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Abstract: Over any GCD (greatest common divisor) commutative domain we show that the nontrivial ×2 2

idempotent matrices are products of two nilpotent matrices. In order to find explicitly such decompositions,
two procedures are described. Assisted by computer, we were able to find an example of idempotent ×2 2

matrix over �[ ]−5 , which shows that the GCD condition is (sufficient but) not necessary. Finally, a general-
ization is discussed and some open questions stated.
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1 Introduction

Asking when a product of two nilpotents is an idempotent or else when a product of two idempotents is
nilpotent is trivial in commutative rings. Indeed, as products of idempotents are idempotent and products of
nilpotents are nilpotent, in both cases 0 is the only answer.

However, in non-commutative rings, and in particular, in matrix rings, examples abound. Using the
matrix unit notation, =E E E12 21 11 is an example of idempotent, which is a product of two nilpotents, and

( )= +E E E E12 11 12 22 is an example of nilpotent, which is a product of two idempotents.
In [1], a (square) matrix was said to have property 2I if it is a product of two idempotents, and property 2N

if it is a product of two nilpotents.
Recall that a commutative domain R is called greatest common divisor (GCD) if for each pair ∈a b R, ,

( )a bgcd , exists. Examples of GCD domains include unique factorization domain (UFD), principal ideal domains
(PID), and Euclidean domains and fields.

Also in [1], it was noted that (Cor. 3) nilpotent ×2 2 matrices over GCD domains have property 2I.
In this study (which could be considered as a continuation of [1]), using some known similarities, in

Section 2 we show that the (nontrivial) idempotent ×2 2 matrices over GCD commutative domains have
property 2N, that is, are products of two nilpotent ×2 2 matrices. Moreover, in Section 3, we develop two
procedures, given any nontrivial idempotent ×2 2 matrix, to find a 2N decomposition. We can discard the
trivial idempotents in any ring from our discussion: 0 obviously has the property 2N and 1 does not have
property 2N (if = t t1 1 2 and = ≠ −

t t0
n n

2 2

1, by right multiplication with −
t

n

2

1 we obtain a contradiction). For
square matrices over commutative rings this is obvious by determinant comparison.

Additionally, assisted by computer, in Section 4 we produce an example of idempotent matrix over a (not
GCD) domain which still has the property 2N. This way, for the property 2N, the GCD condition is sufficient but
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turns out to be not necessary. In Section 5, over commutative domains, we provide a criterion for ×2 2

nontrivial idempotent matrix which does not have a 2N decomposition. In Section 6, we discuss the general-
ization of our results to ID rings and state two open questions. All domains we consider are supposed to be
commutative. An Appendix is added, giving details on the nonexistence of some gcds in �[ ]−5 .

For additional references related to our subject see [3,5,6,8].

2 The proof

Over any GCD domain it is easy to see that every nontrivial ×2 2 idempotent matrix is similar to E11. Because it
will be useful later on, below we provide a proof for a more general statement.

Proposition 2.1. Over any commutative domain D, a nontrivial ×2 2 idempotent matrix ⎡
⎣ −

⎤
⎦

a b

c a1
is similar to

E11, whenever ( )a cgcd , or ( )a bgcd , exists and for any ∈u v w D, , , ( ) =u vgcd , 1, and ∣u vw imply ∣u w.

Proof. Let = ⎡
⎣ −

⎤
⎦E

a b

c a1
be a nontrivial idempotent, i.e., ( )= −bc a a1 .

First, for =a 0 and arbitrary b, c, over any ring (possible not commutative nor domain) we have the

following similarities: ⎡
⎣

⎤
⎦ = −b

PE P
0

0 1
11

1 for = ⎡
⎣

⎤
⎦P

b 1

1 0
and ⎡

⎣
⎤
⎦ = −

c
QE Q

0 0

1
11

1 for = ⎡
⎣ −

⎤
⎦Q

c

0 1

1
.

Next, assume ≠a 0 and let ( )=x a cgcd , . If =a xy and = ′c xx it follows that ( )′ =y xgcd , 1. By cancelling x we
obtain ( )′ = −bx y a1 , and so, by our last hypothesis, y divides b, say = ′b yy . We also have ′ ′ = −x y a1 . Now take

= ⎡
⎣⎢

′
− ′

⎤
⎦⎥

P
x y

x y
.

One can check that ( ) =Pdet 1 and =PE E P11 . Hence, E is similar to E11. If ( )a bgcd , exists, we just mention that
a matrix is similar to E11 iff so is its transpose. □

Corollary 2.2. Over any GCD (commutative) domain, every nontrivial ×2 2 idempotent matrix is similar to E11.

