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Abstract. An Abelian group G is called strongly not divisible if nG ̸= G

for every integer n ̸= ±1. In [4], a characterization of the torsion strongly not
divisible groups (referred to there as OI-groups) was obtained. In this note, we
provide characterizations for broad classes of torsion-free and mixed strongly
not divisible groups.

1. Introduction

Throughout, let G denote a nonzero Abelian group and let Z∗ denote the set of
all nonzero integers. As is well-known, G is divisible if nG = G for any n ∈ Z∗.
Equivalently, G is not divisible if there is n ∈ Z∗ such that nG ̸= G. Since nG = G
clearly holds for n ∈ {±1}, it is natural to ask: which Abelian groups satisfy
nG ̸= G for every integer n /∈ {−1, 0, 1} ? In other words, which groups exhibit
this stronger form of non-divisibility ?

A nonzero abelian group G is called an OI-group if nG ̸= G for every integer
n /∈ {−1, 0, 1}. Equivalently, if ρn : G → G denotes multiplication by n, then G is
an OI-group (“onto-implies-invertible”, see [3]) if and only if ρn is surjective only
for n = ±1. In particular, G is an OI-group if and only if it is not p-divisible for
any prime p. These are precisely the groups termed strongly not divisible in the
title. However, for brevity, we continue to use the term OI-group throughout this
paper.

In Section 2 we present some immediate yet useful properties related to the OI
property.

The paper [3] gives the definition of OI modules and provides two (non)examples

of Abelian OI-groups: Q is not OI and
⊕
p∈P

Zp is OI.

In another work [4], a characterization was given for OI torsion Abelian groups:
A torsion Abelian group G is OI iff for every prime p, the group G has a cyclic
summand of order ps for some positive integer s. However, there are some issues
with the proof of this result, corrected in Section 3. Section 4 focuses on the well-
studied classes of torsion-free OI groups, whereas Section 5 investigates how the
OI property extends to mixed groups. In Section 6, we study how the OI property
interacts with the classical functors in homological algebra, and, in the final section,
two approaches are presented to describe the OI-groups using cones generated by
certain natural choices of generators..
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2. Prerequisites

2.1. OI properties. We use without proof the well-known equality, n(
⊕
i∈I

Gi) =⊕
i∈I

nGi, for groups Gi and integers n.

In this subsection, we gather some simple yet useful results related to the OI
property.

Proposition 2.1. Divisible groups are not OI (and OI groups are not divisible).

Proof. Follows from definitions. □

Proposition 2.2. For any prime p, the p-groups are not OI.

Proof. Indeed, for any prime q ̸= p and any p-group G, qG = G, so G is not OI. □

Recall that a subgroup H is called pure in a group G if, for every integer n,
nH = H ∩ nG. Next, we use the well-known fact that pure subgroups of divisible
groups are divisible.

Theorem 2.3. Let H be a pure subgroup of a group G. If H is OI then also G is
OI.

Proof. Assume G is not OI. There exists an integer n /∈ {0,±1} such that nG = G.
Hence, by purity, nH = H ∩nG = H ∩G = H, that is, the pure subgroup H is not
OI. □

Corollary 2.4. Let G = H ⊕K. If H (or K) is OI then G is OI.

Proof. Follows from the previous theorem. □

Corollary 2.5. A group is OI iff its reduced part is OI.

Proof. If D(G) is the maximal divisible subgroup of G, then G = D(G)⊕R, where,
up to isomorphism R is the reduced part of G. □

In particular, a direct sum is OI, if at least one summand is OI, that is, the OI
property is (actually, more than) preserved by direct sums.

The converse (the OI property passes to direct summands) fails as witnessed by
the following torsion-free

Example. For any prime p, denote Z(p) := {m
pk : m ∈ Z, k ≥ 0} the well-known

(rank 1) rational group. Take G = H ⊕K with H = Z(2) and K = Z(3). In Section
5, we show that H,K are not OI but G is OI (and a more general result).

