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A unimodular 2 × 2 matrix with entries in a commutative R is called extendable 
(resp. simply extendable) if it extends to an invertible 3× 3 matrix (resp. invertible 
3×3 matrix whose (3, 3) entry is 0). We obtain necessary and sufficient conditions for 
a unimodular 2×2 matrix to be extendable (resp. simply extendable) and use them 
to study the class E2 (resp. SE2) of rings R with the property that all unimodular 
2 × 2 matrices with entries in R are extendable (resp. simply extendable). We also 
study the larger class Π2 of rings R with the property that all unimodular 2 × 2
matrices of determinant 0 and with entries in R are (simply) extendable (e.g., rings 
with trivial Picard groups or pre-Schreier domains). Among Dedekind domains, 
polynomial rings over Z and Hermite rings, only the EDRs belong to the class E2
or SE2. If R has stable range at most 2 (e.g., R is a Hermite ring or dim(R) ≤ 1), 
then R is an E2 ring iff it is an SE2 ring.

© 2024 Elsevier B.V. All rights are reserved, including those for text and data 
mining, AI training, and similar technologies.

1. Introduction

Let R be a commutative ring with identity; we denote by U(R) its group of units, by J(R) its Jacobson 
radical, and by Pic(R) its Picard group. For m,n ∈ N = {1, 2, . . .}, let Mm×n(R) be the R-module of m×n

matrices with entries in R; we view Mn(R) := Mn×n(R) as an R-algebra with identity In. Let GLn(R) be 
the general linear group of units of Mn(R), and let SLn(R) := {M ∈ GLn(R)|det(M) = 1} be the special 
linear subgroup of GLn(R).
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For a free R-module F , let Um(F ) be the set of unimodular elements of F , i.e., of elements v ∈ F for 
which there exists an R-linear map L : F → R such that L(v) = 1; we have an identity U(R) = Um(R) of 
sets.

For A ∈ Mn(R), let AT be its transpose, let Tr(A) be its trace, let χA(λ) ∈ R[λ] be its (monic) 
characteristic polynomial, and let νA := χ′

A(0) ∈ R. E.g., if n = 3, then χA(λ) = λ3−Tr(A)λ2+νAλ−det(A).
As we will be using pairs, triples and quadruples extensively, the elements of Rn will be denoted as 

n-tuples except for the case of the R-linear map LA : Rn → Rn dfined by A, in which case they will be 
viewed as n × 1 columns. Let KerA, CokerA and ImA be the kernel, cokernel and image (respectively) of 
LA.

Recall that B,C ∈ Mm×n(R) are said to be equivalent if there exist matrices M ∈ GLm(R) and 
N ∈ GLn(R) such that C = MBN ; if m = n and we can choose N = M−1, then B and C are said to be 
similar. If all entries of B − C belong to an ideal I of R, then we say that B and C are congruent modulo 
I. By the reduction of A ∈ Mn(R) modulo I we mean the image of A in Mn(R/I) ∼ = Mn(R)/Mn(I).

We say that B ∈ Mm×n(R) admits diagonal reduction if it is equivalent to a matrix whose off diagonal 
entries are 0 and whose diagonal entries b1,1, . . . , bs,s, with s := min{m,n}, are such that bi,i divides bi+1,i+1
for all i ∈ {1, . . . , s− 1}.

We will use the shorthand ‘iff’ for ‘if and only if’ in all that follows.
For Q ∈ M3(R), let Θ(Q) ∈ M2(R) be obtained from Q by removing the third row and the third column. 

If Q ∈ GL3(R), then Θ(Q) modulo each maximal ideal of R is nonzero, hence Θ(Q) ∈ Um
(
M2(R)

)
. The 

rule Q → Θ(Q) dfines a map

Θ := ΘR : SL3(R) → Um
(
M2(R)

)
and in this paper we study the image of Θ and in particular the class of rings R for which Θ is surjective 
(i.e., it has a right inverse).

If M =
[
a b

c d

]
∈ GL2(R), let σ(M) :=

⎡
⎢⎣ a b 0
c d 0
0 0 det(M)−1

⎤
⎥⎦ ∈ SL3(R). Clearly Θ

(
σ(M)

)
= M , hence 

GL2(R) ⊆ Im(Θ).

Definition 1.1. We say that a matrix A ∈ M2(R) is SL3-extendable if there exists A+ ∈ SL3(R) such that 
A = Θ(A+), and we call A+ an SL3-extension of A. If we can choose A+ such that its (3, 3) is 0, then we 
say that A is simply SL3-extendable and that A+ is a simple SL3-extension of A.

As in this paper we do not consider SLn-extensions with n ≥ 4, in all that follows it will be understood 
that ``extendable'' means SL3-extendable. Each extendable matrix is unimodular. Theorem 4.3 contains 
three other equivalent characterizations of simply extendable matrices; e.g., a unimodular 2 × 2 matrix 
admits diagonal reduction iff it is simply extendable.

The problem of deciding if A ∈ M2(R) is simply extendable relates to classical studies of finitely generated 
stable free modules that aim to complete matrices in Mn×(n+m)(R) whose n × n minors generate R (e.g., 
see [11]), but it fits within the general problem of finding square matrices with prescribed entries and 
coefficients of characteristic polynomials. Concretely, if A ∈ Um

(
M2(R)

)
is simply extendable, its simple 

extensions A+ have 5 prescribed entries (out of 9) and 2 prescribed coefficients (out of 3) of χA+(λ) =
λ3 − Tr(A)λ2 + νA+λ− 1; the nonempty subsets

ν(A) := {νA+ |A+ is a simple extension of A} ⊆ R

are sampled in Examples 4.5 and 7.3(1). Such general problems over fields have a long history and often 
complete results (cf. [4] and [7]).
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In general Θ is not surjective (see Theorem 1.7(4) and Example 5.3).
If det(A) = 0, then A is extendable iff it is simply extendable. More generally, a matrix A ∈ M2(R)

is extendable iff its reduction modulo R det(A) is simply extendable (see Lemma 4.1(1)). Based on this, 
Definition 1.1 leads to the study of 3 classes of rings to be named, in the spirit of [5] and [12], using indexed 
letters.

Definition 1.2. We say that R is:

(1) a Π2 ring, if each A ∈ Um
(
M2(R)

)
with det(A) = 0 is extendable;

(2) an E2 ring, if each matrix in Um
(
M2(R)

)
is extendable (i.e., Θ is surjective);

(3) an SE2 ring, if each matrix in Um
(
M2(R)

)
is simply extendable.

If moreover R is an integral domain, we replace ring by a domain (so we speak about Π2 domains, E2
domains, etc.)

We recall that R is called an elementary divisor ring, abbreviated as EDR, if all matrices with entries in 
R admit diagonal reduction. Equivalently, R is an EDR iff each matrix in M2(R) is equivalent to a diagonal 
matrix and iff each finitely presented R-module is a direct sum of cyclic R-modules (see [10], Cor. (3.7) and 
Thm. (3.8); see also [20], Thm. 2.1).

Let A ∈ Um
(
M2(R)

)
. If A admits diagonal reduction, let M,N ∈ GL2(R) be such that MAN =[

1 0
0 det(A)

]
; for A+ := σ(M−1)

⎡
⎢⎣ 1 0 0

0 det(A) 1
0 −1 0

⎤
⎥⎦σ(N−1) one easily computes Θ(A+) = 

M−1MANN−1 = A (this is a particular case of Lemma 4.1(2)), hence A is simply extendable. We conclude 
that:

Proposition 1.3. Each EDR is an SE2 ring.

The following characterizations of Π2 rings are presented in Section 5.

