1-SYLVESTER MATRICES

GRIGORE CALUGAREANU

ABSTRACT. A nonzero element a is called I-Sylvester in a ring R, if there exist
b,c € R such that 1 = ab + ca. In this paper we study such elements, mainly
in matrix rings over commutative rings. In particular, we study the case when
b = ¢, when b is called an anticommutator inverse for a.

1. INTRODUCTION

The Sylvester equation is a classic matrix equation of the form AX + XB = C,
where A, B, and C' are known matrices, and X is the unknown. Named after James
Joseph Sylvester, this equation became central in areas like control theory, linear
differential equations, and numerical linear algebra.

This paper focuses on a special case of the Sylvester equation when C' = [,, and
particularly when B = C, in the context of matrices over commutative rings. We
introduce the notion of 1-Sylvester elements in a ring R with identity: a nonzero
a € R is 1-Sylvester if there exist b, ¢ € R such that 1 = ab + ca.

Although (the so-called) weakly fadelian rings (those where every nonzero ele-
ment is 1-Sylvester, see [4]) are simple domains, matrix rings are not domains. Thus,
studying 1-Sylvester elements in matrix rings requires different approaches. A spe-
cial case involves anticommutators: for a,b € R, [a,b]+ = ab+ ba. If [a,b]1 =1,
then b will be called an anticommutator inverse (ACI) of a.

Our study of 1-Sylvester elements and ACIs is motivated in part by their rel-
evance in quantum mechanics, where anticommutation relations govern fermionic
operators. Not all elements have an anticommutator inverse; some have none, oth-
ers have one or many.

Finally, we note that while weakly fadelian rings are domains, individual 1-
Sylvester elements may be zero divisors or nilpotent. For example, E15 € Ma(R)
satisfies F19Eo1 + Ep1E12 = Iz but is nilpotent. Here Ej; denotes the n x n matrix
with all entries zero, excepting the (i, j)-entry which is 1.

Throughout this paper, all rings are assumed to be associative, unital, and
nonzero (i.e., 1 # 0). For matrix rings, unless otherwise stated, we assume that the
base ring is commutative. For a ring R, U(R) denotes the set of all units of R. Two
elements a, b in a commutative ring R are called coprime if there exist ¢,d € R
such that ca 4+ db = 1. As is customary, | denotes the binary relation of divisibility.

This paper is structured as follows: Section 2 begins by discussing general prop-
erties of 1-Sylvester elements in arbitrary rings including the fact that in any ring,
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the only 1-Sylvester idempotent is the identity. We then prove that diagonal 1-
Sylvester n x n matrices are precisely those that are invertible. Additionally, we
show that numerous nilpotent 1-Sylvester n x n matrices also exist.

Section 3 focuses on characterizing upper triangular 1-Sylvester 2 x 2 matrices
over commutative domains, including special cases such as ACI matrices and in-
tegral matrices. We also explore the potential uniqueness of the anticommutator
inverse for 2 x 2 matrices over commutative rings. Simplifications are provided
using the Kronecker product of matrices together with matrix vectorization.

2. 1-SYLVESTER n X 1. MATRICES

We begin by collecting some straightforward yet useful properties of 1-Sylvester
elements in any (unital) ring. Two elements a, b in a ring R are called equivalent
if there exist units p, ¢ in R such that b = pagq.

Proposition 2.1. (i) The one-sided invertible elements are 1-Sylvester in any ring.
However, units may not have anticommutator inverses.

(i) In a ring R, if 2 is a unit then all units have anticommutator inverses,
while if 2 is not a unit, no central units have anticommutator inverses. However,
a noncentral unit can have an anticommutator inverse.

(iii) The central 1-Sylvester elements of a ring R ring are precisely the units of
R. In particular, the only 1-Sylvester elements of a commutative ring are the units.

(iv) The only 1-Sylvester idempotent is 1.

(v) Zero-square 1-Sylvester elements are (von Neumann) regular.

(vi) The 1-Sylvester property is preserved by (anti-)isomorphisms of rings. In
particular, the 1-Sylvester property is invariant under conjugation.