Remarks. 1) Moreover, the OI property does not pass to fully invariant direct
summands. As an example, let G = Q⊕Z. Since Z is OI, it follows by the previous
corollary that G is OI. As Hom(Q,Z) = 0, Q is a (divisible) fully invariant direct
summand of G which is not OI.

2) The OI and the reduced properties are independent. Indeed, Q⊕ Z is OI but
not reduced and the cyclic group Zp is reduced but not OI.
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2.2. OI and factor groups. For a prime number p and a subgroup H of a group
G, we have p(G/H) = (pG+H)/H.

Lemma 2.6. (i) If G/H is OI, so is G;
(ii) If G/H is not OI, then G may be OI.

Proof. (i) If pG = G then p(G/H) = (pG +H)/H = G/H. Hence, if G is not OI
then G/H is not OI.

(ii) According to the formula above, in general pG + H = G does not imply
pG = G. As an example, G = H ⊕ K, with H = Z(2) and K = Z(3), is OI, but
G/K = (H +K))/K ∼= H is not OI. □

2.3. Hopfian and OI are independent. It is easy to see that if x is invertible in
R and MR is an R-module, then ρx : M → M is an isomorphism. Thus, one could
consider OI modules as a generalization of Hopfian modules, that is, the class of
modules in which every surjective endomorphism is an automorphism.

In general the Hopfian property does not imply the OI property. As an example,
consider the Abelian group Z2 and 3 ∈ Z. The multiplication with 3 is 1Z2

, so an
automorphism, but 3 is not invertible in Z.

As a torsion-free example, consider Z(p). The multiplication by p is an automor-
phism but p is not invertible in Z.

The obstruction, when someone attempts to prove ’Hopfian ⇒ OI’, is that

ρx automorphism ⇒ x is a unit

fails, in general.
Since the definition of OI refers only to multiplications (which are special endo-

morphisms), clearly OI does not imply Hopfian.

3. The torsion OI-groups

Recall from [4] the following characterization.

Theorem 3.1. Let G be a torsion group. Then G is an OI-group iff, for each
prime p, G has a cyclic direct summand Zps , for some positive integer s.

Proof. Let G be an OI-group and let G = ⊕pGp be its p-primary decomposition.
Further decompose Gp = Rp ⊕ Dp, where Rp is reduced and Dp is the maximal
divisible subgroup of Gp.

By contradiction suppose Rp = 0, that is, Gp is p-divisible (i.e., pGp = Gp). As
for every prime q ̸= p, we have pGq = Gq, it follows that pG = G, a contradiction.
Hence Rp ̸= 0.

By Lemma 10.34 in [5], Rp contains a pure nonzero cyclic subgroup C. Since
G is torsion, we can take C = Zps for some s. By Kulikov (see 27.5 in [2]), a
pure subgroup of bounded order is a direct summand. Consequently, C is a direct
summand of Rp and so also of Gp and finally of G.

Conversely, suppose G has a direct summand Zps for some s, for each prime p. If
p | G , then p divides every direct summand of G. Since p ∤ Zps , it follows that n ∤ G
for every n divisible by p. So, if n | G, then n ∈ {−1, 1} and G is an OI-group. □

Corollary 3.2. Let G =
⊕

Zp where p runs over all primes. Then G is an

OI-group.



4 GRIGORE CĂLUGĂREANU, ANDREY CHEKHLOV

This is example 1.3 in [3].

Remarks. 1) The central argument (highlighted in the above proof) appeared
in the proof given in [4], as follows: if G is OI then Gp is OI. This reasoning fails
for two reasons already noted in the previous section: the OI property does not
generally pass to direct summands, and, no p-group is OI. Fortunately, the proof
can be corrected (as shown above) and the statement remains valid.

2) According to Corollary 2.4, if, for any torsion OI-group, we directly add any
other torsion group (OI or not), it still has the characterization property (i.e., each
p-primary component has a finite cyclic direct summand).

3) Lemma 10.34 from [5] follows also from 20 (C) and 27.2, both in [2].
4) An alternative proof for the previous characterization theorem is given below.

