"BEING A UNIT" IS AN ABAB-COMPATIBLE PROPERTY

In Diesl's dissertation thesis (2006) the following notion is considered.

Definition 2.7. Let \mathcal{P} be a property that a ring element can satisfy. We will call \mathcal{P} an ABAB-compatible property if it satisfies the following three conditions.

- (1) If $a \in R$ has property \mathcal{P} , then -a has property \mathcal{P} .
- (2) If $a \in R$ has property \mathcal{P} and e is any idempotent in R such that ea = ae, then $eae \in eRe$ has property \mathcal{P} .
- (3) If a is in R and $e \in R$ is an idempotent such that ea = ae, and if the elements $eae \in eRe$ and $(1-e)a(1-e) \in (1-e)R(1-e)$ both have property \mathcal{P} as elements of the respective corner rings, then a has property \mathcal{P} in R.

Diesl's choice of the term "ABAB-compatible" is motivated by the following lemma.

Lemma 2.8. Let R be a ring, and let M_R be a right R-module. Let \mathcal{P} be an ABAB-compatible property. An endomorphism $\phi \in End(M_R)$ is then the sum of an idempotent e and an element e with property \mathcal{P} such that e = ee if and only if there exists a direct sum decomposition $M = A \oplus B$ such that $\phi|A$ is an element of End(A) with property \mathcal{P} and $(1 - \phi)|B$ is an element of End(B) with property \mathcal{P} .

As customary, for any ring R, U(R) denotes the set of all the units of R. For an idempotent e, we denote by $\overline{e}=1-e$, the complementary idempotent. For any element a, ae=ea is equivalent to $a\overline{e}=\overline{e}a$.

No details where given in presenting the following example.

Lemma 1. (i) "Being a unit" is ABAB-compatible.

Proof. (i) (1) obvious.

- (2) If $a \in U(R)$ with au = ua = 1 and ae = ea then (eae)(eue) = (eue)(eae) = e.
- (3). We use the equality

$$U(eRe) = (eRe) \cap (\overline{e} + U(R)).$$

Assume $a \in U(eRe) \cap U(\overline{e}R\overline{e})$. Then, $a = \overline{e} + u \in eRe$ with $u \in U(R)$ so there exists $v \in R$ with $(a - \overline{e})v = v(a - \overline{e}) = 1$. By left and right multiplication (respectively) with e we get eave = evae = e. Similarly, from $a \in U(\overline{e}R\overline{e})$, for a = e + w there exists $t \in R$ such that (a - e)t = t(a - e). By left and right multiplication (respectively) with \overline{e} , we get $\overline{e}at\overline{e} = \overline{e}ta\overline{e} = \overline{e}$. Finally, by addition, $a(eve + \overline{e}t\overline{e}) = (eve + \overline{e}t\overline{e})a = e + \overline{e} = 1$.

Notr that the proof shows that

$$U(eRe) \cap U(\overline{e}R\overline{e}) \subseteq U(R),$$

for every idempotent e which commutes with the units of R.