Remark. The existence of these gcd′s is only sufficient but not necessary condition. In Section 4, an example is
given of a ×2 2 nontrivial idempotent which has a 2N decomposition but none of the gcd′s exists.

This enables us to prove the following.

Theorem 2.3. All nontrivial idempotent ×2 2 matrices over GCD domains have property 2N.

Proof. It is easy to see that having property 2N is invariant under conjugations. To be specific, if = =e e t t2
1 2

and u is a unit, then ( )( )=− − −u eu u t u u t u1 1
1

1
2 . Thus, if an idempotent has property 2N, every conjugate has

property 2N, too.
Therefore, according to the previous proposition, it suffices to show that E11 has a 2N decomposition. This

was already noted in the introduction: =E E E11 12 21. □

For =a 0 here are some 2N decompositions:

⎡
⎣

⎤
⎦ = ⎡

⎣
−
−

⎤
⎦
⎡
⎣

⎤
⎦

b b b

b

0

0 1 1

0 1

0 0

2

and

⎡
⎣

⎤
⎦ = ⎡

⎣
⎤
⎦
⎡
⎣− −

⎤
⎦c

c

c c

0 0

1

0 0

1 0

1
.

2
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3 Finding a 2N decomposition

In this section, for any ×2 2 nontrivial idempotent matrix, we provide two algorithms for finding a 2N
decomposition.

The first arises from Proposition 2.1.

Theorem 3.1. Over any GCD domain, let = ⎡
⎣ −

⎤
⎦E

a b

c a1
be a nontrivial idempotent, ( )=x a cgcd , , =a xy, = ′c xx ,

and = ′b yy , as in Proposition 2.1. Then

=
⎡

⎣⎢
− ′
− ′ ′

⎤

⎦⎥
⎡

⎣⎢
− ′ − ′

′
⎤

⎦⎥
E

x y y

x x y

xy y

x xy

2

2

2

2
is a 2N decomposition.

Proof. Indeed, if = −E PE P11
1, then ( )( )= − −E P E P P E P1

12
1

21 is a 2N decomposition. We just use = ⎡
⎣⎢

′
− ′

⎤
⎦⎥

P
x y

x y
and

= ⎡
⎣

− ′
′

⎤
⎦

−P
y y

x x

1 since ( ) =Pdet 1. By computation, it is easy to check that

( )

( ) ( )

⎡

⎣⎢
− ′
− ′ ′

⎤

⎦⎥
⎡

⎣⎢
− ′ − ′

′
⎤

⎦⎥
=

⎡
⎣⎢

+ + ′ ′
+ ′ ′ − +

⎤
⎦⎥

=
x y y

x x y

xy y

x xy

a bc b xy x y

c xy x y a bc
E

1

2

2

2

2

2

2
(recall that ′ ′ = −x y a1 ). □

Just to ease the reading of this 2N decomposition, we can (formally) use fractions as follows:

( )

( )

⎛

⎝
⎜⎜

⎡
⎣
−
−

⎤
⎦

⎞

⎠
⎟⎟

⎛

⎝

⎜
⎜
⎜

⎡

⎣

⎢
⎢
⎢

− −⎛
⎝

⎞
⎠

⎤

⎦

⎥
⎥
⎥

⎞

⎠

⎟
⎟
⎟a c

ac a

c ac
a c

b

a

b

a

b

a

1

gcd ,

gcd ,

1

.
2

2

2

2

2

If ∣a b, then ( )a cgcd , can be deleted.

Remark.
(1) An analogous formula can be written if ( )a bgcd , exists.
(2) From the previously written 2N decomposition it follows that over any commutative domain D, a nontrivial

idempotent ×2 2 matrix ⎡
⎣ −

⎤
⎦

a b

c a1
has a 2N decomposition if ( )a cgcd , (or ( )a bgcd , by transpose) exists and

for any ∈u v w D, , , ( ) =u vgcd , 1 and ∣u vw imply ∣u w. In particular, this holds if the entries on the first
column (or first row) divide one another.

As for the second algorithm, we can start over commutative domains, and we recall from [1] the results
concerning the two relevant cases (if a zero determinant ×2 2 matrix has a zero entry, then it has [at least]
another zero entry, on the same row, or on the same column; matrices with three nonzero entries have
nonzero determinant).

For matrices with zero second row, we had

Theorem 3.2. Let R be a commutative domain. The matrix = ⎡
⎣

⎤
⎦A

α β

0 0
has property 2N if and only if =β 0 or

≠α β, 0 and α divides β2.