Proposition 3.3. A group G =
⊕

i∈I Gi (G =
∏

i∈I Gi) is OI iff for each prime
p there exists i ∈ I with pGi ̸= Gi.

Proof. It follows from the definition that the conditions are necessary. These are
also sufficient, since if for each p there exists i ∈ I with pGi ̸= Gi then and pG ̸= G,
i.e., G is OI. □

Corollary 3.4. A non-zero torsion group T =
⊕

p∈Π Tp, where Tp is a non-zero
p-component of T and Π ⊆ P, is OI iff Π = P and pTp ̸= Tp for all p ∈ Π.

Remark. Recall that a p-group G is divisible iff all its order p elements have
infinite height ([2] §20), and each element of order p and finite height can be em-
bedded in a finite cyclic direct summand. From this, the above characterization of
the torsion OI groups (from [4]) follows.

In certain special cases, simpler proofs are available.

Proposition 3.5. Bounded groups (in particular finite groups) are not OI.

Proof. A group G is bounded if there exists n ∈ Z∗ such that nG = 0. Then
(n+ 1)G = G, so G is not OI. □

In particular, we get example 2.2 in [4]: for any integer n ≥ 2, Zn is not OI.
Note that G = Zp ⊕ Zp2 ⊕ ... ⊕ Zpn ⊕ ... is an unbounded p-group which is not

OI.

4. The torsion-free OI-groups

First, recall some previously given examples: the finite rank free groups are OI
and, the divisible torsion-free groups are not OI.

4.1. The completely decomposable torsion-free groups. The following char-
acterization follows directly from Proposition 3.3.

Corollary 4.1. A completely decomposable torsion-free group G is OI iff for each
prime p there exists a non p-divisible homogeneous component of G.

Recall that the type t(Z(p)) = (0, ..., 0,∞, 0...), whence pZ(p) = Z(p). Thus,
being p-divisible, Z(p) is not OI, for any prime p.

More generally,
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Corollary 4.2. (i) If a rank one torsion-free group has an ∞ in its type, it is not
OI.

(ii) Let p ̸= q be primes. Both Z(p) and Z(q) are not OI but G = Z(p) ⊕ Z(q) is
OI.

However, if t(H) ̸= t(K) then G = H ⊕K fails to have the property OI.
Example. Take the group H = Z(2) of rank 1 and type t1 = (∞, 0, 0, ...), and

the group K of rank 1 and type t2 = (∞,∞, 0, ...). Then t1 < t2, but H and K
are p1-divisible, so G = H ⊕K is also p1-divisible (here p1 = 2).

4.2. Separable groups. Recall that a torsion-free group G is called separable if
every finite subset of G is contained in a completely decomposable direct summand
of G. According to Theorem 2.4, a separable group G is OI whenever a completely
decomposable summand is OI. Building on Proposition 3.3 we get

Theorem 4.3. Let G be a separable group. If there exist a finite subset of G,
contained in an OI completely decomposable summand, then G is OI.

More precisely

Corollary 4.4. A separable torsion-free group G is OI iff for each prime p, there
exists a non p-divisible rank 1 direct summand in G.

Proof. The conditions are clearly sufficient. Conversely, assume that there exists
a prime p such that pA = A for each rank 1 direct summand of G. Since G is
separable, each 0 ̸= x ∈ G is contained in some finite rank completely decomposable
direct summand B. From hypothesis it follows that pB = B. In particular, the
p-height of x is infinite, and since x was arbitrary, it follows that pG = G, a
contradiction. □

5. The mixed OI-groups

First, using Theorem 2.3 we obtain some surprising results.

Proposition 5.1. Let G be a mixed group. Then:
(i) G is OI whenever its torsion part T (G) is OI.
(ii) If G/T (G) is OI, so is G.

