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Abstract
We prove that this formula characterizes the square matrices over commutative rings
for which all 2 × 2 minors equal zero.
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1 Introduction

An important notion in Ring Theory is obtained for every idempotent e of a ring R:
the set of products eRe, called a corner of the ring R, which is readily seen to be
a ring itself with e the multiplicative identity. The starting point of this note was a
Ring Theory research in which elements of form eae with idempotent e and unit (or
nilpotent) a occurred, that is, some specific elements in some corners of a ring. To
have more examples, we tried to check what can be said about matrix products of this
sort.

If one considers 2 × 2 matrices over commutative rings, it is readily checked (by
direct computation) that if det(A) = 0 and B is an arbitrary matrix then

ABA = Tr(AB)A

formula we did not find in the literature. A little bit harder, but still not difficult, the
formula can also be checked (by direct computation) for 3× 3 matrices, whenever all
the 2 × 2 minors of A equal zero.

In this short note, we prove the formula for n × n matrices over commutative rings
and any n ≥ 2. Surprisingly, the converse also holds and so we have a characterization
result.
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Theorem 1 Let A, B be n × n matrices over a commutative ring R and n ≥ 2. The
formula

ABA = Tr(AB)A = ATr(BA),

holds for every matrix B if and only if all 2 × 2 minors of A equal zero.

Notice that the second equality follows from the hypothesis that the base ring is
commutative and the well-known trace formula Tr(AB) = Tr(BA).

In Sect. 2 we give the proof of the characterization, by induction and using block
multiplication one way, in the general commutative base ring case.

In Sect. 3 we present simple proofs in two special cases: when A has inner rank
one (that is, has a column-row decomposition) and when the entries of A belong to a
field, respectively.

The final Sect. 4 includes some comments and applications.
Recall the following

Definition The inner rank of an n × n matrix A over a ring R is the least integer r
such that A can be expressed as a product of an n × r matrix and an r × n matrix. For
example, over a division ring this notion coincides with the usual notion of rank. A
square matrix is called full if its inner rank equals its order, and non-full otherwise.

It is easy to see that, over any commutative ring and for any positive integer n ≥ 2,
the determinant of an n-column-n-row product is zero. Obviously, such products have
inner rank 1.

We also recall that a ring was called pre-Schreier (see (Zafrullah 1987)) if every
element is primal (i.e., if r divides a product xy then r = ab with a | x and b | y).

2 Proof of the theorem

The formula is obviously true for n = 1 without any hypothesis. Indeed aba =
(ab)a = a(ba) holds over any (associative) ring (possibly not commutative nor unital).

Proof One way, using induction and block multiplication, we provide a proof of the
formula for n × n matrices over commutative rings, whenever all 2 × 2 minors equal
zero. As noticed in the Introduction, if det(A) = 0 for a 2 × 2 matrix (over any
commutative ring) A = [ai j ] and B = [bi j ] is arbitrary, it is not hard to check
ABA = Tr(AB)A (here Tr(AB) = a11b11 + a12b21 + a21b12 + a22b22).

Let A, B ∈ Mn(R) for a commutative ring R. In both A and B we emphasize the

(n−1)×(n−1) left upper corner, that is, wewrite A =
[
A′ a2
a1 ann

]
with A′ ∈ Mn−1(R),

one 1×(n−1) row a1 = [
an1 ... an,n−1

]
and one (n−1)×1 column a2 =

⎡
⎢⎣

a1n
...

an−1,n

⎤
⎥⎦.

We use similar notations for B and block multiplication for these matrices.

Then AB =
[
A′B ′ + a2b1 A′b2 + a2bnn
a1B ′ + annb1 a1b2 + annbnn

]
and ABA =

123



Beitr Algebra Geom

[
(A′B ′ + a2b1)A′ + (A′b2 + a2bnn)a1 (A′B ′ + a2b1)a2 + (A′b2 + a2bnn)ann
(a1B ′ + annb1)A′ + (a1b2 + annbnn)a1 (a1B ′ + annb1)a2 + (a1b2 + annbnn)ann

]
.

By induction hypothesis, assume A′B ′A′ = Tr(A′B ′)A′. In order to prove

ABA = Tr(AB)A = Tr(AB)

[
A′ a2
a1 ann

]
we have to check four equalities:

(i) Tr(A′B ′)A′ + a2b1A′ + (A′b2 + a2bnn)a1 = Tr(AB)A′
(ii) (A′B ′ + a2b1)a2 + (A′b2 + a2bnn)ann = Tr(AB)a2
(iii) (a1B ′ + annb1)A′ + (a1b2 + annbnn)a1 = Tr(AB)a1
(iv) (a1B ′ + annb1)a2 + (a1b2 + annbnn)ann = Tr(AB)ann .