Since such (nonzero) idempotent ×2 2 matrices have trace equal to 1, it is straightforward that

Corollary 3.3. Over any commutative domain, the idempotent matrix

= ⎡
⎣

⎤
⎦E

α β

0 0
has the property 2N iff =α 1.
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The 2N decomposition for ⎡
⎣

⎤
⎦

β1

0 0
is ⎡

⎣
⎤
⎦
⎡
⎣⎢
− − ⎤

⎦⎥
β β

β

0 1

0 0 1

2

, which holds over any (possibly not commutative) ring.

Finally, for matrices with only nonzero entries, we had

Theorem 3.4. Let =
⎡
⎣⎢

⎤
⎦⎥

A
α β

γ δ
be a singular matrix with nonzero entries over a commutative domain R, i.e.,

=αδ βγ. The matrix A has property 2N if and only if +α δ divides αδ and the equation

( )+ =α δ ax αδ

in the unknowns a x, has at least one solution ( )a x, for which α divides βx , β divides αx , γ divides αa, and α

divides γa.

Since for any nontrivial idempotent ×2 2 matrix over a commutative domain, the trace ( ) = + =Tr E α δ 1,
the divisibility always holds, we can eliminate = −δ α1 and use ( )− =α α βγ1 . The equation becomes

( )= = − =ax αδ α α βγ1 .
We successively simplify the conditions in the previous theorem now adding the GCD hypothesis.
First a simple but useful.

Lemma 3.5. Let ∈α β γ R, , , a GCD domain, and let ( )=d α βgcd , with = ′α αd , = ′β βd . The following conditions
are equivalent.
(i) ∣α βγ and ∣β αγ;
(ii) ∣′ ′α β γ.

Proof. The case when = =α β 0 being trivial, in the sequel we assume α β, not both zero. Hence, ≠d 0 and
since R is a domain, we can cancel d when necessary. Also note that ( )′ ′ =α βgcd , 1.

(i)⇔ (ii) ∣α βγ is successively equivalent to ∣′ ′α β γd d or ∣′ ′α β γ or ∣′α γ. Similarly, ∣β αγ is equivalent to ∣′β γ and
so (i) is equivalent to (ii). The last equivalence uses ∣′ ′α β γ, and ( )′ ′ =α βgcd , 1 imply ∣′ ′α β γ. □

Recall that if ( ) =a bgcd , 1 then in any GCD domain ( ) ( ) ( )=a c b c ab cgcd , gcd , gcd , , sometimes called the

multiplicative property of the gcd. In any ring, ( )∣ ( ) ( )ab c a c b cgcd , gcd , gcd , holds whenever these
′

gcds exist.

Lemma 3.6. If =ab cdef , ( ) =a bgcd , 1, ∣c d a, , and ∣e f b, , then =a cd, =b ef .

Proof. As ∣c d a, and ( ) =a bgcd , 1 it follows that ( ) ( )= =c b d bgcd , 1 gcd , and so ( ) =cd bgcd , 1. Since ∣cd ab, we
obtain ∣cd a. The converse is analogous: ( ) ( )= =e a f agcd , 1 gcd , implies ( ) =ef agcd , 1 and as ∣a cdef , ∣a cd

follows. □

Lemma 3.7. If ( )− =α α βγ1 , ( )=d α βgcd , , and ( )=d α γgcd ,1 , then =α dd1.

Proof. We also consider ( )′ = −d α βgcd 1 , and ( )′ = −d α γgcd 1 ,1 . Using the multiplicative property, as
( )− =α αgcd , 1 1, we obtain ( ) ( ( )) ( ) ( )= = − = − = ′β β βγ β α α β α β α ddgcd , gcd , 1 gcd , gcd , 1 and similarly

= ′γ d d1 1 . It remains just to use the previous lemma for =α dd1 (and − = ′ ′α d d1 1 ). □

Second proof for Theorem 2.3.

Proof. Denote ( )=d α βgcd , , ( )=d α γgcd ,1 . Thus, = ′α αd , = ′β βd , = ″α d α1 , and = ″γ d γ1 and, by the Lemma
3.5, the divisibility conditions in Theorem 3.4, for the solution ( )a x, , are equivalent to ∣′ ′α β x and ∣″ ″α γ a.

If = ′ ′x α β l and = ″ ″a α γ k , then =ax βγ can be cancelled to ′ ″ =α α kl dd1. Multiplying by dd1 this gives
∣α dd1. Using the previous lemma, it follows that the solution ( ) ( )= ″ ″ ′ ′a x α γ α β, , is suitable ( = =k l 1). □
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Examples.