(vii) If a is 1-Sylvester then ua is also 1-Sylvester, for every central unit uw. In
particular, —a is also 1-Sylvester.

(viii) The 1-Sylvester property is not invariant under equivalences.

Proof. (i) Indeed, 1 = uv + 0 - u takes care of right invertible elements and 1 =
u - 0 4+ wu, of the left invertible ones. An example of 2 x 2 invertible matrix that
has no anticommutator inverse is given in Remark 1, after Proposition 3.4.

(ii) If 2 is invertible then (2u)~! is an anticommutator inverse for the unit u. In
M5 (R), the noncentral unit Ejs + Fahas the anticommutator inverse Eis.

(iv) Suppose e = e and eb+ ce = 1 for some b, c. We multiply that equation on
the left by 1 — e and then by 1 — e on the right. It follows that 1 —e =0, so e = 1.
(v) If tb + ct = 1 for t? = 0, multiplying the equation by t gives tbt = tct = t.
(vii) If ab + ca = 1 then for any central unit u, (au)(u='c) + (cu™!)(ua) = 1.

(viii) In My(R) over any ring R, the nilpotent F1s is 1-Sylvester (see Introduc-
1 é E19 = E5; is not 1-Sylvester (see Proposition
2.3). O

tion), but the idempotent [ 0

Remarks. 1) In many rings (e.g. integral quaternions), the only 1-Sylvester
elements are the units. For example, this is the case whenever the two-sided ideal
generated by every non-unit is proper. This holds in rings that are not simple or
in domains. Otherwise, in simple rings (like matrix rings, the focus of our paper),
even non-units can generate the whole ring as a two-sided ideal. Actually, if a is
1-Sylvester in a ring R then RaR = R (as r =7 -1 = r(ab+ ca) = (ra)b+ (rc)a),
but the converse fails (e.g., F11 in My(Z)).
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2) By a result of P. Ara (see [1]), it follows that the zero-square 1-Sylvester
elements of exchange rings are even unit-regular.

According to our definition, an n X n matrix A over a ring R is 1-Sylvester if
there are B,C € M,,(R) such that I, = AB + CA.

As witnessed by Proposition 2.1 (i), all one-sided invertible matrices are 1-
Sylvester. Also from the previous proposition (vi) and (vii), recall that the 1-
Sylvester property for matrices is invariant under similarity (and under negatives).
Moreover, 1-Sylvester (square) matrices are invariant under transpose. In particu-
lar, if B is an anticommutator inverse of A, then B” is an anticommutator inverse

of AT.

Next, we describe the diagonal 1-Sylvester matrices.

Proposition 2.2. Over any commutative ring, the diagonal 1-Sylvester matrices
are precisely the invertible diagonal matrices.

Proof. Let D = diag(dy,...,d,) be a diagonal 1-Sylvester matrix. Suppose DB +
CD = I, for some n x n matrices B, C. We just emphasize the diagonal of
DB+ CD: it is diag(dy(bi1 + ¢11); - dn(bnn + ¢nn)). Hence all d; (1 < i < n) are
units and so is D. The converse follows from the previous proposition. [

To provide an example of a diagonal 1-Sylvester matrix over a noncommutative
ring that is not invertible, it suffices to choose all the diagonal entries to be one-
sided (but not two-sided) invertible elements in any ring that is not Dedekind finite
(i.e., there exist elements such that ab = 1 but ba # 1). Such examples exist also
over Dedekind finite rings. As mentioned in the Introduction, if R = My(k) for a
field k, then Ejo is 1-Sylvester but not unit. Hence any diagonal matrix (over R)
having F15 entries on the diagonal is 1-Sylvester but not invertible.

We proceed with a general result that yields several important, albeit mostly
negative, consequences.

Proposition 2.3. Let 1 < i < n and let R be an arbitrary (not necessarily com-
mutative) ring. Any matriv A € M, (R) with only zeros on its i-th row and i-th
column is not 1-Sylvester.

