
1-SYLVESTER MATRICES

GRIGORE CĂLUGĂREANU

Abstract. A nonzero element a is called 1-Sylvester in a ring R, if there exist

b, c ∈ R such that 1 = ab+ ca. In this paper we study such elements, mainly
in matrix rings over commutative rings. In particular, we study the case when
b = c, when b is called an anticommutator inverse for a.

1. Introduction

The Sylvester equation is a classic matrix equation of the form AX +XB = C,
where A, B, and C are known matrices, and X is the unknown. Named after James
Joseph Sylvester, this equation became central in areas like control theory, linear
differential equations, and numerical linear algebra.

This paper focuses on a special case of the Sylvester equation when C = In and
particularly when B = C, in the context of matrices over commutative rings. We
introduce the notion of 1-Sylvester elements in a ring R with identity: a nonzero
a ∈ R is 1-Sylvester if there exist b, c ∈ R such that 1 = ab+ ca.

Although (the so-called) weakly fadelian rings (those where every nonzero ele-
ment is 1-Sylvester, see [4]) are simple domains, matrix rings are not domains. Thus,
studying 1-Sylvester elements in matrix rings requires different approaches. A spe-
cial case involves anticommutators: for a, b ∈ R, [a, b]+ = ab + ba. If [a, b]+ = 1,
then b will be called an anticommutator inverse (ACI) of a.

Our study of 1-Sylvester elements and ACIs is motivated in part by their rel-
evance in quantum mechanics, where anticommutation relations govern fermionic
operators. Not all elements have an anticommutator inverse; some have none, oth-
ers have one or many.

Finally, we note that while weakly fadelian rings are domains, individual 1-
Sylvester elements may be zero divisors or nilpotent. For example, E12 ∈ M2(R)
satisfies E12E21 +E21E12 = I2 but is nilpotent. Here Eij denotes the n×n matrix
with all entries zero, excepting the (i, j)-entry which is 1.

Throughout this paper, all rings are assumed to be associative, unital, and
nonzero (i.e., 1 ̸= 0). For matrix rings, unless otherwise stated, we assume that the
base ring is commutative. For a ring R, U(R) denotes the set of all units of R. Two
elements a, b in a commutative ring R are called coprime if there exist c, d ∈ R
such that ca+ db = 1. As is customary, | denotes the binary relation of divisibility.

This paper is structured as follows: Section 2 begins by discussing general prop-
erties of 1-Sylvester elements in arbitrary rings including the fact that in any ring,

Keywords: Sylvester equation, idempotent, unit, nilpotent, matrix, 1-Sylvester element, an-
ticommutator inverse. MSC 2020 Classification: 15B99, 15B33, 15B36, 15A29, 16U10, 16U40.

Orcid: 0000-0002-3353-6958, Grigore Călugăreanu, corresponding author.
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the only 1-Sylvester idempotent is the identity. We then prove that diagonal 1-
Sylvester n × n matrices are precisely those that are invertible. Additionally, we
show that numerous nilpotent 1-Sylvester n× n matrices also exist.

Section 3 focuses on characterizing upper triangular 1-Sylvester 2 × 2 matrices
over commutative domains, including special cases such as ACI matrices and in-
tegral matrices. We also explore the potential uniqueness of the anticommutator
inverse for 2 × 2 matrices over commutative rings. Simplifications are provided
using the Kronecker product of matrices together with matrix vectorization.

2. 1-Sylvester n× n matrices

We begin by collecting some straightforward yet useful properties of 1-Sylvester
elements in any (unital) ring. Two elements a, b in a ring R are called equivalent
if there exist units p, q in R such that b = paq.

Proposition 2.1. (i) The one-sided invertible elements are 1-Sylvester in any ring.
However, units may not have anticommutator inverses.

(ii) In a ring R, if 2 is a unit then all units have anticommutator inverses,
while if 2 is not a unit, no central units have anticommutator inverses. However,
a noncentral unit can have an anticommutator inverse.

(iii) The central 1-Sylvester elements of a ring R ring are precisely the units of
R. In particular, the only 1-Sylvester elements of a commutative ring are the units.

(iv) The only 1-Sylvester idempotent is 1.
(v) Zero-square 1-Sylvester elements are (von Neumann) regular.
(vi) The 1-Sylvester property is preserved by (anti-)isomorphisms of rings. In

particular, the 1-Sylvester property is invariant under conjugation.
(vii) If a is 1-Sylvester then ua is also 1-Sylvester, for every central unit u. In

particular, −a is also 1-Sylvester.
(viii) The 1-Sylvester property is not invariant under equivalences.

Proof. (i) Indeed, 1 = uv + 0 · u takes care of right invertible elements and 1 =
u · 0 + wu, of the left invertible ones. An example of 2 × 2 invertible matrix that
has no anticommutator inverse is given in Remark 1, after Proposition 3.4.