(1) = ⎡
⎣− −

⎤
⎦A

3 3

2 2
. Since ∣a b, a 2N decomposition (using any of the two procedures) is ⎡

⎣− −
⎤
⎦
⎡
⎣
− − ⎤

⎦
6 9

4 6

1 1

1 1
.

(2) = ⎡
⎣− −

⎤
⎦A

3 6

1 2
. The first procedure gives ⎡

⎣− −
⎤
⎦
⎡
⎣
− − ⎤

⎦
3 9

1 3

2 4

1 2
. As for the second, the equation = −ax 6 has

several solutions ( )a x, :
( ) ( )± ∓ ± ∓1, 6 , 2, 3 , and symmetric. Only ( ) ( )= ± ∓a x, 3, 2 verify the required divisibilities. We obtain the
previous 2N decomposition and the “minus” one: in any ring, if =a t t1 2 is a 2N decomposition, then

( )( )= − −a t t1 2 is a 2N decomposition too.

(3) = ⎡
⎣− −

⎤
⎦A

4 6

2 3
. Now a does not divide b (nor c), so for the first procedure, as ( ) =a cgcd , 2, the 2N decom-

position is
( )⎡

⎣− −
⎤
⎦ ×

⎡

⎣
⎢
⎢

− − ⎤

⎦
⎥
⎥

= ⎡
⎣− −

⎤
⎦
⎡
⎣
− − ⎤

⎦
8 16

4 8
4

1

2 4

1 2

6 9

4 6

1

4

6

4

6

4

2

6

4

.

As for the second, the equation = −ax 12 has several solutions ( )a x, : ( )± ∓1, 12 , ( )± ∓2, 6 , ( )± ∓3, 4 , and
symmetric. Only ( ) ( )= ± ∓a x, 2, 6 verify the required divisibilities. We obtain the previous 2N decomposition
and the “minus” one.

4 2N decompositions over �[[ ]]5

We start by discussing the commutative domain �[ ]−5 . It is well known that this is not UFD because of

( )( )⋅ = + −i i3 2 1 5 1 5 ,

which are two decompositions not associated in divisibility.
Moreover, this is not GCD, the customarily example being the pair ( ( ))+ i6, 2 1 5 , which is proved not

having a gcd (using the so-called “norm” of elements in �[ ]−5 : ( )+ = +N a bi a b5 52 2).
We also mention that the “well-known” property

∣ ( ) ∣= ⇒a bc a b a c, gcd , 1

fails.
Indeed, as above, 3 (or 2) divides ( )( )+ −i i1 5 1 5 , ( )± =igcd 3, 1 5 1 but ∤ ± i3 1 5 .
However, if a domain is GCD, then the above property holds.
In fact, ( ) =a bgcd , 1 implies ( ) ( )= =ac bc c a b cgcd , gcd , . As a is a common divisor of ac and bc, a divides

( )ac bcgcd , . That is, a divides c.
Note that here we use the following GCD properties:

(i) ∣d a b,1 implies ∣ ( )d a bgcd ,1 (the definition of the gcd), and
(ii) ( ) ( )=r a b ra rbgcd , gcd , if both gcd′s exist.

Remarks.
(1) The astute reader will note which is the obstruction:

( ) ( )= =a b ac bc cgcd , 1 implies gcd , .

A counterexample appears already above: ( )± =igcd 3, 1 5 1 but ( ( ))⋅ ± igcd 2 3, 2 1 5 (not only is not 2
but) does not exist.

(2) It can be proved (e.g., see [7]) that if D is an integral domain and ∈a b D, then the following are equivalent:
(i) a b, have an lcm,
(ii) for any ∈r D, ra rb, have a gcd.

Idempotents which are products of two nilpotents  5



Therefore, an integral domain has gcd′s iff it has lcm′s. In any GCD domain all these exist and for every
a b r, , , ( ) ( )=ra rb r a bgcd , gcd , .
(3) Over integral domains, by cancellation, it is easy to prove the converse: ( ) =ac bc cgcd , implies ( ) =a bgcd , 1.
(4) There are also well-known examples of GCD domains (even Bézout domains – that is, for every a, b,

( )a bgcd , is a linear combinations of a and b) which are not UFD. The ring of entire functions (functions
holomorphic on the whole complex plane) and the ring of all algebraic integers [2].

In the sequel, over �[ ]−5 , we are searching for a nontrivial idempotent ×2 2 matrix which has a 2N
decomposition but the entries on the first row and on the first column have no gcd.