Proof. If A has the i-th row zero, so is AB for every n x n matrix B. Moreover, if
A has the i-th column zero, so is C'A for every n x n matrix C. Hence, for every
B, C, the sum AB + CA has the (diagonal) (i,7) entry equal to zero, so the sum is
# I,,, whence A is not 1-Sylvester. O

Corollary 2.4. The diagonal n X n matrices with at least one zero diagonal entry
are not 1-Sylvester.

Furthermore, we establish several results concerning nonzero nilpotent matrices
that are 1-Sylvester.

Lemma 2.5. In My(R) over any ring R, the nilpotents E12 and FEq1 are mutually
anticommutator inverses. As such, these are 1-Sylvester.

Proof. Just note that F1oFo1 + Fo1 E19 = Is. O

Next, we provide an example of a matrix that is 1-Sylvester but not an ACI.
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01 1
Lemma 2.6. Qver any ring, the nilpotent Ts = | 0 0 1 | has no anticommu-
0 0 0

tator inverse. Howewver, it is 1-Sylvester.

Proof. Suppose T3 is ACI and let A = [a;;] for 1 <1¢,j < 3. Then
a21 +as1 a1+ a2 +asz aix + aiz + ass + ass
ATz +T3A = asy as1 + as2 as1 + azz + ass
0 aszy az1 + asz

This sum is I3 only if ag; = 0. This successively requires as; = 1 and then
azz = 0. Hence the (3, 3) is zero, a contradiction.

However, we can find A, B such that AT3 + T3B = I3. For example, for A =

0 0 O

1 -1 0 and B = Egl, the sum AT3 + TgB = (E22 + E33) + E11 = 13. [l

0 1 0

Remark. The pair (4, B) given as example in the previous proof is far from
being unique. One can replace the third column of A and the first row of B by
arbitrary entries and the result of this computation remains unchanged.

In the n X n case, we can generalize the nonzero nilpotent 1-Sylvester matrix
described in the previous lemma.

Theorem 2.7. Letn be a positive integer and let T,, be the strictly upper triangular
n X n matriz which has all entries above the diagonal equal to 1. Then T, is 1-
Sylvester.

[0 0 0O . 0 0 0]
1 -1 0 0 0 0
0o 1 -1 0o 0 O
Proof. Take A = o : : o (excepting two zeros, the
o o o -~ -1 0 O
o o o -~ 1 -10
o o 0 - 0 1 0

diagonal entries are_equal to —1, and the subdiagona_l entries are equal to 1) and
B = E21. Then ATn + TnB = (E22 + E33 + ...+ Enn) + E11 = In
The details of the computation follow. We actually have

n—1
A= Z(Ei,ifl —Eii)+ Eppno1 =

Eo —i:ﬁ%zi + B3 —FEsz+ ...+ By 1n2—En_1pn1+Ey,_1 and

T, = Z Eij = (E1a+Ei3+ ...+ Eip) + (Exs+Fog+ o Eop) + ..+ By 1 e
For Alilz:,ltl}fg product starts with

E21(Ero + Eyz3+ ...+ E1p) — Eaa(Eas + Eag + ... + Eap) =

FEoo + Eos + ... + Eop — Fo3 — Eoy — ... — E5, = Fss, and so on. O

Further, recall that every nilpotent matrix over a field is similar to a block
B, 0 - 0
0 By --- 0

diagonal matrix . . , where each block B; is a shift matrix
: 0

0 O 0 By
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(possibly of different sizes), a special case of the Jordan canonical form for matrices.

A shift matrix has 1’s along the superdiagonal and 0’s everywhere else, i.e. S =
010 --- 0

o0 1 -0
oo .. ¢ |,asann X n matrix. Whenn=1,5=0.
000 - 1
000 --- 0

In [2] Theorem 3.3, the following result was proved.

Theorem 2.8. The following are equivalent for a ring R.

(1) Every nilpotent matriz over R is similar to a block diagonal matriz with each
block a shift matriz (possibly of different sizes).

(2) R is a division ring.