(ii) If 2 is invertible then (2u)−1 is an anticommutator inverse for the unit u. In
M2(R), the noncentral unit E12 + E21has the anticommutator inverse E12.

(iv) Suppose e2 = e and eb+ ce = 1 for some b, c. We multiply that equation on
the left by 1− e and then by 1− e on the right. It follows that 1− e = 0, so e = 1.

(v) If tb+ ct = 1 for t2 = 0, multiplying the equation by t gives tbt = tct = t.
(vii) If ab+ ca = 1 then for any central unit u, (au)(u−1c) + (cu−1)(ua) = 1.
(viii) In M2(R) over any ring R, the nilpotent E12 is 1-Sylvester (see Introduc-

tion), but the idempotent

[
0 1
1 0

]
E12 = E22 is not 1-Sylvester (see Proposition

2.3). □

Remarks. 1) In many rings (e.g. integral quaternions), the only 1-Sylvester
elements are the units. For example, this is the case whenever the two-sided ideal
generated by every non-unit is proper. This holds in rings that are not simple or
in domains. Otherwise, in simple rings (like matrix rings, the focus of our paper),
even non-units can generate the whole ring as a two-sided ideal. Actually, if a is
1-Sylvester in a ring R then RaR = R (as r = r · 1 = r(ab + ca) = (ra)b + (rc)a),
but the converse fails (e.g., E11 in M2(Z)).
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2) By a result of P. Ara (see [1]), it follows that the zero-square 1-Sylvester
elements of exchange rings are even unit-regular.

According to our definition, an n × n matrix A over a ring R is 1-Sylvester if
there are B,C ∈ Mn(R) such that In = AB + CA.

As witnessed by Proposition 2.1 (i), all one-sided invertible matrices are 1-
Sylvester. Also from the previous proposition (vi) and (vii), recall that the 1-
Sylvester property for matrices is invariant under similarity (and under negatives).
Moreover, 1-Sylvester (square) matrices are invariant under transpose. In particu-
lar, if B is an anticommutator inverse of A, then BT is an anticommutator inverse
of AT .

Next, we describe the diagonal 1-Sylvester matrices.

Proposition 2.2. Over any commutative ring, the diagonal 1-Sylvester matrices
are precisely the invertible diagonal matrices.

Proof. Let D = diag(d1, ..., dn) be a diagonal 1-Sylvester matrix. Suppose DB +
CD = In for some n × n matrices B, C. We just emphasize the diagonal of
DB + CD: it is diag(d1(b11 + c11), ..., dn(bnn + cnn)). Hence all di (1 ≤ i ≤ n) are
units and so is D. The converse follows from the previous proposition. □

To provide an example of a diagonal 1-Sylvester matrix over a noncommutative
ring that is not invertible, it suffices to choose all the diagonal entries to be one-
sided (but not two-sided) invertible elements in any ring that is not Dedekind finite
(i.e., there exist elements such that ab = 1 but ba ̸= 1). Such examples exist also
over Dedekind finite rings. As mentioned in the Introduction, if R = M2(k) for a
field k, then E12 is 1-Sylvester but not unit. Hence any diagonal matrix (over R)
having E12 entries on the diagonal is 1-Sylvester but not invertible.

We proceed with a general result that yields several important, albeit mostly
negative, consequences.

Proposition 2.3. Let 1 ≤ i ≤ n and let R be an arbitrary (not necessarily com-
mutative) ring. Any matrix A ∈ Mn(R) with only zeros on its i-th row and i-th
column is not 1-Sylvester.

Proof. If A has the i-th row zero, so is AB for every n× n matrix B. Moreover, if
A has the i-th column zero, so is CA for every n × n matrix C. Hence, for every
B, C, the sum AB+CA has the (diagonal) (i, i) entry equal to zero, so the sum is
̸= In, whence A is not 1-Sylvester. □
Corollary 2.4. The diagonal n× n matrices with at least one zero diagonal entry
are not 1-Sylvester.

Furthermore, we establish several results concerning nonzero nilpotent matrices
that are 1-Sylvester.

Lemma 2.5. In M2(R) over any ring R, the nilpotents E12 and E21 are mutually
anticommutator inverses. As such, these are 1-Sylvester.

Proof. Just note that E12E21 + E21E12 = I2. □
Next, we provide an example of a matrix that is 1-Sylvester but not an ACI.
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Lemma 2.6. Over any ring, the nilpotent T3 =

 0 1 1
0 0 1
0 0 0

 has no anticommu-

tator inverse. However, it is 1-Sylvester.