Theorem 1.4. For a ring R the following statements are equivalent:

(1) The ring R is a Π2 ring.
(2) Each matrix in Um

(
M2(R)

)
of zero determinant is non-full, i.e., the product of two matrices of sizes 

2 × 1 and 1 × 2 (equivalently, the R-linear map LA factors as a composite R-linear map R2 → R → R2).
(3) For each matrix in Um

(
M2(R)

)
of zero determinant, one (hence both) of the R-modules KerA and 

ImA is isomorphic to R.
(4) Each projective R-module of rank 1 generated by two elements is isomorphic to R.

For pre-Schreier domains see Section 2. Recall that an integral domain R is a pre-Schreier domain iff 
each matrix in M2(R) of zero determinant is non-full (see [3], Thm. 1 or [14], Lem. 1). Each pre-Schreier 
domain is a Π2 domain by Theorem 1.4. Similarly, if Pic(R) is trivial, then R is a Π2 ring.

The following notions introduced by Bass (see [1]), Shchedryk (see [17]), and McGovern (see [13]) (re
spectively) will be often used in what follows.

Definition 1.5. Let n ∈ N. Recall that R has:

(1) stable range n and we write sr(R) = n if n is the smallest natural number with the property that each 
(a1, . . . , an, b) ∈ Um(Rn+1) is reducible, i.e., there exists (r1, . . . , rn) ∈ Rn such that (a1+br1, . . . , an+brn) ∈
Um(Rn) (when there exists no n ∈ N such that sr(R) = n, then sr(R) := ∞ and the convention is ∞ > n);
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(2) (fractional) stable range 1.5 and we write fsr(R) = 1.5 if for each (a, b, c) ∈ Um(R3) with c �= 0 there 
exists r ∈ R such that (a + br, c) ∈ Um(R2);
(3) almost stable range 1 and we write asr(R) = 1 if for each ideal I of R not contained in J(R), sr(R/I) = 1.

Stable range type of conditions on all suitable unimodular tuples of a ring date back at least to Kaplansky. 
For instance, the essence of [8], Thm. 5.2 can be formulated in the language of this paper as follows: each 
triangular matrix in Um

(
M2(R)

)
is simply extendable iff for each (a, b, c) ∈ Um(R3), there exists (e, f) ∈ R2

such that (ae, be+ cf) ∈ Um(R2). The general (nontriangular) form of this reformulation is: a ring R is an 
SE2 ring iff for each (a, b, c, d) ∈ Um(R4), there exists (e, f) ∈ R2 such that (ae + cf, be + df) ∈ Um(R2)
(see Theorem 4.3).

We recall that if R has (Krull) dimension d, then sr(R) ≤ d + 1 (see [1], Thm. 11.1 for the noetherian 
case and see [6], Cor. 2.3 for the general case). Also, if R is a finitely generated algebra over a finite field of 
dimension 2 or if R is a polynomial algebra in 2 indeterminates over a field that is algebraic over a finite 
field, then sr(R) ≤ 2 (see [19], Cors. 17.3 and 17.4).

Each SE2 ring is an E2 ring, but we do not know when the converse is true. However, we show that 
there exist 2 × 2 matrices that are extendable but are not simply extendable (see Example 6.1). Moreover, 
we have (see Section 6):

Theorem 1.6. If sr(R) ≤ 2, then the extendable and simply extendable properties on a matrix in M2(R) are 
equivalent (hence R is an SE2 ring iff it is an E2 ring).

Based on Theorem 1.4, in Section 6 we prove the following theorem.

Theorem 1.7. Let R be an integral domain of dimension 1. Then the following properties hold:

(1) Each matrix in Um
(
M2(R)

)
with nonzero determinant is simply extendable.

(2) Each triangular matrix in Um
(
M2(R)

)
is simply extendable.

(3) The ring R is a Π2 domain iff it is an SE2 (or an E2) domain and iff Pic(R) is trivial.
(4) Assume R is a Dedekind domain. The ring R is a Π2 domain iff it is a principal ideal domain (PID).

Recall that R is a Hermite ring in the sense of Kaplansky, if RUm(R2) = R2, equivalently if each 1 × 2
matrix with entries in R admits diagonal reduction. If R is a Hermite ring, then sr(R) ∈ {1, 2} (see [15], 
Prop. 8(i); see also [21], Thm. 2.1.2) and a simple induction on n ∈ N gives that RUm(Rn) = Rn; thus 
RUm

(
M2(R)

)
= M2(R). It follows that a Hermite ring R is an EDR iff each matrix in Um

(
M2(R)

)
admits 

diagonal reduction (equivalently, it is simply completable, see Theorem 4.3). From the last two sentences 
and Theorem 1.6 we conclude:

Corollary 1.8. Let R be a Hermite ring. Then R is an EDR iff it is an E2 ring and iff it is an SE2 ring.

For almost stable range 1 we have the following applications (see Section 6):

Corollary 1.9. Assume that asr(R) = 1. Then the following properties hold:

(1) Each triangular matrix in Um
(
M2(R)

)
is simply extendable.

(2) (McGovern) If R is a Hermite ring, then R is an EDR.

Corollary 1.9(2) was first obtained in [13], Thm. 3.7. A second proof of Corollary 1.9(2) is presented in 
Remark 7.2.
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Part II studies determinant liftable 2 × 2 matrices that generalize simply extendable matrices1 and 
proves that each J2,1 domain introduced in [12] is an EDR. Part III has applications to Bézout rings (i.e., 
to rings whose finitely generated ideals are principal). Part IV contains universal and stability properties, 
complements and open problems. Parts I to IV split the manuscript https://arxiv.org/abs/2303.08413.

2. Basic terminology and properties

In what follows we will use without extra comments the following two basic properties. For (a, b, c) ∈ R3

we have (a, bc) ∈ Um(R2) iff (a, b), (a, c) ∈ Um(R2). If (a, b) ∈ Um(R2) and c ∈ R, then a divides bc iff a
divides c.

A ring R is called pre-Schreier, if every nonzero element a ∈ R is primal, i.e., if a divides a product bc of 
elements of R, there exists (d, e) ∈ R2 such that a = de, d divides b and e divides c. Pre-Schreier domains 
were introduced by Zafrullah in [22]. A pre-Schreier integrally closed domain was called a Schreier domain 
by Cohn in [2]. Every GCD domain (in particular, every Bézout domain) is Schreier (see [2], Thm. 2.4). 
Products of pre-Schreier domains and quotients of PIDs are pre-Schreier rings.

In an integral domain, an irreducible element is primal iff it is a prime. Thus an integral domain that 
has irreducible elements which are not prime, such as each noetherian domain which is not a UFD, is not 
pre-Schreier.

The inner rank of an m×n matrix over a ring is dfined as the least positive integer r such that it can be 
expressed as the product of an m× r matrix and an r×n matrix; over fields, this notion coincides with the 
usual notion of rank. A square matrix is called full if its inner rank equals its order, and non-full otherwise. 
A 2 × 2 matrix is non-full iff its inner rank is 1, (i.e., it has a column-row decomposition).

We consider the subsets of Um(R3):

T3(R) := Um(R2) × (R \ {0}) and J3(R) := Um(R2) ×
(
R \ J(R)

)
.

Proposition 2.1. We have fsr(R) = 1.5 iff for each (a, b, c) ∈ T3(R) there exists r ∈ R such that (a+ br, c) ∈
Um(R2).

Proof. The ‘only if’ part is clear. To check the ‘if’ part, let (a, b, c) ∈ Um(R3) with c �= 0 and let (x, y, z) ∈ R3

be such that ax + by + cz = 1. Thus (a, by + cz, c) ∈ T3(R) and hence there exists r ∈ R such that 
(a + byr + czr, c) ∈ Um(R2). This implies (a + byr, c) ∈ Um(R2), thus fsr(R) = 1.5. �
Proposition 2.2. We have asr(R) = 1 iff for each (a, b, c) ∈ J3(R) there exists r ∈ R such that (a + br, c) ∈
Um(R2).