Using the first mentioned above not unique factorization, it follows that

=
⎡
⎣⎢

+
− + −

⎤
⎦⎥

E
i

i

3 1 5

1 5 2

is a (nontrivial) idempotent (trace = 1, det = 0).
However, computer found quickly a 2N decomposition:

=
⎡
⎣⎢
− − −

+
⎤
⎦⎥
⎡
⎣⎢

−
+ − +

⎤
⎦⎥

E
i i

i

i

i i

1 5 2 5

2 1 5

1 5 2

2 5 1 5

(or the “minus” one). However, at least using entries of form +a bi 5 with integers − ≤ ≤a b4 , 4, no other 2N
decomposition was found by computer.

Question. Up to “minus,” is this a unique 2N decomposition for E?

The idempotent above is of form
⎡

⎣⎢
+ +

− + −

⎤

⎦⎥
n x yi

x yi n

1 5

5
with ( )+ = +x y n n5 12 2 and positive integer n.

Up to =n 19 (and up to signs) there are only three more such idempotents:
⎡
⎣⎢

−
− −

⎤
⎦⎥

i

i

5 2 5

2 5 4
,

⎡
⎣⎢

+
− + −

⎤
⎦⎥

i

i

6 5 5

5 5 5
,
⎡
⎣⎢

+
− + −

⎤
⎦⎥

i

i

8 6 2 5

6 2 5 7
(note that = −c b and a is a positive integer). The first two have

2N decompositions.

( ) ( )

( )

⎡
⎣⎢

−
− −

⎤
⎦⎥

=
⎡
⎣⎢ −

⎤
⎦⎥
⎡
⎣⎢ −

⎤
⎦⎥

⎡
⎣⎢

+
− + −

⎤
⎦⎥

=
⎡
⎣⎢
− + − +

+
⎤
⎦⎥
⎡
⎣⎢

−
− − − +

⎤
⎦⎥

i

i

i

i

i

i

i

i

i i

i

i

i i

5 2 5

2 5 4

2 5 5

4 2 5

2 5 4

5 2 5
,

6 5 5

5 5 5

5 5 2 2 5

5 5 5

5 5 5

2 2 5 5 5
.

These two decompositions (and also the initial above with =a 3) are of the following form ( ( )− =a a bc1

and ∣c ab):

⎡
⎣ −

⎤
⎦ = ⎡

⎣
−
−

⎤
⎦
⎡
⎣
− − ⎤

⎦
a b

c a

b ε

a b

c a

ε c1 1

1
,

with ε being a complex number such that ∣ ∣=a ε , ( )= −b ε a12 , ( )= −c ε a12 , and =εc ab.
However, for the third, that is,

=
⎡
⎣⎢

+
− + −

⎤
⎦⎥

F
i

i

8 6 2 5

6 2 5 7
,

( )= = − +ε i2 3 5
ab

c

8

7
, that is, �[ ]∉ε i 5 as ∤c ab.
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This is the first example such that ( ) ( )= − +a c igcd , gcd 8, 6 2 5 does not exist (nor ( ) =a bgcd ,

( )+ igcd 8, 6 2 5 ) (see Appendix for the details). The computer assistance was essential in order to prove
the following.

Proposition 4.1. F has a 2N decomposition.

Proof. Denoting = ⎡
⎣ −

⎤
⎦
⎡
⎣ −

⎤
⎦F

x y

z x

a b

c a
with + = = +x yz a bc02 2 , our problem is easy to state in terms of equa-

tions. Equivalently,

( ) + =

( ) − = +

( ) − + = − +
( ) + = −

+ =

+ =

ax cy

bx ay i

cx az i

ax bz

x yz

a bc

1 8

2 6 2 5

3 6 2 5

4 7

0

0.

2

2

Multiplying equations (1) and (2), first by a resp. c and adding, then by b resp. −a and adding, we can find
( )+ + =a i c8 6 2 5 0 and ( )− + + =i a b6 2 5 8 0. Similarly, using (3) and (4), we obtain ( )− + − =i a c6 2 5 7 0,

and ( )+ − + =a i b7 6 2 5 0. Together with + =a bc 02 this was an easy task for computer which for the integer
entries bounded by 21 found 6 (nonzero) solutions (actually 12 with the “minus” ones). Here are some of
these: ( ) {( ) ( ) ( )∈ + + − − − − −a b c i i i i i i i, , 6 2 5 , 2 3 5 , 8 , 4 8 5 , 13 5 5 , 8 , 10 6 5 , 15 2 5 , 8 5 .