Proof. Suppose T3 is ACI and let A = [aij ] for 1 ≤ i, j ≤ 3. Then

AT3 + T3A =

 a21 + a31 a11 + a22 + a32 a11 + a12 + a23 + a33
a31 a21 + a32 a21 + a22 + a33
0 a31 a31 + a32

.
This sum is I3 only if a31 = 0. This successively requires a21 = 1 and then

a32 = 0. Hence the (3, 3) is zero, a contradiction.
However, we can find A, B such that AT3 + T3B = I3. For example, for A = 0 0 0
1 −1 0
0 1 0

 and B = E21, the sum AT3 + T3B = (E22 + E33) + E11 = I3. □

Remark. The pair (A,B) given as example in the previous proof is far from
being unique. One can replace the third column of A and the first row of B by
arbitrary entries and the result of this computation remains unchanged.

In the n × n case, we can generalize the nonzero nilpotent 1-Sylvester matrix
described in the previous lemma.

Theorem 2.7. Let n be a positive integer and let Tn be the strictly upper triangular
n × n matrix which has all entries above the diagonal equal to 1. Then Tn is 1-
Sylvester.

Proof. Take A =



0 0 0 · · · 0 0 0
1 −1 0 · · · 0 0 0
0 1 −1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −1 0 0
0 0 0 · · · 1 −1 0
0 0 0 · · · 0 1 0


(excepting two zeros, the

diagonal entries are equal to −1, and the subdiagonal entries are equal to 1) and
B = E21. Then ATn + TnB = (E22 + E33 + ...+ Enn) + E11 = In.

The details of the computation follow. We actually have

A =

n−1∑
i=2

(Ei,i−1 − Eii) + En,n−1 =

E21 − E22 + E32 − E33 + ...+ En−1,n−2 − En−1,n−1 + En,n−1 and

Tn =

n∑
i,j=1,i<j

Eij = (E12+E13+ ...+E1n)+(E23+E24+ ...+E2n)+ ...+En−1,n.

For ATn, the product starts with
E21(E12 + E13 + ...+ E1n)− E22(E23 + E24 + ...+ E2n) =
E22 + E23 + ...+ E2n − E23 − E24 − ...− E2n = E22, and so on. □
Further, recall that every nilpotent matrix over a field is similar to a block

diagonal matrix


B1 0 · · · 0
0 B2 · · · 0
...

...
. . . 0

0 0 0 Bk

, where each block Bi is a shift matrix
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(possibly of different sizes), a special case of the Jordan canonical form for matrices.
A shift matrix has 1’s along the superdiagonal and 0’s everywhere else, i.e. S =

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

, as an n× n matrix. When n = 1, S = 0.

In [2] Theorem 3.3, the following result was proved.

Theorem 2.8. The following are equivalent for a ring R.
(1) Every nilpotent matrix over R is similar to a block diagonal matrix with each

block a shift matrix (possibly of different sizes).
(2) R is a division ring.

Thus, according to Proposition 2.1, (vi), it follows

Theorem 2.9. Over any division ring, each nonzero nilpotent matrix is 1-Sylvester.

Proof. Any block diagonal matrix with each block a shift matrix is strictly upper
triangular with only superdiagonal nonzero entries, which are equal to 1, that is,
S = E12+E23+...+En−1,n. Then if T = E21+E32+...+En,n−1 is the subdiagonal,
we have TS + SE21 = (E22 + E33 + ...+ Enn) + E11 = In, as desired. □

It follows from the previous theorem that, over any ring, all shift matrices are
1-Sylvester. However, only shift matrices of even size admit an anticommutator
inverse (ACI).

Proposition 2.10. Over any ring, the shift matrices are ACI iff they are of even
size.

Proof. Let T = [tij ] be an arbitrary n× n matrix and let S be the shift matrix of
size n. We focus on the diagonal entries of the sum ST + TS.

These are t21, t32 + t21,..., tn,n−1 + tn−1,n−2, tn,n−1. If ST + TS = In then all
these entries equal 1. Hence t21 = 1, t32 = 0 , t43 = 1 and so on. If n is odd then
tn,n−1 = 0, a contradiction. If n is even, the alternation ends with tn−1,n−2 = 0
and tn,n−1 = 1. All the other entries of T can be chosen equal to zero and so T is
an anticommutator inverse for S.

More precisely, in the even case, for S = E12 + E23 + ...+ E2n−1,2n, the matrix
T = E21 +E43 + ...+E2n,2n−1 (i.e., on the subdiagonal we alternate 1, 0, 1, 0 , ...)
is an anticommutator inverse for S. Indeed,

ST + TS = (E11 + E33 + ...+ E2n−1,2n−1) + (E22 + E44 + ...+ E2n,2n) = I2n.