Proof. (i) Follows from Theorem 2.3.
(ii) Follows from Lemma 2.6. □
None of both converses hold. For (i) take Z ⊕ Z2, and for (ii) we need a non-

splitting mixed example: G =
∏
p

Zp. As direct product of reduced groups, G is

reduced. Then G/T (G) is divisible so not OI, but G is OI according to Proposition
3.3.

More precisely

Theorem 5.2. A mixed group G is OI iff for each prime p, the condition pT (G) =
T (G) implies p(G/T (G)) ̸= G/T (G).

Proof. One way, suppose G is OI and pT (G) = T (G). Then p(G/T (G)) ̸= G/T (G)
since pG ̸= G.

Conversely, assume that for every p, if pT (G) ̸= T (G). Then pG ̸= G by the
purity of T (G). If pT (G) = T (G) then pG ̸= G because p(G/T (G)) ̸= G/T (G),
i.e., G is OI. □
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6. Special constructions

In this section, we investigate how the OI property interacts with the classical
functors in homological algebra.

Recall that if pA = A or pB = B then p(A⊗B) = A⊗B (see [2] §59).

Proposition 6.1. If A and B are OI then also A⊗B is OI.

Proof. We can suppose that A and B are reduced. If A has a cyclic direct summand
Zps for some s ≥ 0 then, as pB ̸= B, by the properties of tensor product (see [2],
§59) A ⊗ B has a direct summand Zps ⊗ B ∼= B/psB. So A ⊗ B is not p-divisible
for each p ∈ Π1 ∪ Π2, where Π1 = {q ∈ P |Aq ̸= 0}, Π2 = {q ∈ P |Bq ̸= 0}.
Assume p ∈ P \ (Π1 ∪Π2). Then p(A/T (A)) ̸= A/T (A) and p(B/T (B)) ̸= B/T (B)
since T (A), T (B) are p-divisible, but A, B is not p-divisible. So there exist a ∈
(A/T (A)) \ p(A/T (A)), b ∈ (B/T (B)) \ p(B/T (B)) and so by [2], Exercise 9, §60,

a⊗ b ∈
(
(A/T )⊗ (B/T (B))

)
\p

((
A/T (A)

)
⊗
(
B/T (B)

))
. Together with the purely

exact sequence

0 → T (A) → A → A/T (A) → 0,

we have the purely exact sequences

0 → T (A)⊗B → A⊗B → (A/T (A))⊗B → 0

and

0 → T (A)⊗ (B/T (B)) → A⊗ (B/T (B)) → (A/T (A))⊗ (B/T (B)) → 0

(see [2], Theorem 60.4). According to the above, (A/T (A)) ⊗ (B/T (B)) is not
p-divisible, hence A ⊗ (B/T (B)) and similarly B ⊗ (A/T (A)) are not p-divisible.
Hence A⊗B is not p-divisible. □

Proposition 6.2. Let Tor(A,B) ̸= 0. Then Tor(A,B) is OI iff Ap ̸= 0, Bp ̸= 0
for each prime p and at least one of the groups Ap, Bp is not divisible.

Proof. One way, since Tor(A,B) ∼= Tor(T (A), T (B)) then T (A), T (B) ̸= 0. More-
over, if Π1 = {p ∈ P |Ap ̸= 0}, Π2 = {p ∈ P |Bp ̸= 0} then Π1 ∩ Π2 ̸= ∅. Since
Tor(A,B) ∼=

⊕
p∈Π1∩Π2

Tor(Ap, Bp) and Tor(Ap, Bp) is p-group (see [2], §62) then
Π1 ∩ Π2 = P, i.e. Π1 = Π2 = P, so Ap ̸= 0, Bp ̸= 0 for each prime p. Since
Tor(Z(p∞), B) ∼= Bp, it follows that at least one of the groups Ap, Bp is not divis-
ible.

Conversely, since Tor(Z(p∞), B) ∼= Bp and Tor(Zpm , B) ∼= B[pm], by hypothesis
it follows that Tor(A,B)p ̸= 0, for every prime p. Moreover, since at least one of
the groups Ap, Bp has a direct summand the type pm, it follows that Tor(A,B)p
has a direct summand isomorphic to A[pm] or B[pm] and hence Tor(A,B)p is not
divisible. So Tor(A,B) is OI (see Corollary 3.4). □

Remarks. 1) The case of the functor Hom is more intricate. Depending on the
structures of A and B, the group Hom(A,B) may or may not be OI.