The second part was equally easy for computer: for each solution ( )a b c, , , to solve for x y z, , the system (1)
to (4) adding + =x yz 02 . This way, for ( ) ( )= − − − −a b c i i, , 6 2 5 , 2 3 5 , 8 , computer found the (nonzero)
solution ( ) ( )= − − +x y z i i, , 6 2 5 , 8, 2 3 5 . This finally gave the 2N desired decomposition

=
⎡
⎣⎢

−
− + − +

⎤
⎦⎥
⎡
⎣⎢
− − − −

+
⎤
⎦⎥

F
i

i i

i i

i

6 2 5 8

2 3 5 6 2 5

6 2 5 2 3 5

8 6 2 5
. □

To find a 2N decomposition, one has just to solve this system in the unknowns x y z a b c, , , , , over �[ ]−5 .
Equivalently, writing every element in �[ ]−5 as +α βi 5 , this is a 12-integer variable quadratic system. As
such, we tried to use the computer to solve it, but the computer needs some limitations for the coefficients of
the entries of the nilpotent ×2 2 matrices. Since the time necessary to cover the possible decompositions only
up to − ≤ ≤u y5 , 5 (for entries of form +u vi 5 ) was 1 day (and far longer for larger limitations), we had to
find a different approach. Actually, as seen in the above proof, we (successfully) divided the computer task into
two parts.

Corollary 4.2. The GCD condition for a commutative domain D is sufficient for idempotent matrices of � ( )D2 to
have 2N decompositions, but is not necessary.

Remark.When the entries (of form +u vi 5 ) are bounded (in absolute value) by small positive integers, as an
example,− ≤ ≤u v1 , 1, the computer produces temporary candidates for not having 2N decompositions. Such a

candidate was =
⎡
⎣⎢
− − −

+
⎤
⎦⎥

E
i i

i i

5 1 5

5 1 5
. However, according to Theorem 3.1, ( )a cgcd , exists,

⎡
⎣− −

⎤
⎦
⎡
⎣⎢

− −
− − +

⎤
⎦⎥

i i

i

1 1

1 1

5 5 4 2 5

5 5 5

is the corresponding 2N decomposition, which is found for − ≤ ≤u v5 , 5.

Idempotents which are products of two nilpotents  7



5 2N decompositions over commutative domains

In an attempt to find a nontrivial idempotent ×2 2 matrix over �[ ]−5 with no 2N decomposition, we
reconsidered the system used in the previous section, and important simplifications occurred.

Let R be a commutative domain. For three given elements ∈α β γ R, , with ( )− =α α βγ1 , we start with the

nontrivial idempotent =
⎡
⎣⎢ −

⎤
⎦⎥

E
α β

γ α1
. As already seen, a 2N decomposition exists if the system with unknowns

a b c x y z, , , , ,

( )

( ) + =
( ) − =
( ) − + =
( ) + = −

+ =
+ =

ax cy α

bx ay β

cx az γ

ax bz α

x yz

a bc

S

1

2

3

4 1

0

0

2

2

has a solution in �[ ]−5 . We use the two-step procedure from previous section: first eliminate the unknowns
x y z, , and then, for every solution a b c, , we solve the system above. We can suppose ≠α 0, 1 and ≠β γ, 0,
since otherwise 2N decompositions were already previously mentioned.

Step 1. Multiplying equations (1) and (2), first by a resp. c and adding, then by b resp. −a and adding,
we can find + =αa βc 0 and − + =βa αb 0. Similarly, using (3) and (4), we obtain ( )+ − =γa α c1 0

and ( )− − + =α a γb1 0. Since ( )− =α α βγ1 , both homogenous systems
( )

⎧
⎨
⎩

+ =
+ − =
αa βc

γa α c

0

1 0
and

( )

⎧
⎨
⎩

− + =
− − + =

βa αb

α a γb

0

1 0
have zero determinant. Therefore, the corresponding equations are dependent and it

suffices to retain two of these, say
⎧
⎨
⎩

= −
=

αa βc

βa αb
. Moreover, note that multiplying side by side these equations, we

obtain ( )+ =αβ a bc 02 , so + =a bc 02 as α, β were supposed to be nonzero (and the base ring is a domain).
Step 2. For each solution ( )a b c, , , we solve for x y z, , system (1) to (4) by adding + =x yz 02 .
However, an analogous elimination may be performed also in this case.
Multiplying equations (1) and (3), first by x resp. y and adding, then by z resp. −x and adding, we can find

+ =αx γy 0 and − + =γx αz 0. Similarly, using (2) and (4), we obtain ( )+ − =βx α y1 0 and ( )− − + =α x βz1 0.
Again we associate two by two homogeneous equations, these turn out to be dependent and we can retain only

+ =αx γy 0 and ( )− − + =α x βz1 0. Writing = −αx γy, ( )− =α x βz1 and multiplying side by side we also cover
+ =x yz 02 (as ( )− =α α βγ1 ). This way we have obtained the following result.