Proof. See [13], Thm. 3.6 for the ‘only if’ part. For the ‘if’ part, for I an ideal of R not contained in J(R) we 
check that sr(R/I) = 1. If (a, b) ∈ R2 is such that (a+ I, b+ I) ∈ Um

(
(R/I)2

)
, let (d, e) ∈ R2 and c ∈ I be 

such that ad+be+c = 1. If c / ∈ J(R), then for (f, g) := (c, c) ∈
(
I \J(R)

)
×I we have (a, be+g, f) ∈ J3(R). 

If c ∈ J(R), then ad+ be = 1− c ∈ U(R), hence (a, be) ∈ Um(R2) and for (f, g) ∈
(
I \ J(R)

)
×{0} we have 

(a, be+g, f) ∈ J3(R). If r ∈ R is such that 
(
a+(be+g)r, f

)
∈ Um(R2), then a+I+(b+I)(er+I) ∈ U(R/I); 

so sr(R/I) = 1. �
Corollary 2.3. (1) If sr(R) = 1, then fsr(R) = 1.5.

(2) If fsr(R) = 1.5, then asr(R) = 1.
(3) If asr(R) = 1, then sr(R) ≤ 2.

1 A matrix A ∈ Um
(
M2(R)

)
will be called determinant liftable if there exists B ∈ Um

(
M2(R)

)
congruent to A modulo R det(A)

and det(B)=0.

https://arxiv.org/abs/2303.08413
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Proof. If sr(R) = 1, then for each (a, b, c) ∈ T3(R), there exists r ∈ R such that a + rb ∈ U(R), so 
(a + rb, c) ∈ Um(R2), hence fsr(R) = 1.5 by Proposition 2.1. So part (1) holds. As J3(R) ⊆ T3(R), part 
(2) follows from Propositions 2.1 and 2.2.

To check part (3), it suffices to show that each (a, b, c) ∈ Um(R3) is reducible. If b / ∈ J(R), then R/Rb has 
stable range 1 and (a+Rb, c+Rb) ∈ Um

(
(R/Rb)2

)
; hence there exists r ∈ R such that a+cr+Rb ∈ U(R/Rb)

and thus for (r1, r2) := (r, 0) we have (a + cr1, b + cr2) ∈ Um(R2). If b ∈ J(R), then (a, b, c) ∈ Um(R3)
implies that (a, c), (a, b + c) ∈ Um(R2) and thus for (r1, r2) := (0, 1) we have (a + cr1, b + cr2) ∈ Um(R2). 
We conclude that (a, b, c) is reducible. �

Corollary 2.3(3) was first obtained in [13], Thm. 3.6.
We have the following ‘classical’ units and unimodular interpretations.

Proposition 2.4. (1) For n ∈ N, we have sr(R) ≤ n iff for each b ∈ R the reduction modulo Rb map of sets 
Um(Rn) → Um

(
(R/Rb)n

)
is surjective.

(2) We have fsr(R) = 1 iff for all (b, c) ∈ R2 with c �= 0, the homomorphism U(R/Rc) → U
(
R/(Rb+Rc)

)
is surjective.

(3) We have asr(R) = 1 iff for each (b, c) ∈ R2 with c / ∈ J(R), the homomorphism U(R/Rc) →
U
(
R/(Rb + Rc)

)
is surjective.

Proof. Parts (1) and (2) follow from definitions. To check the ‘if’ part of (3), let (a, b, c) ∈ J3(R). Then 
a+Rb+Rc is a unit of R/(Rb+Rc) and thus is the image of a unit of R/Rc, which is of the form a+br+Rc

with r ∈ R. Hence (a + br, c) ∈ Um(R2). From this and Proposition 2.2 it follows that asr(R) = 1. To 
check the ‘only if’ part of (3), let a + Rb + Rc ∈ U

(
R/(Rb + Rc)

)
. Thus (a + Rc, b + Rc) ∈ Um

(
(R/Rc)2

)
. 

As Rc �⊆ J(R) and we assume asr(R) = 1, it follows that sr(R/Rc) = 1, hence there exists r ∈ R

such that a + br + Rc ∈ U(R/Rc) maps to a + Rb + Rc ∈ U
(
R/(Rb + Rc)

)
. Thus the homomorphism 

U(R/Rc) → U
(
R/(Rb + Rc)

)
is surjective. �

Corollary 2.5. Assume that sr(R) ≤ 4. If R is an E2 (resp. SE2) ring, then R/Ra is an E2 (resp. SE2) 
ring for all a ∈ R.

Proof. Let Ā ∈ Um
(
M2(R/Ra)

)
. As sr(R) ≤ 4, there exists A ∈ Um

(
M2(R)

)
whose reduction modulo 

Ra is Ā by Proposition 2.4(1) applied to n = 4. Let A+ be an extension (resp. a simple extension) of A; 
its reduction modulo Ra is an extension (resp. a simple extension) of Ā. So R/Ra is an E2 (resp. SE2) 
ring. �
Example 2.6. Let (a, b, c) ∈ Um(R3) with (b, c) ∈ Um(R2). Writing a − 1 = be + cf with e, f ∈ R, for 
r := −e we have (a + br, c) ∈ Um(R2).

Example 2.7. Suppose R is a semilocal ring. For each b ∈ R, the homomorphism U(R) → U(R/Rb) is 
surjective, hence sr(R) = 1 by Proposition 2.4(1).

Example 2.8. Let R be a noetherian domain of dimension 1. For (b, c) ∈ R2 with c �= 0, the rings R/Rc and 
R/(Rb + Rc) are artinian, hence the homomorphism U(R/Rc) → U

(
R/(Rb + Rc)

)
is surjective. From this 

and Proposition 2.4(2), it follows that fsr(R) = 1.5; thus sr(R) ≤ 2 (see Corollary 2.3(2) and (3)).

An argument similar to the one of Example 2.8 shows that each Bézout domain which is a filtered union 
of Dedekind domains has stable range 1.5.
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Example 2.9. We have sr(Z) = 2 and fsr(Z) = 1.5. The ring Z[x]/(x2) has almost stable range 1 but does 
not have stable range 1.5. For a finite field F and indeterminates X,Y , sr(F [X,Y ]) = sr(F [X]) = 2; so 
F [X,Y ] does not have almost stable range 1. Hence, each possible converse of Corollary 2.3 does not hold.

3. Projective modules

For a projective R-module P of rank 1, let [P ] ∈ Pic(R) be its class in the Picard group. Let Pic2(R)
be the subgroup of Pic(R) generated by classes [P ] with P generated by 2 elements. Let Pic2(R)[2] be the 
subgroup of Pic2(R) generated by classes [P ] with P ⊕ P ∼ = R2 (so 2[P ] = [R] and P is generated by 2
elements).

For (α1, . . . , αn) ∈ Rn, let Diag(α1, . . . , αn) ∈ Mn(R) be the diagonal matrix whose (i, i) entry is αi for 
all i ∈ {1, . . . , n}.

If n ≥ 2 we do not have unit interpretations of the stable range n similar to Proposition 2.4 but this is 
replaced by standard projective modules considerations recalled here in the form required in the sequel. If 
P1 and P2 are two projective R-modules of rank 1 such that P1 ⊕ P2 ∼ = R2, then by taking determinants it 
follows that P1 ⊗R P2 ∼ = R, hence [P1] = −[P2] ∈ Pic(R); thus P1 ∼ = R iff P2 ∼ = R.

Lemma 3.1. Let A ∈ Um
(
M2(R)

)
. Let R̄ := R/R det(A) and let Ā be the reduction of A modulo R det(A). 

Then KerĀ, ImĀ and CokerĀ are projective R̄-modules of rank 1 generated by two elements and we have 
[KerĀ] = [CokerĀ] = −[ImĀ] ∈ Pic2(R) (thus KerĀ ∼ = R̄ iff ImĀ

∼ = R̄ and iff CokerĀ ∼ = R̄).