If A or B is divisible torsion-free group then Hom(A,B) also is divisible torsion-
free group (see §43, [2]), so not OI. However, if A =

⊕
p∈P Z(p∞) thenHom(A,A) ∼=∏

p∈P Ẑp, where Ẑp denotes the group of the p-adic integers (see Proposition 44.3

from [2]), i.e. Hom(A,A) is OI. Also if T (A) is OI and Bp ̸= 0 for all p, since A
has the direct summand of type Zps with some integer s ≥ 0 (depending on p) for



STRONGLY NOT DIVISIBLE ABELIAN GROUPS 7

each p, it follows that Hom(A,B) has the direct summand isomorphic to B[ps] for
each p (see §43, Example 2 from [2]). Hence Hom(A,B) is OI.

2) Regarding the functor Ext, if B is a torsion-free group then Ext(B,A) is
divisible, so not OI for any A. But if T (B) is OI and Ap ̸= 0 for all p, then the
group B has the direct summand of type Zps for each p and so Ext(B,A) has a
direct summand isomorphic to A[ps] (see [2] §52). Hence, in this case, the group
Ext(B,A) is OI.

7. The description of OI-groups

Describing all OI-groups is not a straightforward task. Indeed, according to
Corollary 2.4, if G is an OI-group and H is an arbitrary group, then the direct sum
G⊕H is also an OI-group. Consequently, to achieve such a description, one must
first identify a suitable class of “building blocks.” A natural approach, therefore, is
the following.

Definition. Let G,H be Abelian groups. Write G ⪯ H if G is isomorphic to a
direct summand ofH; i.e. there exists a group C such thatH ∼= G⊕C. This relation
is a preorder on isomorphism classes of Abelian groups. A class P of Abelian groups
is said to be upward closed (for ⪯) if G ∈ P implies (∀H (G ⪯ H ⇒ H ∈ P)).
Equivalently, for all groups G,H , if G ∈ P then G⊕H ∈ P .

Every such property P can be expressed as a union of cones

P =
⋃
G∈I

C(G),

where for a fixed group G,

C(G) = {H | G ⪯ H} = {H | H = G⊕ C for some C }
and I is a class of P-groups (the ”building blocks”) to be chosen.

If G decomposes as G = G1 ⊕G2, then C(G) ⊆ C(G1), C(G2).

In what follows, we present two attempts of describing the OI-groups in this
manner.

7.1. The genuine OI-groups. Due to Corollary 2.4, we can introduce the follow-
ing

Definition. A group is called genuine OI if it indecomposable or has only OI
(non-zero) direct summands.

Such OI-groups exist: Z and more generally finite rank free groups are genuine
OI.

The genuine OI completely decomposable torsion-free groups and the genuine
OI vector groups are describe at the end of this section.

However, this restriction does not align well with torsion OI-groups. In fact, in
the class of torsion OI-groups, the groups are quite large, meaning, all their primary
components must be nonzero.

Proposition 7.1. Let G be a torsion group. If there exists a prime p with primary
component Gp = 0, then G is not OI.

Proof. Recall from [2], a property related to divisibility. For a ∈ G, we have a ∈ nG
whenever gcd(n, ord(a)) = 1. Suppose Gp = 0. Then for every a ∈ G, a ∈ pG, that
is, pG = G. Hence G is not OI. □
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We are far for exhausting the (Abelian) OI-groups. However

Proposition 7.2. (i) Any genuine OI-group is reduced and its summands are also
OI.

(ii) There are no torsion genuine OI-groups, and no mixed genuine OI-groups.
(iii) There are no algebraic compact genuine OI-groups.

