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Abstract In M2(Z[i
√
5]), we show that the idempotent

[
3 α
−α −2

]
with α = 1 + i

√
5 is
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1 Introduction

Clearly, searching for examples of idempotents as in the title, makes sense
only for nontrivial idempotents, that is e2 = e /∈ {0, 1}.
We also mention that in any nonzero ring, every idempotent is different

from its complementary idempotent.
The example we provide is a 2× 2 matrix over a domain.
Recall that a domain D is GCD if greatest common divisors exist for every

pair of elements of D. Over many types of rings, the nontrivial idempotent
2×2 matrices are all similar to E11 (here Eij denotes the matrix units, that
is, matrices with all entries zero excepting the (i, j)-entry which is 1). The
binary relation of similarity being transitive and symmetric, it follows that
in such matrix rings actually all nontrivial idempotents are similar, and
so are in particular, every nontrivial idempotent and its complementary
idempotent.
Therefore examples as in the title should be possibly found in matrix rings

over domains that are not GCD.
This will be our case for Z[i

√
5].

In Section 2 we present matrix rings which should be avoided when search-
ing for an example and in Section 3 we provide the example of nontrivial
idempotent which is not similar to its complementary idempotent, namely
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2 Grigore Călugăreanu, Horia F. Pop

E =

[
3 α
−α −2

]
where α = 1+ i

√
5 (here α denotes the (complex) conjugate

of α).

2 2 × 2 matrices

The following result is known. For readers convenience, we supply a proof.

Proposition 2.1 Any non-trivial 2× 2 idempotent matrix over a GCD do-
main is similar to E11.

Proof. Let D be a GCD domain and let E =

[
a b
c 1− a

]
∈ M2(D) be a

nontrivial idempotent, i.e. bc = a(1− a).
First, for a = 0, at least one of b, c is zero, say b = 0 (the c = 0 case is

analogous). Then E =

[
0 0
c 1

]
and for U =

[
0 1
1 −c

]
one checks that E11 =

U−1EU .
Next, assume a ̸= 0 and let x = gcd(a, c). If a = xy and c = xx′ it follows

that gcd(y, x′) = 1. By cancellation with x we get bx′ = y(1 − a), and so,
by our last hypothesis, y divides b, say b = yy′. We also have x′y′ = 1 − a.

Now take P =

[
x y′

−x′ y

]
. One can check that det(P ) = 1 and PE = E11P .

Hence E is similar to E11. ⊓⊔
Corollary 2.2 Over a GCD domain any two nontrivial 2 × 2 idempotent
matrices are similar. In particular, any nontrivial idempotent is similar to
its complementary idempotent.

This result can be further generalized.
Following Steger [1], we say that a ring R is an ID ring if every idempotent

matrix over R is similar to a diagonal one.
Examples of ID rings include: division rings, local rings, principal ideal

domains, elementary divisor rings, unit-regular rings and serial rings.
A ring is called connected if it has only trivial idempotents. Then we

obtain

Proposition 2.3 Over any ID connected ring, any two nontrivial 2 × 2
idempotent matrices are similar.

3 Example in Z[i
√
5]

The commutative domain Z[i
√
5] is mostly known as an example of not

UFD (unique factorization domain), due for example to the non associate
decompositions

3 · 2 = (1 + i
√
5)(1− i

√
5).
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Recall, as a useful tool, the so called norm of elements in Z[i
√
5], a mul-

tiplicative function N : Z[i
√
5] −→ N. Thus if a | b also N(a) | N(b) and

using the norm it also follows that the units of Z[i
√
5] are ±1.

Also recall that Z[i
√
5] is not a GCD domain. For example, gcd(6, 2(1 +

i
√
5)) does not exist.

Lemma 3.1 (i) Over Z[i
√
5], the equation yz = 2 has only integer solu-

tions, i.e., y, z ∈ {±1,±2}.
(ii) Excepting 1 · 6 = 6 · 1, the only product decompositions of 6 in Z[i

√
5]

are 3 · 2 = 2 · 3 = (1 + i
√
5)(1− i

√
5) = (1− i

√
5)(1 + i

√
5).