Since Tr(AB) = Tr(A′B ′ + a2b1) + a1b2 + annbnn , and Tr(a2b1) = Tr(b1a2) =
b1a2, the equalities amount to

(i) a2b1A′ + (A′b2 + a2bnn)a1 = (b1a2 + a1b2 + annbnn)A′
(ii) (A′B ′ + a2b1)a2 + A′b2ann = (Tr(A′B ′) + b1a2 + a2b1)a2
(iii) (a1B ′ + annb1)A′ = (Tr(A′B ′) + b1a2)a1
(iv) a1B ′a2 = Tr(A′B ′)ann .
We just provide some details of how all these equalities are verified.

(i) The LHS has a sum of three (n − 1) × (n − 1) matrices and the RHS has A′
multiplied by a scalar. We have to check the equalities of the entries in the LHS
matrix respectively in the RHS matrix. Each entry is a linear combination of b’s
with coefficients products of two a’s. Some corresponding entries are already equal
(e.g., coefficients of bn1 in the corresponding (1, n − 1) entries), the other use the

vanishing of the 2 × 2 minors (e.g., we use

∣∣∣∣an−1,1 an−1,n−1
an1 an,n−1

∣∣∣∣ = 0 in order to

check the equality of the products whichmultiply bn−1,n , for the (n−1, 1) entries).
(ii) The LHS is a sum of three columns and the RHS is a product of a scalar and a

column. To check the equality amounts to verify the equality of the corresponding
n − 1 entries. As in the previous case, each entry is a linear combination of b’s
with coefficients products of two a’s. Some corresponding entries are already
equal (e.g., coefficients of bn1 in the corresponding upper entries), the other use

the vanishing of the 2 × 2 minors (e.g., we use

∣∣∣∣ a11 a1n
an−1,1 an−1,n

∣∣∣∣ = 0 in order to

check the equality of the products which multiply b1,n−1, for the upper entries).
(iii) Both the LHS and RHS of the equality are linear combination of all bi j for 1 ≤

i ≤ n, 1 ≤ j ≤ n − 1 with coefficients products of two a’s. For every pair (i, j),
the equality of the coefficients of bi j in both sides amounts to the vanishing of a

minor of type

∣∣∣∣a ji a j j

ani anj

∣∣∣∣ or
∣∣∣∣a j1 a ji

an1 ani

∣∣∣∣ or similar.

(iv) Both the LHS and RHS of the equality are linear combination of all bi j for 1 ≤
i, j ≤ n − 1 with coefficients products of two a’s. For every pair 1 ≤ i, j ≤
n − 1, the equality of the coefficients of bi j in both sides amounts precisely to the

vanishing of the minor

∣∣∣∣a ji a jn

ani ann

∣∣∣∣.
As for the converse, take an arbitrary minor m =

∣∣∣∣ aik ail
a jk a jl

∣∣∣∣ and choose B = El j .

It is easy to see that C =: AEl j A = coll(A) · row j (A) and since Tr(AEl j ) = a jl ,
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D =: Tr(AEl j )A = a jl A. Now compute cik = a jkail and dik = a jlaik . Since
C = D, the minor m indeed equals zero. ��
Remark For n = 2, the converse (that is, det(A) = 0) follows easily by the Cayley-
Hamilton theorem, taking B = I2. In the n = 3 case, the same choice, B = I3,
and the Cayley-Hamilton theorem still gives det(A) = 0 (since A2 = Tr(A)A and
Tr(A2) = Tr2(A)) but not the vanishing of all the 2 × 2 minors.

3 Special cases with simple proofs

It is easy to prove our formula if A = c · r has a column-row decomposition (i.e.,
the inner rank of A is 1, the matrix is non-full) over any commutative ring.

Proof We use the cyclicity of the trace, i.e., the trace is invariant with respect to cyclic
permutations of its argument. For example, Tr(ABC) = Tr(BCA) = Tr(CAB).
Let c be an n × 1 column and let r be an 1 × n row such that A = c · r. Then
Tr(AB) = Tr(c · (r · B)) = Tr(r · B · c) = r · B · c, since this is a scalar. Therefore
ABA = c · r · B · c · r = cTr(AB)r = Tr(AB)A. ��

However, having a column-row decomposition for any matrix with all 2×2 minors
equal to zero, requires additional conditions on the base ring.

For instance, in the n = 2 case, it is proved (see (Călugăreanu and Pop 2021)) that
the existence of a column-row decomposition for a zero determinant 2 × 2 matrix is
equivalent to the base ring being a pre-Schreier domain.

As it is well-known, the proof is valid if the base ring is a field, as, for any matrix,
the inner rank equals the rank.

Next we supply a different proof for (square) matrices over fields.
First we mention two facts which are easier to describe for linear maps (instead of

matrices).
Suppose f is a linear map from V to itself, where V is some finite n -dimensional

vector space over a field K . Recall that, by definition, the rank of f is r = dim( f (V )).
1. Suppose r = 1. Then the range f (V ) has a vector basis, say {v} for some v �= 0.

Since for every x ∈ V , f (x) ∈ f (V ) it follows that f (x) = dv for some d ∈ K . In
particular f (v) = cv for some c ∈ K , so v is an eigenvector corresponding to the
eigenvalue c.