Theorem 5.1. Let =
⎡
⎣⎢ −

⎤
⎦⎥

E
α β

γ α1
be a nontrivial idempotent matrix (i.e., ( )− =α α βγ1 ) over a commutative

domain R. Then E has no 2N decomposition if any of the following conditions holds:

(i) the system
⎧
⎨
⎩

= −
=

αa βc

βa αb
has no nonzero solutions over R;

(ii) the system
( )

⎧⎨⎩
= −

− =
αx γy

α x βz1
has no nonzero solutions over R;

(iii) the system
⎧
⎨
⎩

= −
=

αa βc

βa αb
has nonzero solutions over R but for every such solution ( )a b c, , , the system (S) is

not solvable in ( )x y z, , over R;
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(iv) the system
( )

⎧⎨⎩
= −

− =
αx γy

α x βz1
has nonzero solutions over R but for every such solution ( )x y z, , , the system

(S) is not solvable in ( )a b c, , over R.

According to Proposition 2.1 and Theorem 2.3, in order to find a nontrivial idempotent ×2 2 matrix over
�[ ]−5 , we have to assume that ( )α βgcd , and ( )α γgcd , do not exist.

Remarks.

(1) A sufficient condition for (i) to have a solution is ∣α β2. Indeed, if so, ( ) ( )= − −a b c β α, , , ,
β

α

2

is a solution for

(i). The condition is fulfilled for the matrix F , the example provided in the previous section.

(2) A sufficient condition for (ii) to have a solution is ∣( )−β α γ1 . Indeed, if so, ( )
( )= ⎛

⎝ − ⎞
⎠

−
x y z γ α, , , ,

α γ

β

1 is a

solution for (ii). Also fulfilled for F .
(3) Actually (iii) (the positive version) was the combination which provided the (complete) solution for the

matrix F , the example provided in the previous section.

From here, the computer was put into service.
The code should browse triples ( )α β γ, , from�[ ]−5 , with not existing ( )α βgcd , and ( )α γgcd , , nonzero α,

β, γ, ≠α 1 and ( )− =α α βγ1 , and search solutions for systems (i), (iii) with unknowns ( )a b c, , or for systems
(ii), (iv) with unknowns ( )x y z, , .

(i) The code should browse pairs ( )α β, from �[ ]−5 , with not existing ( )α βgcd , , β divides ( )−α α1 ,
nonzero α, β, ≠α 1 and search solutions for system (i) with unknowns ( )a b c, , .

(ii) The code should browse triples ( )α β γ, , from �[ ]−5 , with ( )α βgcd , and ( )α γgcd , do not exist,
( )− =α α βγ1 , nonzero α, β, γ, ≠α 1 and search solutions for system (ii) with unknowns ( )x y z, , .

As already mentioned, the problem in this approach is that computer may provide “temporary” candi-
dates, corresponding to entries that are bounded (in absolute value) by small positive integers. Moreover, as
reader can see in the Appendix, it is hard to check (by computer) the nonexistence of some gcds in �[ ]−5 .

That’s why we tried to check the conditions of Theorem 5.1, without the nonexistence conditions (but for (i)
we added ∤β α).

For instance in the (i) case, with (nonzero) a, b, c bounded by 50, after some 24 h, for all α, β, γ bounded by
=z 9, the computer found solutions. For the temporary candidates, a separate verification found mostly

=gcd 1. Hence by Proposition 2.1 and Theorem 2.3, these have 2N decompositions.
Here are some ( ∣ ( )−β α α1 and ∤β α included)
Temporary candidates.

(1) =z 4: = +α i1 4 5 , =β i 5 . As ( ) =N α 81, ( ) =N β 5 it follows that ( )∃ =α βgcd , 1.
(2) =z 5: = +α i2 5 5 , = +β i2 5 . As ( ) =N α 129, ( ) =N β 9 it follows that if ∣d α β, then ( ) { }∈N d 1, 3 . Since

the equation + =x y5 32 2 has no integer solutions, again ( )∃ =α βgcd , 1.
(3) =z 6: = +α i2 6 5 , = +β i1 6 5 . As ( ) =N α 184, ( ) =N β 181 and 181 is a prime number it follows

that ( )∃ =α βgcd , 1.
(4) =z 7: = − +α i3 5 5 , = +β i7 3 5 . As ( ) = = ×N α 134 2 67, ( ) = = ×N β 94 2 47 it follows that if ∣d α β, then

( ) { }∈N d 1, 2 . Since the equation + =x y5 22 2 has no integer solutions, again ( )∃ =α βgcd , 1.