Proof. As CokerA is annihilated by det(A), we can view it as an R̄-module isomorphic to CokerĀ. Locally 
in the Zariski topology of the spectrum of R̄, one of the entries of Ā is a unit and hence the matrices 
Ā and Diag(1, 0) are equivalent. Thus ImĀ and CokerĀ are projective R̄-modules of rank 1 generated 
by two elements and we have two (split) short exact sequences of projective R̄-modules 0 → ImĀ →
R̄2 → CokerĀ → 0 and 0 → KerĀ → R̄2 → ImĀ → 0. From the existence of R̄-linear isomorphisms 
R̄2 ∼ = KerĀ ⊕ ImĀ

∼ = KerĀ ⊕ CokerĀ it follows that KerĀ and CokerĀ are isomorphic to the dual of ImĀ

and the lemma follows. �
Next we exemplify the connection between projective R-modules and reducibility of n + 1-tuples with 

entries in R.

Example 3.2. For n ∈ N, let (a1, . . . , an, b) ∈ Um(Rn+1) with b a nonzero divisor. We consider short exact 
sequences of R-modules 0 → R

b−→ R
π−→ R/Rb → 0 and 0 → Q → Rn f−→ R/Rb → 0 where π is the 

natural quotient map and f maps the elements of the standard basis of Rn to a1 + Rb, . . . , an + Rb and 
Q := Ker(f). If Q+ → Rn and Q+ → R dfine the pullback of f and π, then we have short exact sequences 
0 → Q → Q+ → R and 0 → R → Q+ → Rn → 0 which imply that Q+ is a free R-module of rank n + 1
and Q is a projective R-module of rank n generated by n + 1 elements; moreover, if n = 1, then Q ∼ = R.

We consider R-linear maps g : Rn → R such that π ◦ g = f . Then (a1, . . . , an, b) is reducible iff we can 
choose g to be surjective. Thus, if sr(R) ≤ n, then we can choose g to be surjective.

If A ∈ Mn(R) is equivalent to Diag(1, 1, . . . , 1, b) and ImA is the R-submodule Q of Rn (hence Q ∼ = Rn), 
then we can choose g to be surjective and hence (a1, . . . , an, b) is reducible.

In this paragraph we assume that (a1, . . . , an, b) is reducible and that g is chosen to be surjective. Then 
Ker(g) is a projective R-module of rank n − 1 generated by n elements, we have a short exact sequence 

0 → Ker(g) → Q → Rb → 0, and 0 → Q → Rn f−→ R/Rb → 0 is the direct sum of the two projective 

resolutions 0 → R
b−→ R

π−→ R/Rb → 0 and 0 → Ker(g) → Ker(g) → 0 → 0. If n = 2, then Ker(g) ∼ = R. 
Thus if n = 2 and the R-submodule Q of R2 is ImA for some A ∈ M2(R), then A is equivalent to Diag(1, b). 
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Similarly, if n ≥ 3 and Ker(g) ∼ = Rn−1, then Q is a free R-module of rank n, so if the R-submodule Q of 
Rn is ImA for some A ∈ Mn(R), then A is equivalent to Diag(1, 1, . . . , 1, b).

4. Criteria on extending 2 × 2 matrices

Lemma 4.1. The following hold:

(1) A matrix A ∈ M2(R) is extendable iff its reduction modulo R det(A) is simply extendable. Thus, if 
det(A) = 0, then A is extendable iff it is simply extendable.

(2) For M,N ∈ GL2(R) and Q ∈ SL3(R) we have an identity

Θ
(
σ(M)Qσ(N)

)
= MΘ(Q)N

and the (3, 3) entries of Q and σ(M)Qσ(N) are equivalent (thus one such entry is 0 iff the other entry is 
0). Also, Θ(QT ) = Θ(Q)T .

(3) The fact that a matrix A ∈ M2(R) is (simply) extendable depends only on the equivalence class 
[A] ∈ GL2(R)\M2(R)/GL2(R). Moreover, A is (simply) extendable iff so is AT . So Im(Θ) is stable under 
transposition and equivalence.

Proof. To check the ‘only if’ part of part (1), let A ∈ M2(R) be extendable, with A+ ∈ SL3(R) an extension 
of it. If A+

0 is obtained from A+ by replacing the (3, 3) entry with 0, then the reductions of A+ and A+
0

modulo R det(A) have the same determinant 1, and it follows that A modulo R det(A) is simply extendable. 
To check the ‘if’ part of (1), let B ∈ M3(R) be such that Θ(B) = A and its reduction modulo R det(A) is 
a simple extension of the reduction of A modulo R det(A). Let w ∈ R be such that det(B) = 1 + w det(A). 
If A+ ∈ M3(R) is obtained from B by subtracting w from its (3, 3) entry, then A+ is an extension of A as 
det(A+) = det(B) − w det(A) = 1. Thus part (1) holds. Part (2) is a simple computation, while part (3) 
follows directly from part (2). �
Corollary 4.2. We consider the following two statements on R.

(1) For each a ∈ R, R/Ra is a Π2 ring.
(2) The ring R is an E2 ring.

Then (1) ⇒ (2). If sr(R) ≤ 4, then 1 ⇔ (2).

Proof. To prove that (1) ⇒ (2), let A ∈ Um
(
M2(R)

)
. Its reduction modulo R det(A) has zero determinant 

and hence it is simply extendable as R/Rdet(A) is a Π2 ring. From Lemma 4.1(1) it follows that A is 
extendable. Thus R is an E2 ring. Hence (1) ⇔ (2). If sr(R) ≤ 4, then (2) ⇒ (1) by Corollary 2.5, and 
hence (1) ⇔ (2). �

Theorem 4.3. For A =
[
a b

c d

]
∈ Um

(
M2(R)

)
the following statements are equivalent:

(1) The matrix A is equivalent to the diagonal matrix Diag
(
1,det(A)

)
.

(2) The matrix A is simply extendable.
(3) There exists (e, f) ∈ R2 such that (ae + cf, be + df) ∈ Um(R2) (note that (e, f) ∈ Um(R2)).

(4) There exists (x, y, z, w) ∈ R4 such that ax + by + cz + dw = 1 and the matrix 

[
x y

z w

]
is non-full.
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Proof. For (e, f, s, t) ∈ R4 we have two identities for the determinant

det

⎡
⎢⎣ a b f

c d −e

−t s 0

⎤
⎥⎦ = (be + df)t + (ae + cf)s = a(es) + b(et) + c(fs) + d(ft). (I)

The equivalence (2) ⇔ (3) follows from the first identity. The implication (1) ⇒ (2) was checked before 
Proposition 1.3.

To show that (3) ⇒ (1)∧ (4), let (e, f) ∈ R2 be such that there exists (s, t) ∈ Um(R2) with (ae+ cf)s+
(be + df)t = 1. Then (e, f), (s, t) ∈ Um(R2) and thus there exists M ∈ SL2(R) whose first row is [e f ] and 
there exists N ∈ SL2(R) whose first column is [s t]T . The matrix MAN has determinant det(A) and its 
(1, 1) entry is 1, thus it is equivalent to the matrix Diag

(
1,det(A)

)
and therefore statement (1) holds by 

the transitivity of the equivalent relation. For (x, y, z, w) := (es, et, fs, ft), then 

[
x y

z w

]
=

[
e

f

] [
s t

]
is non-full and from the second identity we get that ax + by + cz + dw = 1, thus statement (4) holds. If 
statement (4) holds, let (e, f, s, t) ∈ R4 be such that (x, y, z, w) = (es, et, fs, ft); as ax + by + cz + dw = 1, 
the determinant is 1 by the second identity, hence A is simply extendable. �
Remark 4.4. Referring to Theorem 4.3, as (2) ⇔ (3) and as a 2 × 2 matrix has a (simple) extension iff its 
transpose has it, it follows that A is simply extendable iff there exists (e′, f ′) ∈ R2 such that (ae′+bf ′, ce′ +
df ′) ∈ Um(R2).