Proof. (i) Obvious.
(ii) It suffices to recall Corollary 27.3 from [2]: if a group contains elements of

finite order, then it has a cocyclic direct summand. Next, use the fact that any
cocyclic group is not an OI-group.

(iii) Indeed, as reduced algebraic compact torsion-free groups contain a direct
summand isomorphic to the group of p-adic integers, for some prime p, such groups
are q-divisible for each prime q ̸= p. □

Since there are no torsion nor mixed genuine OI-groups, next we focus on torsion-
free genuine OI-groups.

The following simple result allows us to give numerous examples of completely
decomposable and vector genuine OI-groups.

Proposition 7.3. Let G =
⊕

t∈Ω Gt (G =
∏

t∈Ω Gt), where Ω is a some set of
types t and Gt is a direct sum of group of rank 1 and type t (Gt is a direct product
of group of rank 1 and the type t). The group G is genuine OI iff each t is not
p-divisible for every prime p.

Proof. The conditions are obviously necessary. Conversely, first for completely
decomposable groups (say G), all direct decompositions are isomorphic [2] 86.1, so
every direct summand (say) A of G has a direct summand of rank 1 and type from
Ω. Therefore, also A, as direct summand, is not p-divisible for every prime p.

Secondly, for vector groups, as any direct summand A of a vector group is also
a vector group, it has some direct summand B of rank 1. By [2] 96.2, the type of
B is contained in Ω. As above, it follows that pA ̸= A for every prime p. □

Similarly, we can prove

Proposition 7.4. A torsion-free separable group is genuine OI iff every rank 1
direct summand is not p-divisible for all primes p.

7.2. The minimal OI-groups. We proceed with the following
Definition. Let P be a class of groups. A group G is called minimal P-group

if G ∈ P and G has no proper direct summand H ∈ P .
Denote by C1 the genuine P-groups, that is,
C1 := {G ∈ P : either G is indecomposable or every proper direct summand of

G belongs to P}, and
by C2, the minimal P-groups, that is,
C2 := {G ∈ P : G has no proper direct summand H ∈ P}.
First notice that these two classes are incomparable and both contain the inde-

composable OI-groups.
Some examples are: Z(2) ⊕ Z(3) is minimal OI but not genuine OI (clearly, not

indecomposable), Z⊕ Z is genuine OI but not minimal OI, Z⊕ Zp∞ or Z⊕Q are
in neither class.

Moreover
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Proposition 7.5. C1 ∩ C2 = { indecomposable P−groups}.

Proof. For any group G, every direct summand is OI or is not OI. So every decom-
posable group is not P-minimal or not P-genuine. □

Recall that the indecomposable groups are cocyclic or torsion-free. In our case,
since cocyclic groups are not OI, we need to describe the indecomposable torsion-free
OI groups.

The rank one indecomposable torsion-free groups (i.e., the rational (sub)groups),
were classified in a previous section.

Note that there are uncountable many non-isomorphic indecomposable torsion-
free groups (even of rank 2). Hence there are uncountable many corresponding
cones.

Definition. A group G is called a minimal OI-group if G is OI and G has
no proper OI-direct summand.

As already mentioned, the indecomposable OI-groups are minimal. It remains
to describe the decomposable OI-groups that are minimal.

Remark. An OI-group G has the property that each proper (non-zero) subgroup
is not OI iff G is torsion and all its p-components are simple p-groups, i.e., these
are isomorphic to Zp.

Indeed, if G has of element a of infinite order then ⟨na⟩ for each integer n is OI
and ⟨na⟩ ̸= G for some n.

Torsion minimal OI
Each primary component must be minimal. According to Theorem 3.1, it must

be cyclic. Hence

Proposition 7.6. A torsion OI group is minimal iff for every prime p, the p-
component is cyclic (i.e., reduced indecomposable).

Mixed minimal OI
If G is splitting mixed, in order to be minimal OI, both T (G) and G/T (G) should

not be OI.

Proposition 7.7. A reduced mixed OI group G is minimal iff each p-component
Tp(G) is cyclic and for every relevant prime p (that is, Tp(G) ̸= 0), G/Tp(G) is
p-divisible.