Thus, according to Proposition 2.1, (vi), it follows
Theorem 2.9. Over any division ring, each nonzero nilpotent matriz is 1-Sylvester.

Proof. Any block diagonal matrix with each block a shift matrix is strictly upper
triangular with only superdiagonal nonzero entries, which are equal to 1, that is,
S=FEi2+FEx3+...+E,_1,. Thenif T'= Ey + E3s+...+E, ,_1 is the subdiagonal,
we have T'S + SFEy = (Fas + E33 + ... + Epp) + E11 = I, as desired. ]

It follows from the previous theorem that, over any ring, all shift matrices are
1-Sylvester. However, only shift matrices of even size admit an anticommutator
inverse (ACI).

Proposition 2.10. Ouver any ring, the shift matrices are ACI iff they are of even
size.

Proof. Let T = [t;;] be an arbitrary n x n matrix and let S be the shift matrix of
size n. We focus on the diagonal entries of the sum ST + T'S.

These are to1, t3o + ta1,..., thn—1 +ttn_1n-2, th,n-1. If ST +TS = I,, then all
these entries equal 1. Hence t91 = 1, t33 = 0, t43 = 1 and so on. If n is odd then
tnn—1 = 0, a contradiction. If n is even, the alternation ends with ¢,,_1 ,—2 =0
and ¢, ,—1 = 1. All the other entries of T" can be chosen equal to zero and so T is
an anticommutator inverse for S.

More precisely, in the even case, for S = Eia + Fa3 + ... + E9,,1,25, the matrix
T = Eo + Ey3+ ... + Eapp 2n—1 (i-e., on the subdiagonal we alternate 1, 0, 1, 0, ...)
is an anticommutator inverse for S. Indeed,

ST+TS = (Eu + E33+ ...+ Egnfl,znfl) + (E22 + Egy+ ...+ Egn’gn) =I5,
O

3. THE 1-SYLVESTER 2 X 2 MATRICES.

In order to describe the 1-Sylvester 2 x 2 matrices over commutative rings, we

startwithA:{a b}B:[xl m2}70:[91 92}
¢ d T3 T4 Y3 Ya

The Sylvester equation AB + CA = I; reduces to a nonhomogeneous linear
system of 4 equations and 8 unknowns:
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axry+brs+ayr +cy = 1
ary +bry+byr +dys = 0
cxy +drs+ays+cys = 0
cxo+dry+bys+dyy, = 1
a 0 b 0 a ¢ 0 O
with the system matrix (c) g 2 8 8 g 2 2 , augmented by the col-
0 ¢c 0Od OO0 b d
1
umn 0
0
1

By applying the Kronecker product and vectorization, we will show at the end
of this section that the Sylvester equation can be reduced to a matrix equation of
the form PX = Q.

Next, we describe the upper triangular 1-Sylvester 2 x 2 matrices over commu-
tative domains.

Proposition 3.1. Let R be a commutative domain. The matriz [ g Z } € My(R)

is 1-Sylvester iff both of the following conditions hold:
1. a and b are coprime.
2. There exists u € U(R) such that d = au and a | 1 +u~".

a(xy +y1) + bxs =
azz +brg + by +dys =

o O

Proof. (=) For ¢ = 0 the above system becomes

drs + ays =
d(4 + ya) + bys = 1
From the first and fourth equations follows that a,b are coprime (and b,d are

coprime).

Multiplying first equation by d and replacing the third equation shows that a | d.
Analogously, multiplying the fourth equation by a and replacing the third equation
shows d | a.

Therefore, in general, a and d are associates (i.e., d = au for some unit u). If
a = 0, then d = 0 and we can take u = —1. If @ # 0, then d # 0. Then from the
third equation, y3 = —ux3 and the forth equation becomes a(x4 + y4) — bxs = wl.
Adding the first equation gives a(z1 +y1 + 24 +ya) =1 +u"t .