Example 4.5. If A+ =

⎡
⎢⎣ a b f

c d −e

−t s 0

⎤
⎥⎦ is a simple extension of A =

[
a b

c d

]
∈ Um

(
M2(R)

)
, then the 

characteristic polynomial χA+ of A+ is of the form

x3 − Tr(A)x2 + νA+x− 1

(see Section 1 for Tr(A) = a + d and νA+ = det(A) + es + ft). Thus the set of characteristic polynomials 
of simple extensions of A is in bijection to the subset ν(A) ⊆ R introduced in Section 1 and we have

ν(A) = {det(A) + es + ft|(e, f, s, t) ∈ R4, a(es) + b(et) + c(fs) + d(ft) = 1}.

If d ∈ R, then ν
(
Diag(1, d)

)
= {d+es+ft|(e, f, s, t) ∈ R4, es+dft = 1} is equal to {d+1−(d−1)ft|(f, t) ∈

R2} = 2 + R(d− 1).
Concretely, if R = Z, {(8 + 11k,−5− 7k)|k ∈ Z} is the solution set of the equation 7es+ 11ft = 1 in es

and ft, thus ν
(
Diag(7, 11)

)
= {80 + 4k|k ∈ Z} = 4Z.

Corollary 4.6. (1) The ring R is an SE2 ring iff for each (a, b, c, d) ∈ Um(R4) statement (3) (or (4)) of 
Theorem 4.3 holds.

(2) Each semilocal ring is an SE2 ring.

Proof. Part (1) follows from definitions and Theorem 4.3. For part (2), based on part (1) it suffices to show 
that for each (a, b, c, d) ∈ Um(R4) there exists (e, f) ∈ R2 such that (ae+ cf, be+ df) ∈ Um(R2). To prove 
this we can replace R by R/J(R); thus R is a finite product of fields. By considering factors of R that are 
fields, we can assume that R is a field, in which case the existence of (e, f) is clear. �
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Corollary 4.7. For (a, b, c, d) ∈ Um(R4) the following properties hold:

(1) The matrix 

[
a b

c d

]
is extendable iff there exists (e, f) ∈ R2 such that (ae + cf, be + df, ad − bc) ∈

Um(R3).

(2) The matrix 

[
a b

c d

]
is simply extendable iff there exists (e, f) ∈ Um(R2) such that (ae + cf, be +

df, ad− bc) ∈ Um(R3)

Proof. Part (1) follows from Lemma 4.1(1) and Theorem 4.3. The ‘only if’ of part (2) follows from Theo
rem 4.3. We are left to prove that if (e, f) ∈ Um(R2) is such that (ae+cf, be+df, ad−bc) ∈ Um(R3), then A is 
simply extendable. Based on Theorem 4.3 it suffices to show that in fact we have (ae+cf, be+df) ∈ Um(R2). 
Let I := R(ae+cf)+R(be+df) and m a maximal ideal of R. If ad−bc ∈ m, then (ae+cf, be+df, ad−bc) ∈
Um(R3) implies that I �⊆ m. If ad− bc / ∈ m, then A modulo m is invertible, hence I ⊆ m iff Re + Rf ⊆ m; 
from this and (e, f) ∈ Um(R2) we infer that I �⊆ m. As I is not contained in any maximal ideal of R, it 
follows that (ae + cf, be + df) ∈ Um(R2). �
Corollary 4.8. The following properties hold:

(1) The ring R is an E2 ring iff for each (a, b, c, d) ∈ Um(R4) there exists (e, f) ∈ R2 such that (ae +
cf, be + df, ad− bc) ∈ Um(R3).

(2) The ring R is an SE2 ring iff for each (a, b, c, d) ∈ Um(R4) there exists (e, f) ∈ Um(R2) such that 
(ae + cf, be + df, ad− bc) ∈ Um(R3).

Proof. Both parts follow directly from definitions and the corresponding two parts of Corollary 4.7. �

Example 4.9. Let A =
[
a b

c d

]
∈ Um

(
M2(R)

)
. In many simple cases one can easily prescribe (e, f) ∈ R2

such that (ae + cf, be + df) ∈ Um(R2) and hence conclude that A is simply extendable. We include four 
such cases as follows.

(1) If {a, b, c, d} ∩ U(R) �= ∅, then we can take (e, f) ∈ R2 such that {e, f} = {0, 1}. E.g., if a ∈ U(R), 

then 

⎡
⎢⎣ a b 0
c d −1
0 a−1 0

⎤
⎥⎦ is a simple extension of A.

(2) If {(a, b), (a, c), (b, d), (c, d)} ∩ Um(R2) �= ∅, then we can take (e, f, e′, f ′) ∈ R4 such that 1 ∈ {ae +
cf, be + df, ae′ + bf ′, ce′ + df ′}. E.g., if (a, b) ∈ Um(R2) and s, t ∈ R are such that as + bt = 1, then ⎡
⎢⎣ a b 0

c d −1
−t s 0

⎤
⎥⎦ is a simple extension of A.

(3) If at least two of the entries a, b, c and d are in J(R) (e.g., they are 0), then either 
{(a, b), (a, c), (b, d), (c, d)} ∩ Um(R2) �= ∅ and part (2) applies or (b, c) ∈ J(R)2 or (a, d) ∈ J(R)2. The 
case (a, d) ∈ J(R)2 is entirely similar to the case (b, c) ∈ J(R)2, hence we detail here the case when 
(b, c) ∈ J(R)2. As (b, c) ∈ J(R)2, (a, d) ∈ Um(R2); let (e, f) ∈ R2 be such that 1 = ae + df . Then (
ae + bf + J(R), ce + df + J(R)

)
∈ Um

(
(R/J(R))2

)
, hence (ae + bf, ce + df) ∈ Um(R2); e.g., if b = c = 0, 

then 

⎡
⎢⎣ a 0 f

0 d −e

−1 1 0

⎤
⎥⎦ is a simple extension of A.
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(4) If a, b, c, d, f, q ∈ R are such that aq + df = 1, then a simple extension of 
[
a ab

ac d

]
is ⎡

⎢⎣ a ab f

ac d −q + cf(1 − b)
−1 1 − b 0

⎤
⎥⎦.

In three of these examples, the (2, 3) entry of the simple extensions is −1, i.e., we can choose e = 1. Such 
extensions relate to stable ranges 1 and 1.5 as follows.

Corollary 4.10. The following properties hold:

(1) We have sr(R) = 1 iff each upper triangular matrix A ∈ Um
(
M2(R)

)
has a simple extension whose 

(2, 3) entry is −1.
(2) We have fsr(R) = 1.5 iff each upper triangular matrix A ∈ Um

(
M2(R)

)
with nonzero (1, 1) entry 

has a simple extension whose (2, 3) entry is −1.
(3) We have asr(R) = 1 iff each upper triangular matrix A ∈ Um

(
M2(R)

)
with (1, 1) entry not in J(R)

has a simple extension whose (2, 3) entry is −1.

Proof. Let A =
[
a b

0 d

]
∈ Um

(
M2(R)

)
. If a = 0, then (b, d) ∈ Um(R2) and from Equation (I) it follows 

that A has a simple extension with the (2, 3) entry −1 iff there exists (f, t) ∈ R2 such that bt+ dft = 1 and 
hence iff there exists f ∈ R such that b + df ∈ U(R). Thus all these matrices A with a = 0 have a simple 
extension with the (2, 3) entry −1 iff sr(R) = 1.