Proof. The conditions are obviously necessary. Conversely, suppose G = A ⊕ B
where A,B ̸= 0. According to indecomposability, Tp(G) ≤ A or Tp(G) ≤ B. If
0 ̸= Tp(G) ≤ A then by hypothesis pB = B, so B is not OI. □

Torsion-free minimal OI
Clearly, the indecomposable OI-groups are minimal OI. However, as already

mentioned, Z(p) ⊕ Z(q) is decomposable minimal-OI.

For group G, let Π(G) = {p ∈ P | pG ̸= G}. Clearly, the minimal OI-groups are
reduced.

Recall that torsion-free group G is called quasi-homogeneous if Π(G) = Π(H)
for each pure subgroup 0 ̸= H ≤ G, i.e. the types of all non-zero elements of G
have the symbol ∞ in the same components.



10 GRIGORE CĂLUGĂREANU, ANDREY CHEKHLOV

First note that if G =
⊕

i∈I Gi and G is a minimal OI-group, then it has the
following property

(*) : for each i ∈ I exist pi ∈ P with piGi ̸= Gi and piGj = Gj for all
j ∈ I \ {i}.

Indeed, if
⊕

j∈I\{i} Gj is not p-divisible for all p ∈ Π(Gi), then
⊕

j∈I\{i} Gj also

has the OI property. It follows that for a minimal OI-group G =
⊕

i∈I Gi, each Gi

corresponds to only one prime pi. In particular |I| ≤ ℵ0.

Proposition 7.8. Let G =
⊕

i∈I Gi be a reduced torsion-free group, where all Gi

are quasi-homogeneous. Then G is minimal OI iff all Gi are indecomposable and
satisfy the condition (*).

Proof. One way, if Gi = Ai ⊕Bi with Ai, Bi ̸= 0 then Bi⊕
(⊕

j∈I\{i} Gj

)
is OI by

the quasi-homogeneous hypothesis.
Conversely, assume Hom(Gi, Gj) ̸= 0 for some i ̸= j. Then by (*), qGj ̸=

Gj and qGi = Gi for some q ∈ P, so Gj has non-zero q-divisible subgroup, a
contradiction. Hence each Gi is a fully invariant subgroup of G, so if G = A ⊕ B,
by the indecomposable hypothesis, each Gi ≤ A or Gi ≤ B. Then it follows from
(*) that pB = B for some prime p with pGi ̸= Gi. Hence G is minimal OI. □

As an example,
⊕

p∈P Z(p) is minimal OI-group, where Z(p) denotes the group
of all rational numbers with denominators coprime with p.

8. The pure version

By Theorem 2.3, in this section the direct summands are replaced by pure sub-
groups.

We only sketch the argument, since the corresponding ‘building blocks’ are more
restrictive, and hence the procedure is less exhaustive.

8.1. Pure-genuine. An OI-group is called pure-genuine OI if all its nonzero pure
subgroups are OI.

Clearly, every pure-genuine OI-group is genuine OI. As such, these groups are
also torsion-free reduced.

The rôle of the indecomposables for genuine OI-groups is taken here by the
pure-simple groups, that is, the groups G whose only pure subgroups are 0 and G.

As is well-known (e.g., see [1], S 3.28), these are the rank one groups.
More precisely

Proposition 8.1. A torsion-free group G is pure-genuine OI iff G does not contain
non-zero elements of p-divisible types for all prime p.

Equivalently, pωG =
⋂

n≥1 p
nG = 0 for all p, i.e. the type of non-zero elements

of G does not contain the symbol ∞. Thus, each pure subgroup of rank 1 is OI.