(<) From conditions 1 and 2 there exist z1,23 € R and u € U(R) such that
ary +brs=1,d=au,and a | 1 +u~!. Take 20 = 24 =y = y2 = 0, y3 = —uz3,
and y4 = v — 1, where av = 1 + v~ !. Then, one may check that these choices
produces a solution to the required system of equations. Equivalently, one may

a b ry O 0 0 a b |
computethat[0 au}{xg 0:|+|:—u33‘3 v—leo au:|12. ([

In particular, as U(Z) = {£1}, we characterize the upper triangular integral
2 x 2 matrices that are 1-Sylvester.

Proposition 3.2. The upper triangular 1-Sylvester integral 2 x 2 matrices are:
(Z) :|:E12,'
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ofi ¢
| a
(iii) [ 0

} with coprime a, b and a € {£1,4+2};
b

—a } with coprime a and b.

Proof. Just note that in case (ii) v = 1 and so a | 2, and in case (iii), v = —1. O

Building on Proposition 3.1, we can readily characterize all upper triangular 2 x 2
ACT matrices over a commutative domain.

Proposition 3.3. Let R be a commutative domain. The matriz [ g Z } € My (R)
is ACI iff all three of the following conditions hold:

1. 2a and b are coprime.

2. There exists u € U(R) such that d = au and a | 1 +u~".

3. Either w= —1, or 2a is a unit.

Proof. (=) Constructing the system of equations as in Proposition 3.1 proves con-
dition 1. The second condition holds because any ACI matrix is 1-Sylvester. For
condition 3, use the equation (a+d)zs = 0. Clearly, a+d = 0 implies that u = —1.
When a + d # 0, we have x3 = 0. Then the equation 2azs + brs = 1 shows that 2a
is a unit.

(<) If all three conditions hold, let z1,23 € R be such that 2az; + bxsz = 1.
Consider two cases.

. . . b
When u = —1, then 1 0 } is an anticommutator inverse for { ¢ } .
r3 —I 0 —a

When 2a € U(R), take 1 = 2a — 1, 24 = 2d — 1, 9 = —2bx1z4 and x5 = 0.
These choices satisfy the system of equations for x1, z2, x3, and z4.
Alternatively, one can verify that

a b 2a —1 —2bzyiz4 " 2a —1 —2bxiz4 a b | I
0 d 0 2d — 1 0 2d — 1 0 d| %
O

Finally, for integral anticommutator inverses we have the following characteriza-
tion.

Proposition 3.4. An upper triangular 2 X 2 matric A = 8 d ] has an anti-
commutator inverse over Z iff A= +FE15 or else d = —a and 2a, b are coprime.

Remarks. 1) Since b # 0, it follows from the first equation of the linear system
above that, over Z, A has an anticommutator inverse only if b is odd. If so,
ged(2a,b) = 1 iff ged(a, b) = 1.

1 2
0 -1
since it is invertible) but not ACI (actually, over any ring where 2 is not a unit).
Indeed, for any matrix B = Ty }, the sum AB+ BA =2 Tz rtw } #*
zZ W 0 z—w
I>. Here ged(1,2) =1 # 2 = ged(2,2). This is also an example of unit that has no
anticommutator inverse.

As an example, A = } is 1-Sylvester by Proposition 3.2 (or directly,
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2) Since in the anticommutator inverse of the proof of the previous proposition,

0 _ba } (with coprime 2a and b) have

infinitely many anticommutator inverses over Z.

the entry x5 is arbitrary, the matrices { ¢

Not only invertible matrices may have an anticommutator inverse. We also have
the following result.

Proposition 3.5. Let a be an element of an arbitrary ring R. All upper triangular

a 1

matrices A, = [ 0 —a } € My (R) are ACIL. As such, these are 1-Sylvester.

1

a 1
_a}E21+E21{

Proof. This follows as { 8 0 —a } = I,. It is easy to see that,
T

for a commutative ring R and arbitrary =,y € R, 1— 9

Y } are all the
-

anticommutator inverses of A,.

Remarks. 1) Observe that is a unit iff @ is a unit. So all the A4,,

b
0 —a
where a is not a unit, are not invertible upper triangular matrices that have many
anticommutator inverses.