2. Suppose r = 1 and so the nullity dim(ker( f )) = n − 1. Since the multiplicity
of an eigenvalue is at least the dimension of the corresponding eigenspace, it follows
that 0 is an eigenvalue with multiplicity at least n − 1. Moreover, as the sum of all
eigenvalues (counted with multiplicity) is Tr( f ), the last eigenvalue is Tr( f ).

Now, given some squarematrix A, we can apply this to themap canonically attached
to A. Since the formula trivially holds for B = 0, we assume B �= 0.

Proof Suppose rank(A) = 1 (and so A �= 0). By the above (see 1 ), there is a nonzero
vector v such that for each vector x, Ax = dv for some d ∈ R. Then we compute

ABAx = AB(dv) = d A(Bv) = dcv = c(dv) = cAx
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for some c ∈ R (that is, A(Bv) = cv). Since the equality holds for every x, ABA = cA
follows.

Finally, it remains to notice that rank(AB) = 1 and since (AB)v = cv we deduce
(see 2 above) that c = Tr(AB). ��

Despite the fact that notions like rank of a matrix, linearly independent vector (or
column in Rn), null space, eigenvalue and eigenvector can be defined for matrices over
commutative rings (see (Brown 1993)), this proof cannot be extended to the general
case of matrices over commutative rings. There are several impediments occurring.

One of these is that if c ∈ R is an eigenvalue (e.g., a root of the characteristic
polynomial pA(X)) it does not follow that the eigenvector of A associated to c is
independent over R. Of course, pA(X) may not have roots in R.

Moreover, rank(A) = 1 implies that the 2× 2 minors are zero, but not conversely.
Unlike the field case, a matrix can have rank zero without being the zero matrix.

4 Comments and applications

Two special cases of this formula can be found on MathOverflow.

(1) Let A be an n × n complex matrix having rank 1. Prove that A2 = cA for some
scalar c (see van Leeuwen 2014, solution by M. van Leeuwen 2014), and

(2) Show that if Tr(AB) = 0 and A has rank 1 then ABA = 0 (see EuYu 2016,
solution by EuYu 2016).

The first follows from our formula by taking B = In , where c turns out to be precisely
Tr(AB), and the second follows directly from the formula, whenever Tr(AB) = 0.

However, as our theorem proves, both hold over any commutative ring, not only
for complex matrices, or over special integral domains (where a column-row splitting
is possible).

An easy but general case which was not mentioned follows from Cayley–Hamilton
theorem: let A be a zero determinant 2 × 2 matrix over any commutative ring. Then
A2 = Tr(A)A.

The following applications are straightforward.

Corollary 2 Assume n ≥ 2, all 2× 2 minors of the n × n matrix A equal zero and the
n × n matrix B is arbitrary. Then

(a) (AB)2 = Tr(AB)AB but not conversely, unless B is a unit.
(b) Tr(ABA) = Tr(AB)Tr(A) = Tr(A)Tr(BA); in particular Tr(A2) =

Tr2(A).

It is well-known that if R is any commutative ring, the endomorphisms of an R-
module M form an algebra over R denoted EndR(M). Then there is a canonical
R-linear map: M∗ ⊗R M −→ R induced through linearity by f ⊗ x �→ f (x); it is the
unique R-linear map corresponding to the natural pairing. If M is a finitely generated
projective R-module, then one can identify M∗ ⊗R M = EndR(M) through the
canonical homomorphism mentioned above and then the above is the trace map: Tr :
EndR(M) −→ R. Our formula can be transferred mutatis mutandis to this context,
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characterizing endomorphisms f ∈ EndR(M) with rank( f (M)) = 1 (equivalently,
f g f = Tr( f g) f for every g ∈ EndR(M).

Remark A similar formula fails for matrices over noncommutative rings, even over
(noncommutative) division rings, replacing the zero determinant hypothesis with the
rank 1 condition.

Example Over the real quaternions take ABA =
[
i i
j j

] [
j j
k k

] [
i i
j j

]
=[

k − j k − j
i − 1 i − 1

] [
i i
j j

]
=

[
j + k − i + 1 ∗

∗ ∗
]
. However, Tr(AB) = k − j + i − 1

and the upper left entry of Tr(AB)A is j + k − i − 1.

Since our paper is entitled "the formula ABA = Tr(AB)B formatrices", one could
wonder which are the matrices B such that the formula holds for every A.

It is easy to prove the following

Proposition 3 For n×n matrices A, B over any commutative ring, the formula ABA =
Tr(AB)A holds for every A if and only if B = 0n.

Proof Taking A = In gives B = Tr(B)In so B is a scalar matrix, say B = t In with
t = Tr(B). Thus the formula becomes t A2 = tT r(A)A. Now take A any invertible

matrix with zero trace (e.g.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 0 0
0 −1 · · · 0 0 0
...

...
. . .

...
...

...

0 0 · · · 1 0 0
0 0 · · · 0 −1 1
0 0 · · · 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
if n is odd and remove last row and

last column, if n is even). Then t A2 = 0n and so t = 0. ��
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