8.2. The pure-minimal OI-groups. An OI-group G is called pure-minimal if it
has no proper nonzero pure OI-subgroups.

As already mentioned,

{pure-minimal OI} ∩ {pure-genuine OI} = {pure-simple OI} = {rank one OI}.
Since rank one torsion groups are not OI, this intersection is

{torsion-free rank one OI}.
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Torsion pure-minimal
Since the cyclic p-groups are pure simple it follows that

Proposition 8.2. A torsion OI-group is pure-minimal iff each of its p-components,
for every prime p, is cyclic. In this case, the classes of pure-minimal and minimal
OI-groups coincide.

Torsion-free pure-minimal
Since the pure-simple groups are precisely the rank one groups, the rank one

torsion-free OI-groups are pure-minimal.
Recall from Corollary 4.2, that if a rank one torsion-free group has an ∞ in its

type, it is not OI.
Hence, only rank one torsion-free groups with no elements of infinite height are

pure-minimal (these are also pure-simple).
Clearly, a quasi-homogeneous torsion-free OI-group is pure-minimal iff it has of

rank 1.
More precisely

Lemma 8.3. If G =
⊕

i∈I Gi is a pure-minimal OI-group, where Gi are non-zero
quasi-homogeneous torsion-free groups, then |I| = 1 and G has rank 1.

Proof. If I is finite and H = ⟨
∑

i∈I xi⟩∗ is the subgroup pure generated by some
xi, where 0 ̸= xi ∈ Gi, then H is a OI-group since the groups Gi are quasi-
homogeneous. If I is infinite, i1 ̸= i2 ∈ I and H = ⟨x1 + x2⟩∗, where 0 ̸= x1 ∈ Gi1 ,
0 ̸= x2 ∈ Gi2 , then H ⊕

⊕
i∈I\{i1,i2} Gi is a OI-group, a contradiction. □

Mixed pure-minimal

Proposition 8.4. Let G be a mixed minimal OI-group, with T = T (G). Then G
is pure-minimal iff the following conditions hold:

1) each Tp is cyclic, Tp = 0 at least for one prime p and if Tp ̸= 0 then p(G/Tp) =
G/Tp;

2) if H/T is a pure subgroup of G/T then p(H/T ) = H/T , at least for one prime
p with Tp = 0.

Proof. One way, if p(H/T ) ̸= H/T for all p with Tp = 0, then pH ̸= H for such
a p. Since Tq is non-zero cyclic for all the other primes q it follows that qH ̸= H,
as Tq ≤ H. Hence H is proper pure OI-subgroup. That the other statements are
necessary follows from Proposition 7.6.

Conversely, let H be a proper pure OI-subgroup of G. Then H + T is also pure
in G (see [2]; §26, Exercise 5). If H + T = G, then Tp ≰ H for some p and we
show that Tp ∩ H = 0. If Tp ∩ H ̸= 0 then px = y ∈ H for some Tp ∋ x /∈ H.
But px = pz for some z ∈ H whence x − z ∈ Tp ∩ H (because Tp is cyclic), so
x ∈ H, a contradiction. Denote by P1 = {p ∈ P |Tp ∩H = 0}. If T1 =

⊕
p∈P1

Tp

then T1 ∩ H = 0. Since Tq ≤ H for q ∈ P \ P1, it follows that T + H = T1 ⊕ H.
Hence if T + H = G then T1 ⊕ H ∼= G and pH = H for all p ∈ P1, which is
impossible. Hence T +H ̸= G. By hypothesis 2), p((T +H)/T ) = (T +H)/T for
some p such that Tp = 0, since if pT = T for such a p, then p(T + H) = T + H.
Since (T + H)/T ∼= H/(T ∩ H) and T ∩ H is p-divisible it follows that H is also
p-divisible, which is impossible for an OI-group. □
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In closing, we list three open problems, we were not able to solve.
1) Does there exist an indecomposable torsion-free pure-minimal OI-group that

is not of rank one?
2) Do there exist groups {Gi : i ∈ I} such that their direct sum

⊕
i∈I

Gi is a

pure-minimal OI-group?
(Assume that the groups Gi are pairwise non-isomorphic.)
3) Does there exist a torsion-free group G such that G ⊕ H is a pure-minimal

OI-group, for some rank-one torsion-free group H ?
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