Any strongly regular ring is regular: an elementary proof

May 5, 2024

A well-known proof for the claim goes like this:

1) any strongly regular ring is reduced, and so semiprime;

2) for any prime ideal P of a ring, R/P is a division ring;

3) in any division ring $\alpha^2 \beta = \alpha$ implies $\alpha \beta \alpha = \alpha$;

4) The proof: suppose $a = a^2b$ for elements $a, b \in R$. For any prime ideal P, we have $\overline{a} = \overline{a}^2 \overline{b}$ in R/P so according to (3), $\overline{a} = \overline{a} \overline{b} \overline{a}$. Hence $aba - a \in P$ for every prime ideal of R. As R is semiprime, the intersection of all the prime ideals is 0 and so aba - a = 0, as desired.

In the sequel we provide **an elementary proof** which avoids semiprime rings and prime ideals.

P1. A strongly regular ring is reduced.

Proof. Obviously $a = a^2x$ implies $a^3x^2 = a^2x = a$ and $a^{n+1}x^n = a$ where n is an arbitrary positive integer. Therefore $a^n = 0$ implies a = 0, for any element a.

P2. Any strongly regular ring is regular.

Proof. Let a be an arbitrary element of R. Then $a = a^2 x$ implies $(a - axa)^2 = 0$. Hence by P1, a = axa.