2) An anticommutator inverse of the transpose (A,)7 is E1o = (E21)T.

To conclude this section, we establish a result concerning the uniqueness of the
anticommutator inverse.
a1
Lemma 3.6. If 2a is a unit then > is an anticommutator inverse for a.

Proof. As 2 and a commute, the hypothesis is equivalent to 2,a € U(R). (]

In the remainder of this section, we apply two successive simplifications to es-
tablish a uniqueness result for ACI matrices. These simplifications also allow to
investigate properties of 1-Sylvester 3 x 3 matrices as well.

If Ais an m X n matrix and B is a p X ¢ matrix, then the Kronecker product
A ® B is the pm x gn block matrix:

allB s alnB
A® B = .
am1B - amnB
Especially in linear algebra and matrix theory, the vectorization of a matrix is
a linear transformation which converts the matrix into a vector. Specifically, the

vectorization of a m X n matrix A, denoted vec(A), is the mn x 1 column vector
obtained by stacking the columns of the matrix A on top of one another:

’U€C(A) = [an, 1,012y« A2y -+, a,,m]T
Using the Kronecker product notation and the vectorization operator vec, we
can rewrite Sylvester’s equation (i.e., AX + XB = () in the form

(I, ® A+ BT ® I,)vecX = vecC,
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where (in general) A is of dimension n x n, B is of dimension m x m, X is of
dimension n x m and I is the k x k identity matrix. In this form, the equation
can be seen as a linear system of dimension mn x mn.

If we take matrices of the same size and C' = I,,, we obtain the 1-Sylvester
n X n matrices studied in this paper. In particular, if we also take A = B we get
the ACI matrices. That is, the ACI equation AB + BA = I,, is represented as
(I, ® A+ AT @ I,)vec(B) = vec(l,).

From this representation it follows that A has a unique anticommutator inverse
iff I, A+ AT ® I, is invertible.

Theorem 3.7. Let R be a commutative ring and let A € My(R). Then, A has a
unique anticommutator inverse if and only if 2, Tr(A), and det(A) are units of R.

In this case, the unique anticommutator inverse is §A71.

Proof. Written as 2 x 2 blocks we have

A 0 GIQ CIQ . A-‘r(l]z CIQ
0 A bl, dl, |~ bl,  A4dl |-

To check when this matrix is invertible, we have to compute the determinant of the
4 x 4 matrix

LRA+ATRI, = [

2a b c 0
c a+d 0 c
b 0 a+d b
0 b c 2d
Subtracting coly (M) from coly (M) and rowy(M) from row; (M), simplify a lot the
computation of det(M) = 4Tr2(A) det(A).
By computation we also get A, = 2dTr?(A) , A, = —2bIr*(4) , A, =
—2cTr2(A) , Ay = 2aTr%(A).

Hence, if 2det(A) is a unit (and Tr%(A) # 0), we get v = Qdedt(A)’ y =
b = ———  w=-—""_ This gives B = ;ad'(A) where
2det(4)’ © T " 2det(A) U T 2det(A) & = 2det(A) Y

- 1
the adjugate matrix is adj(A) = [ ii ab ] Finally, B = §A_1.

Conversely, if 4T7%(A) det(A) is a unit, then 2, Tr(A( and det(A) must be units.
O

1
Remark. The existence of §A_1 in My (R) does not imply that A has a unique

anticommutator inverse. For an explicit example, let R be any ring for which

1
0 -1 1, 0 7
2 € U(R), and take A = 5 o | Then, both §A = 1 and
-0
B = —F5; are anticommutator inverses of A.

In closing, to determine suitable conditions characterizing ACI 3 x 3 matrices,
one may apply Jameson’s approach (see [3]) for solving the Sylvester equation.
However, the resulting conditions are rather unwieldy. A sample is given below.

Theorem 3.8. Let R be any commutative ring and A a 3 X 3 matrix over R. The
matriz A is ACI iff 2, det(A) and det(Tr(A)A? + det(A)I3) are units in R.
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