Proof. (i) Using the norm, 4 = N(2) = N(yz) = N(y)N(z) = (a2+5b2)(c2+
5d2) for integers a, b, c, d is possible only if b = d = 0.
(ii) Any decomposition of 6 = xy gives a decomposition of N(6) = 36 =

N(x)N(y) as product of norms. Assuming N(x) ≤ 6 ≤ N(y), as N(x)
cannot be 2 and 3, it follows that N(x) is 1 or 4 or 6, and the conclusion
follows as the equations N(x) = 1, N(x) = 4 and N(x) = 6 can be easily

solved, and y =
6

x
. ⊓⊔

Taking into account Proposition 2.1, we may ask whether the idempo-

tent matrix E =

[
3 1 + i

√
5

−1 + i
√
5 −2

]
over Z[i

√
5], is similar E11 and/or is

similar to its complementary idempotent. We answer both questions in the
negative below, so that this is the desired example.
To simplify the writing in the sequel we denote α = 1 + i

√
5 so that

E =

[
3 α
−α −2

]
.

Theorem 3.2 Over Z[i
√
5], E is not similar to I2 − E.

Proof. For U =

[
x y
z w

]
with xw−yz = ±1 and EU = UE11, we reduce (two

out of four equations are dependent) to only x+ w = 0 and 5x+ αz = αy.
Therefore it remains (we eliminate w) to show that the system

5x+ αz = αy, x2 + yz = ±1

has no solutions in Z[i
√
5].

We can assume xw − yz = −1 (otherwise, we just replace, say, x, z by
−x,−z). Multiplying the linear equation by α we get 5αx+ α2z = 6y. Re-
placement in 6x2+6yz = 6 leads to (2x+αz)(3x+αz) = 6 (the discriminant
of the quadratic equation is a square, namely α2). So an equivalent system
is now

5x+ αz = αy, (2x+ αz)(3x+ αz) = 6.
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Since (see Lemma 3.1, (ii)) the only decompositions of 6 are 2 · 3 = 3 · 2 =
αα = αα (excepting 1 · 6 = 6 · 1 which give units, not our case), we have to
solve four linear systems.
The first one is

2x+ αz = 2, 3x+ αz = 3, 5x+ αz = αy.

From the first two equations we get x = 1, z = 0 which implies αy = 5, that
is α would divide 5. As α | 6 and α is not a unit, we have a contradiction.
The second is

2x+ αz = 3, 3x+ αz = 2, 5x+ αz = αy.

From the first two equations we get x = −1 which implies αz = 5. As α | 6
we obtain a contradiction as in the previous case.
The third one is

2x+ αz = α, 3x+ αz = α, 5x+ αz = αy.

From the first two equations we get x = α − α = −2i
√
5 which implies

α(z − 1) = 4i
√
5, a contradiction as α does not divide 4i

√
5 (this can be

seen using the norms: if u | v in Z[i
√
5] then N(u) | N(v) in Z).

Finally the fourth is

2x+ αz = α, 3x+ αz = α, 5x+ αz = αy.

From the first two equations we get x = α − α = 2i
√
5 and we continue as

in the previous case. This completes our proof. ⊓⊔
Corollary 3.3 Over Z[i

√
5], E is not similar to E11.

We provide two proofs for this consequence.

Proof. It is easy to see that for any (nontrivial) idempotent E, if EU = UE11

then (I2−E)U = UE22. Since E22 = (E12+E21)E11(E12+E21) it follows by
transitivity that if E is similar to E11, so is also its complementary I2 −E.
Now, would our idempotent E be similar to E11, its complementary should
also be similar to E11 and so by transitivity and symmetry we contradict
the previous theorem. ⊓⊔

Proof. A direct proof, not consequence of the previous theorem.

For U =

[
x y
z w

]
with xw − yz = 1 and EU = UE11, we reduce (two

out of four equations are dependent) to only 2x = −(1 + i
√
5)z and 2w =

(−1 + i
√
5)y. By multiplication, 4xw = 6yz and so from 4xw − 4yz = 4 we

get yz = 2, xw = 3.
If z ∈ {±1} we get 2 | 1+ i

√
5, a contradiction. If z ∈ {±2} then y ∈ {±1}

and we get 2 | −1 + i
√
5, again a contradiction. Hence the three equations

system has no solutions in Z[i
√
5]. ⊓⊔
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