Similarly, if a �= 0 (resp. a / ∈ J(R)), then from Equation (I) it follows that A has a simple extension with 
the (2, 3) entry −1 iff there exists (e, f, t) ∈ R3 such that ae+ bt + dft = 1 and hence iff there exists f ∈ R

such that (b+df, a) ∈ Um(R2). From the definition of stable range 1.5 (resp. almost stable range 1) applied 
to (b, d, a) ∈ Um(R3) it follows that all these matrices with a �= 0 (resp. a / ∈ J(R)) have a simple extension 
with the (2, 3) entry −1 iff fsr(R) = 1.5 (resp. asr(R) = 1). �
5. Proof of Theorem 1.4

Proposition 5.1. Let A ∈ Um
(
M2(R)

)
. Then the following properties hold:

(1) Assume that det(A) = 0. Then A is simply extendable iff one of the three R-modules ImA, KerA and 
CokerA is isomorphic to R and iff A is non-full.

(2) The matrix A is extendable iff its reduction modulo Rdet(A) is non-full.

Proof. We prove part (1) using three (circular) implications; hence det(A) = 0.

If A is non-full, we write A =
[

l

m

] [
o q

]
. As A ∈ Um

(
M2(R)

)
, it follows that (l,m), (o, q) ∈ Um(R2); 

let (e, f), (s, t) ∈ R2 be such that el + fm = so + tq = 1. Thus 
[
e f

]
A =

[
o q

]
. Hence A is simply 

extendable by Theorem 4.3, a simple extension of it being 

⎡
⎢⎣ lo lq f

mo mq −e

−t s 0

⎤
⎥⎦.

If A is simply extendable, it admits diagonal reduction by Theorem 4.3. Thus, A, being unimodular with 
det(A) = 0, is equivalent to Diag(1, 0), so Im(A) ∼ = R.

If one of the three R-modules ImA, KerA and CokerA is isomorphic to R, then all of them are isomorphic 
to R by Lemma 3.1. As ImA

∼ = R, the R-linear LA : R2 → R2 is a composite R-linear map R2 → R → R2, 
hence A is non-full.
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Thus part (1) holds. Part (2) follows from part (1) and Lemma 4.1(1). �
We are now ready to prove Theorem 1.4. If A ∈ Um

(
M2(R)

)
has zero determinant, then KerA and 

ImA are projective R-modules of rank 1 dual to each other and KerA ⊕ ImA
∼ = R2 by Lemma 3.1. Hence 

(4) ⇒ (3). The equivalences (1) ⇔ (2) ⇔ (3) follow from Proposition 5.1(1).
We show that (2) ⇒ (4). Each projective R-module P of rank 1 generated by 2 elements is isomorphic 

to ImA for some idempotent A ∈ M2(R) of rank 1 and hence unimodular of zero determinant. Assuming 

that (2) holds, we write A =
[

l

m

] [
o q

]
with (l,m), (o, q) ∈ Um(R2), hence LA is the composite of 

a surjective R-linear map R2 → R and an injective R-linear map R → R2. Thus P ∼ = ImA
∼ = R, hence 

(2) ⇒ (4). Thus Theorem 1.4 holds.

Example 5.2. For A ∈ Um
(
M2(R)

)
with det(A) = 0, we consider the R-submodule K := R

[
−b
a

]
+R

[
−d
c

]
of KerA. For a maximal ideal m of R, K �⊆ mM2(R), hence K �⊆ mKerA. Thus KerA = K. For (e, f) ∈ R2, 

we have (ae + cf, be + df) ∈ Um(R2) iff KerA is free having e
[
−b
a

]
+ f

[
−d
c

]
as a generator.

Example 5.3. Let n ∈ N and let x1, . . . , xn be indeterminates. Let k ∈ N. Let q := 4k + 1, r := 2k + 1 and 
θ := i

√
q ∈ C. We check that Z[x1, . . . , xn] is a Π2 ring which is not an E2 ring. As Z[x1, . . . , xn] is a UFD, 

it is also a Schreier domain and hence a Π2 ring (see Section 1). Thus it suffices to show that the matrix

A :=
[

r 1 − x1
1 + x1 2

]
∈ Um

(
M2(Z[x1, . . . , xn])

)

is not extendable. As det(A) = x2
1 + q, based on Lemma 4.1(1), it suffices to show that the im

age B :=
[

r 1 − θ

1 + θ 2

]
∈ Um

(
M2(Z[θ])

)
of A, via the composite homomorphism Z[x1, . . . , xn] →

Z[x1, . . . , xn]/(x2
1 +q) → Z[θ] that maps x1 to θ and x2, . . . , xn to 0, is not simply extendable. An argument 

on norms shows that the element 2 ∈ Z[θ] is irreducible, i.e., 2 = u(2u−1) with u ∈ U(Z[θ]) are its only 
product decompositions. So, as 2u−1 divides neither 1−θ nor 1+θ, B is full. So B is not simply extendable 
by Proposition 5.1(1) and the integral domain Z[θ] is not a Π2 ring. If 4k + 1 is square free, then Z[θ] is a 
Dedekind domain but not a PID.

Remark 5.4. Statements (1) to (4) of Theorem 4.3 are stable under similarity (inner automorphisms of the 
R-algebra M2(R)) but in general they are not stable under all R-algebra automorphisms of M2(R). To check 
this, let R be such that there exists an R-module P such that P ⊕P = R2 but P ≇ R; so [P ] ∈ Pic2(R)[2]. 
The idempotent A of M2(R) which is a projection of R2 on the first copy of P along the second copy of P
satifies ImA = P and det(A) = 0, so it is not simply extendable by Theorem 1.4 but its image under the 
R-algebra automorphism M2(R) = EndR(P⊕P ) ∼ = M2(R) dfined by EndR(P ) ∼ = R maps A to Diag(1, 0). 
E.g., if R is a Dedekind domain with Pic(R) ∼ = Z/2Z (such as Z[

√
−5]), then we can take P to be a maximal 

ideal of R with nontrivial class in Pic(R).

6. Proofs of Theorems 1.6 and 1.7 and Corollary 1.9

We show that if sr(R) ≤ 2, then each extendable A =
[
a b
c d

]
∈ Um

(
M2(R)

)
is simply extendable. Let 

(e′, f ′) ∈ R2 be such that (ae′ + cf ′, be′ +df ′, ad− bc) ∈ Um(R3) by Corollary 4.7(1). Thus (e′, f ′, ad− bc) ∈
Um(R3). As sr(R) ≤ 2, there exists (r1, r2) ∈ R2 such that
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(e, f) :=
(
e′ + (ad− bc)r1, f ′ + (ad− bc)r2

)
∈ Um(R2).

As the ideals of R generated by ae+ cf, be+ df, ad− bc and by ae′ + cf ′, be′ + df ′, ad− bc are equal, we have 
(ae+ cf, be+ df, ad− bc) ∈ Um(R3). Hence A is simply extendable by Corollary 4.7(2). Thus Theorem 1.6
holds.

Example 6.1. Let R be an integral domain such that sr(R) = 3 and each projective R-module P with 
P ⊕R ∼ = R3 is free. E.g., if κ is a sufield of R, then sr(κ[x1, x2]) = 3 by [18], Thm. 8 and Seshadri proved 
that all finitely generated projective modules over it are free (see [16], Thm.; see also [9], Ch. XXI, Sect. 
3, Thm. 3.5 for Quillen–Suslin Theorem). Let (a1, a2, b) ∈ Um(R3) be not reducible; thus b �= 0. We have 

projective resolutions 0 → Rb → R → R/Rb → 0 and 0 → P
g−→ R2 f−→ R/Rb → 0, where the R-linear 

map f maps the elements of the standard basis of R2 to a1 + Rb and a2 + Rb, P = Ker(f) and g is the 
inclusion. As P is of the type mentioned (see Example 3.2), we identify P = R2. Let A ∈ M2(R) be such 
that LA = g : R2 = P → R2; we have A ∈ Um

(
M2(R)

)
and R det(A) = Rb. Let Ā be the reduction of 

A modulo R det(A). The R/R det(A)-module CokerA is isomorphic to R/R det(A) and to CokerĀ. Thus Ā
is simply extendable by Proposition 5.1(1). Hence A is extendable by Lemma 4.1(1). But A is not simply 
extendable: if it were, then it would be equivalent to Diag

(
1,det(A)

)
(see Theorem 4.3) and it would follow 

from Example 3.2 that (a1, a2, b) ∈ Um(R3) is reducible, a contradiction.

