that both

[
s
t

]
and

[
a b

]
are unimod-

ular.
By contradiction (and Bézout hypothesis) assume sR+ tR = δR with δ /∈ U(R)

and let aR+ bR = γR (with γ ̸= 0). Since s, t ∈ δR, we write s = δs′, t = δt′ with

unimodular

[
s′

t′

]
and similarly a, b ∈ γR and a = γa′, b = γb′, so that

δγ

[
s′

t′

] [
a′ b′

]
= δ2γ2

[
s′

t′

] [
a′ b′

]
U

[
s′

t′

] [
a′ b′

]
.

If
[
p q

] [ s′

t′

]
= [1] and

[
a′ b′

] [ m
n

]
= [1], by left multiplication with[

p q
]
and right multiplication with

[
m
n

]
we get

δγ = δ2γ2
[
a′ b′

]
U

[
s′

t′

]
.

Hence δγ = δ2γ2r, for some r, which by cancellation gives 1 = δγr so δ ∈ U(R), a
contradiction. □

Remarks. 1) As the reader may have obseved, the invertibility of U was not
used in the proof of the converse. Therefore, if a non-full matrix is regular over a
pre-Schreier domain, its entries must form a unimodular row.
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2) Since for given (a, b), (s, t) ∈ Um(R2), there are multiple ways to choose
unimodular pairs (α, β), (σ, τ) ∈ Um(R2), the above procedure yields many distinct

invertible inner inverses for A =

[
s
t

] [
a b

]
.
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