Hence, in all these cases, there exists a 2N decomposition.
As a result, the following question still has no answer.
Question. Are there nontrivial idempotent ×2 2 matrices over �[ ]−5 which do not have a 2N

decomposition?

Idempotents which are products of two nilpotents  9



6 Over ID rings

In another direction, we can generalize these results as follows: using Steger’s terminology (see [4]), a ring R

was called an ID ring if every idempotent matrix over R is similar to a diagonal matrix. Examples of ID rings
include division rings, local rings, projective-free rings, PID, elementary divisor rings, unit-regular rings, and
serial rings.

Over any ring, for some special diagonal idempotent ×2 2 matrices, we have the following 2N decompositions:

⎡
⎣

⎤
⎦ = ⎡

⎣
⎤
⎦
⎡
⎣

⎤
⎦

e e

e

0

0 0

0

0 0

0 0

0
,

⎡
⎣

⎤
⎦ = ⎡

⎣
⎤
⎦
⎡
⎣

⎤
⎦e e

e0 0

0

0 0

0

0

0 0
.

Moreover, for idempotents e, ′e in a ring R, the diagonal idempotent � ( )⎡
⎣ ′

⎤
⎦ ∈e

e
R

0

0
2 has the 2N decomposition

⎡
⎣ ′

⎤
⎦
⎡
⎣

′ ⎤
⎦

e

e

e

e

0

0

0

0
iff e and ′e are orthogonal.

Recall that a ring is connected if it has only the trivial idempotents 0, 1. Note that over any commutative
ring R which is not connected, � ( )∈eI Rn n , with = ≠e e 02 and any positive integer n, is an idempotent matrix
which has no 2N decomposition: ( ) = ≠eI edet 0n and ( ) =N Ndet 01 2 for any nilpotent ×n n matrices N1, N2. As
for a converse of Theorem 2.3, namely, for what rings R every nontrivial idempotent in � ( )Rn has a 2N
decomposition, this shows that R must be connected.

For ID rings we can prove the following:

Proposition 6.1. Let R be an ID ring. Every nontrivial idempotent ×n n matrix over R has property 2N iff R is
connected.

Proof. If R is ID and connected, by similarity, it suffices to find 2N decompositions for the (nontrivial) diagonal
idempotents, having only 0 or 1 on the diagonal. But this is easy to realize as for matrix units =E E Eii i i1 1. This
way, any such diagonal matrix is decomposed into a (product of a) strictly upper triangular matrix and a
strictly lower triangular matrix. Conversely, if R is not connected we use the paragraph before the proposi-
tion. □

In particular, this holds for local rings.
More generally, we state as open the following:
Question. Describe the connected (commutative) rings R such that every nontrivial idempotent in � ( )R2

(or � ( )Rn for some positive integer n) has a 2N decomposition (already partly discussed above).
Even more generally, we can state as open the following:
Question. Describe the rings whose all nontrivial idempotents are products of two nilpotents.

Appendix

Since the nonexistence of some gcds is not obvious, for reader’s convenience we provide here some necessary
details.

First, a simple

Lemma A.1. Let ∈a b r D, , , a commutative domain. Then ( ) ( )=r a b ra rbgcd , gcd , for every r , if both gcd′s exist.
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Proof. Let ( )=d a bgcd , and ( )=d ra rbgcd ,1 . Then rd divides both ra and rb. So it divides d1. Write =d rds1 ,
=a da1, =b db1, and write =ra d x1 , =rb d y1 . Then = = =d a rdsa ras d xs1 1 1 1 and = = =d b rdsb rbs d ys1 1 1 1 . So
=a xs1 , =b ys1 . Since ( ) =a bgcd , 11 1 , =s 1. So =d rd1 . □

Second,

Lemma A.2. ( )+ =igcd 4, 3 5 1.

Proof. As customarily,we use the “norm”N of complex numbers in�[ ]i 5 . As ( ) =N 4 16 and ( )+ =N i3 5 14 ifd is
a commondivisor, ( )∣N d 2 so ( ) { }∈N d 1, 2 . Since + =x y5 22 2 has no solutions, =d 1 is the only commondivisor. □

Finally,

Claim A.3. ( )+ igcd 8, 6 2 5 does not exist.

Proof. Since ( )+ =igcd 4, 3 5 1, cancellation by 2 in ( ) ( )( )⋅ − = + − +i i8 7 6 2 5 6 2 5 gives
( ) ( )( )⋅ − = + − +i i4 7 3 5 6 2 5 .
If the gcd above exists, it should follow that 4 divides − + i6 2 5 . Since ( ) =N 4 16, ( )− + =N i6 2 5 56 we

derive ∣16 56, which is a contradiction. □
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