To prove Theorem 1.7, let R be an integral domain of dimension 1. To prove part (1), let A ∈ Um
(
M2(R)

)
with det(A) �= 0. The ring R̄ := R/ det(A)R has dimension 0 and hence Pic(R̄) is trivial. From this and 
Theorem 1.4 it follows that R̄ is a Π2 ring and therefore the reduction Ā of A modulo R det(A) is simply 
extendable. From Theorem 1.4 it follows that ImĀ

∼ = R/R det(A). As R is an integral domain, we have 
two projective resolutions 0 → R det(A) → R → ImĀ → 0 and 0 → det(A)R2 → ImA → ImĀ → 0 of 
R-modules. From this and Example 3.2 applied to b = det(A) (recall that sr(R) ≤ 2), it follows that A is 
equivalent to Diag

(
1,det(A)

)
and hence is simply extendable (see Theorem 4.3).

Part (2) holds as triangular matrices in Um
(
M2(R)

)
have either two 0 entries or nonzero determinants 

and thus are simply extendable by Example 4.9(3) or part (1). The first ‘iff’ of part (3) follows from 
part (1) and definitions. The isomorphism classes of projective R-modules of rank 1 are the isomorphisms 
classes of nonzero ideals of R which locally in the Zariski topology are principal; as for each a ∈ R \ {0}, 
dim(R/Ra) = 0 and hence Pic(R/Ra) is trivial, all such nonzero ideals are generated by 2 elements. From 
this and Theorem 1.4 it follows that R is a Π2 domain iff Pic(R) is trivial. Hence part (3) holds. As PIDs 
are precisely Dedekind domains with trivial Picard groups, part (4) follows from the second ‘iff’ of part (3). 
Thus Theorem 1.7 holds.

Remark 6.2. The existence of an extension of a matrix in Um
(
M2(R)

)
does not depend only on the set of 

its entries. This is so as, referring to Example 5.3, the matrix 

[
1 + θ 1 − θ

r 2

]
∈ Um

(
M2(Z[θ])

)
has the 

same entries as B, has nonzero determinant, and it is extendable (see Theorem 1.7(1)).

To prove Corollary 1.9, we assume that asr(R) = 1. Each matrix 

[
a b

0 c

]
∈ Um

(
M2(R)

)
is simply 

extendable by Example 4.9(3) if a ∈ J(R) and by Corollary 4.10(3) if a / ∈ J(R). So part (1) holds. To prove 
part (2), as R is also a Hermite ring, each A ∈ Um

(
M2(R)

)
is equivalent to a triangular matrix and hence 

from part (1) and Lemma 4.1(3) it follows that A is simply extendable and thus admits diagonal reduction by 
Theorem 4.3. As M2(R) = RUm

(
M2(R)

)
it follows that each matrix in M2(R) admits diagonal reduction, 

hence it is equivalent to a diagonal matrix. Thus R is an EDR. Hence Corollary 1.9 holds.
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7. Explicit computations for integral domains

Let A :=
[
a b

c d

]
∈ Um

(
M2(R)

)
be such that we can write a = ga′, c = gc′, b = hb′, d = hd′

with a′, b′, c′, d′, g, h ∈ R and (a′, c′), (b′, d′) ∈ Um(R2). We have (g, h) ∈ Um(R2). Let e′, f ′ ∈ R be such 
that a′e′ + c′f ′ = 1. Let l := b′c′ − a′d′ ∈ R and m := b′e′ + d′f ′ ∈ R; note that det(A) = −ghl. As 

[ l m ] = [ b′ d′ ]
[

c′ e′

−a′ f ′

]
, the matrix 

[
c′ e′

−a′ f ′

]
has determinant 1, and, due to (b′, d′) ∈ Um(R2), it 

follows that (l,m) ∈ Um(R2).
Let (e, f, w) ∈ R3 be such that ae + cf = gw. If R is an integral domain and g �= 0, there exists v ∈ R

such that (e, f) = (we′ + c′v, wf ′ − a′v), hence

be + df = h(b′e + d′f) = h(b′we′ + b′c′v + d′wf ′ − a′d′v) = hw(b′e′ + d′f ′) + hv(b′c′ − a′d′)

is equal to h(wm + vl). Thus (ae + cf, be + df) =
(
gw, h(wm + vl)

)
.

Proposition 7.1. Let R be an integral domain. Let A =
[
a b

c d

]
∈ Um

(
M2(R)

)
be such that the above 

notation g, h, a′, b′, c′, d′ applies and let (e′, f ′, l,m) ∈ R4 be obtained as above. We assume g �= 0.

(1) The matrix A is simply extendable iff there exists (w, v) ∈ R2 such that (g, wm + vl), (w, hvl) ∈
Um(R2), in which case a simple extension of A is

⎡
⎢⎣ a b wf ′ − a′v

c d −we′ − c′v

−t s 0

⎤
⎥⎦

where s, t ∈ R are such that gws + h(wm + vl)t = 1.
(2) If the intersection {(g, l), (g,m), (h, l), (h,m)} ∩ Um(R2) is nonempty (e.g., if hlm = 0), then A is 

simply extendable and w, v ∈ R are given by formulas.

Proof. There exists (e, f) ∈ R2 such that (ae + cf, be + df) ∈ Um(R2) iff there exists (w, v) ∈ R2 such 
that 

(
gw, h(wm + vl)

)
∈ Um(R2) (see above). We have 

(
gw, h(wm + vl)

)
∈ Um(R2) iff 

(
g, h(wm +

vl)
)
,
(
w, h(wm+vl)

)
∈ Um(R2). As (g, h) ∈ Um(R2), we have 

(
g, h(wm+vl)

)
∈ Um(R2) iff (g, wm+vl) ∈

Um(R2); moreover, Rw + Rh(wm + vl) = Rw + Rhvl. Thus 
(
gw, h(wm + vl)

)
∈ Um(R2) iff (g, wm +

vl), (w, hvl) ∈ Um(R2). Based on the ‘iff’ statements of this paragraph and Theorem 4.3, it follows that 
part (1) holds.

To check part (2), we first notice that if hlm = 0, then the intersection is nonempty; e.g., if h = 0, then 
g ∈ U(R) and hence (g, l), (g,m) ∈ Um(R2). Based on part (1) it suffices to show that in all four possible 
cases, we can choose (w, v) ∈ R2 such that (g, wm + vl), (w, hvl) ∈ Um(R2).

If (g, l) ∈ Um(R2), for (w, v) := (g, 1) we have Rg+R(wm+vl) = Rg+Rl = R. As (g, h), (g, l) ∈ Um(R2), 
also (w, hvl) = (g, hl) ∈ Um(R2).

If (g,m) ∈ Um(R2), for (w, v) := (1, 0) we have (g, wm + vl) = (g,m) ∈ Um(R2) and (w, hvl) = (1, 0) ∈
Um(R2).

If (h,m) ∈ Um(R2), then (hl,m) ∈ Um(R2) and there exists (w, v′) ∈ R2 such that wm + hv′l = 1; 
so Rw + Rhv′l = R. For v := hv′ we have wm + vl = 1 and so (g, wm + vl) ∈ Um(R2) and (w, hvl) =
(w, h2v′l) ∈ Um(R2) as (w, hv′l) ∈ Um(R2).

If (h, l) ∈ Um(R2), let (p, q) ∈ R2 be such that 1 = lp + mq. For w := hq + l and v := hp − m we 
compute wm + vl = h(lp + mq) + ml − ml = h, so (g, wm + vl) = (g, h) ∈ Um(R2). Also, Rw + Rh =
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R(hq + l) + Rh = Rl + Rh = R and Rw + Rvl contains wm + vl = h and hence it contains Rw + Rh = R. 
Thus (w, vl) ∈ Um(R2). As (w, h), (w, vl) ∈ Um(R2) it follows that (w, hvl) ∈ Um(R2). �
Remark 7.2. We include a second proof of Corollary 1.9(2) for Bézout domains. Assume R is a Bézout 
domain with asr(R) = 1. Based on the equivalence of statements (1) and (2) of Theorem 4.3, it suffices 

to show that each matrix A =
[
a b

c d

]
∈ Um

(
M2(R)

)
is simply extendable. As R is a Hermite domain, 

the notation of this section applies. As (g, h) ∈ Um(R2), by the symmetry between the pairs (a, c) and 
(b, d), we can assume that g / ∈ J(R). As (m, l, g) ∈ J3(R) and asr(R) = 1, there exists v ∈ R such that 
(m+ lv, g) ∈ Um(R2). We take w := 1. Hence (w, hvl) ∈ Um(R2) and (g, wm+ lv) = (g,m+ lv) ∈ Um(R2). 
From Proposition 7.1(1) it follows that A is simply extendable.

Example 7.3. For A =
[
a b

c d

]
∈ Um

(
M2(Z)

)
, its simple extensions A+

(e,f,s,t) =

⎡
⎢⎣ a b f

c d −e

−t s 0

⎤
⎥⎦ are param

eterized by the set (see Equation (I))

γA := {(e, f, s, t) ∈ Z4|a(es) + b(et) + c(fs) + d(ft) = 1}.

The below examples were (initially) exemplfied using a code written for R = Z by the second author. We 
have νA+

(e,f,s,t)
= χ′

A+
(e,f,s,t)

(0) = det(A) + es + ft.

(1) If a = 0 and d = 1 + b + c, then we can take A+ =

⎡
⎢⎣ 0 b −1
c 1 + b + c −1
1 1 0

⎤
⎥⎦.

Concretely, suppose (b, c) = (3, 2); then d = 6, det(A) = −6, γA = {(e, f, s, t) ∈ Z4|3et + 2fs + 6ft = 1}
and ν(A) = {−6 + es + ft|(e, f, s, t) ∈ γA}.

To solve the equation 3et+ 2fs+ 6ft = 1, let w := et+ 2ft. We get 2fs+ 3w = 1 with general solution 
fs = −1+3k, w = 1−2k, where k ∈ Z. The general solution of the equation et+2ft = 1−2k is et = 2k−1−2l
and ft = 1−2k+ l, where l ∈ Z. Let m := l−2k+1. It follows that ft = m, et = 1−2k−2m, fs = −1+3k
and the only constraint is that ft = m divides etfs = (3k − 1)(1 − 2k − 2m), i.e., divides (3k − 1)(2k − 1). 

As es + ft = m + −6k2 + 5k − 1
m 

− 6k + 2, it follows that

ν(A) = {−4 + m− 6k + −6k2 + 5k − 1
m 

|(m, k) ∈ Z2, m divides − 6k2 + 5k − 1}.

(2) If c = 0 and d = 1 − a + b, then we can take A+ =

⎡
⎢⎣ a b −1

0 1 − a + b −1
1 1 0

⎤
⎥⎦ (cf. Corollary 4.8(2): for 

simple extensions of upper triangular matrices with nonzero (1, 1) entries over rings R with fsr(R) = 1.5, 
we can choose e = 1).

Concretely, suppose (a, b) = (6,−10); hence d = 15 and det(A) = −90. Thus γA = {(e, f, s, t) ∈
Z4|6es− 10et− 15ft = 1}.

To solve the equation 6es−10et−15ft = 1, let w := 2et+3ft. We get 6es−5w = 1 with general solution 
es = 1 + 5k, w = 1 + 6k, where k ∈ Z. Then 2et+ 3ft = 1 + 6k has the general solution et = −1− 6k + 3l, 
ft = 1+6k− 2l, where l ∈ Z. Let m := l− 2k. It follows that es = 1+5k, et = −1+3m, ft = 1+2k− 2m
are subject to the only constraint that et = −1 + 3m divides esft = (1 + 5k)(1 + 2k − 2m), i.e., it divides 
(1 + 5k)(2k + m). As es + ft = 2 + 7k − 2m, it follows that
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ν(A) = {−88 + 7k − 2m|(m, k) ∈ Z2, −1 + 3m divides (1 + 5k)(2 + 2k + m)}.

For m = 0 (resp. m = 1) it follows that ν(A) ⊇ 3 + 7Z (resp. ν(A) ⊇ 1 + 14Z).
The matrices Diag(6,−15), A0 := A ∈ M2(Z[ 1 

21 ]) are similar and one checks that ν(A0) = −90 + 1
6 +

7
2 + 2Z[ 1 

21 ] = −86 − 1
3 + 2Z[ 1 

21 ].

(3) If A =
[

15 6
10 14

]
, we can take A+ =

⎡
⎢⎣ 15 6 −2

10 14 1
−1 −1 0

⎤
⎥⎦; indeed we have det(A+) = 1 · 15 − 1 · 6 + 2 ·

10 − 2 · 14 = 1. The entries of A use double products of the primes 2, 3, 5, 7. We have γA = {(e, f, s, t) ∈
Z4|15es + 6et + 10fs + 14ft = 1}, det(A) = 150, νA+ = 149, and ν(A) = {150 + es + ft|(e, f, s, t) ∈ γA}.

To solve the equation 15es + 6et + 10fs + 14ft = 1, let x := 5es + 2et and y := 5fs + 7ft, so we get 
3x + 2y = 1 with general solution x = 1 + 2k, y = −1 − 3k, where k ∈ Z. Then 5es + 2et = 1 + 2k has the 
general solution es = 1+2k+2l, et = −2(1+2k)−5l, where l ∈ Z, and 5fs+7ft = −1−3k has the general 
solution fs = 3(−1−3k)+7r, ft = −2(−1−3k)−5r, where r ∈ Z. Let o := k+l, so et = −2+4l−4o−5l =: q. 
Thus es = 1 + 2o, et = q, l = −2 − q − 4o, k = 2 + q + 5o, therefore fs = −3 − 18 − 9q − 45o + 7r and 
ft = 2 + 12 + 6q + 30o− 5r. Let p := r − 6o− q − 3. Thus ft = −5p + q − 1 and fs = −3o− 2q + 7p. As 
(es)(ft) = (et)(fs), we have an identity (1 + 2o)(q − 1 − 5p) = q(7p− 3o− 2q), which can be rewritten as 
o(−2 − 10p + 5q) = 1 + 5p− q − 2q2 + 7pq and which for q = 2p becomes −2o = 6p2 + 3p + 1, requiring p
to be odd. For q = 2p, es + ft = 2o + q − 5p becomes 2o− 3p = −6p2 − 6p− 1. Thus

ν(A) = {150 + 2o + q − 5p|(o, q, p) ∈ Z3, o(−2 − 10p + 5q) = 1 + 5p− q − 2q2 + 7pq}

contains the set {150 − 6p2 − 6p− 1|p− 1 ∈ 2Z}.

(4) If A =
[

30 42
70 105

]
, we can take A+ =

⎡
⎢⎣ 30 42 1

70 105 3
1 1 0

⎤
⎥⎦; indeed we have det(A+) = −3 · 30 + 3 · 42 +

1 · 70 − 1 · 105 = 1. The entries of A use triple products of the primes 2, 3, 5, 7, hence they are not pairwise 
coprime.
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