□

3. The 1-Sylvester 2× 2 matrices.

In order to describe the 1-Sylvester 2 × 2 matrices over commutative rings, we

start with A =

[
a b
c d

]
, B =

[
x1 x2

x3 x4

]
, C =

[
y1 y2
y3 y4

]
.

The Sylvester equation AB + CA = I2 reduces to a nonhomogeneous linear
system of 4 equations and 8 unknowns:
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ax1 + bx3 + ay1 + cy2 = 1
ax2 + bx4 + by1 + dy2 = 0
cx1 + dx3 + ay3 + cy4 = 0
cx2 + dx4 + by3 + dy4 = 1

with the system matrix


a 0 b 0 a c 0 0
0 a 0 b b d 0 0
c 0 d 0 0 0 a c
0 c 0 d 0 0 b d

, augmented by the col-

umn


1
0
0
1

.
By applying the Kronecker product and vectorization, we will show at the end

of this section that the Sylvester equation can be reduced to a matrix equation of
the form PX = Q.

Next, we describe the upper triangular 1-Sylvester 2 × 2 matrices over commu-
tative domains.

Proposition 3.1. Let R be a commutative domain. The matrix

[
a b
0 d

]
∈ M2(R)

is 1-Sylvester iff both of the following conditions hold:
1. a and b are coprime.
2. There exists u ∈ U(R) such that d = au and a | 1 + u−1.

Proof. (⇒) For c = 0 the above system becomes


a(x1 + y1) + bx3 = 1

ax2 + bx4 + by1 + dy2 = 0
dx3 + ay3 = 0

d(x4 + y4) + by3 = 1

.

From the first and fourth equations follows that a, b are coprime (and b, d are
coprime).

Multiplying first equation by d and replacing the third equation shows that a | d.
Analogously, multiplying the fourth equation by a and replacing the third equation
shows d | a.

Therefore, in general, a and d are associates (i.e., d = au for some unit u). If
a = 0, then d = 0 and we can take u = −1. If a ̸= 0, then d ̸= 0. Then from the
third equation, y3 = −ux3 and the forth equation becomes a(x4 + y4)− bx3 = u−1.
Adding the first equation gives a(x1 + y1 + x4 + y4) = 1 + u−1 .

(⇐) From conditions 1 and 2 there exist x1, x3 ∈ R and u ∈ U(R) such that
ax1 + bx3 = 1, d = au, and a | 1 + u−1. Take x2 = x4 = y1 = y2 = 0, y3 = −ux3,
and y4 = v − x1, where av = 1 + u−1. Then, one may check that these choices
produces a solution to the required system of equations. Equivalently, one may

compute that

[
a b
0 au

] [
x1 0
x3 0

]
+

[
0 0

−ux3 v − x1

] [
a b
0 au

]
= I2. □

In particular, as U(Z) = {±1}, we characterize the upper triangular integral
2× 2 matrices that are 1-Sylvester.

Proposition 3.2. The upper triangular 1-Sylvester integral 2× 2 matrices are:
(i) ±E12;
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(ii)

[
a b
0 a

]
with coprime a, b and a ∈ {±1,±2};

(iii)

[
a b
0 −a

]
with coprime a and b.

Proof. Just note that in case (ii) u = 1 and so a | 2, and in case (iii), u = −1. □

Building on Proposition 3.1, we can readily characterize all upper triangular 2×2
ACI matrices over a commutative domain.

Proposition 3.3. Let R be a commutative domain. The matrix

[
a b
0 d

]
∈ M2(R)

is ACI iff all three of the following conditions hold:
1. 2a and b are coprime.
2. There exists u ∈ U(R) such that d = au and a | 1 + u−1.
3. Either u = −1, or 2a is a unit.

Proof. (⇒) Constructing the system of equations as in Proposition 3.1 proves con-
dition 1. The second condition holds because any ACI matrix is 1-Sylvester. For
condition 3, use the equation (a+d)x3 = 0. Clearly, a+d = 0 implies that u = −1.
When a+ d ̸= 0, we have x3 = 0. Then the equation 2ax2 + bx3 = 1 shows that 2a
is a unit.

(⇐) If all three conditions hold, let x1, x3 ∈ R be such that 2ax1 + bx3 = 1.
Consider two cases.

When u = −1, then

[
x1 0
x3 −x1

]
is an anticommutator inverse for

[
a b
0 −a

]
.

When 2a ∈ U(R), take x1 = 2a − 1, x4 = 2d − 1, x2 = −2bx1x4 and x3 = 0.
These choices satisfy the system of equations for x1, x2, x3, and x4.

Alternatively, one can verify that[
a b
0 d

] [
2a− 1 −2bx1x4

0 2d− 1

]
+

[
2a− 1 −2bx1x4

0 2d− 1

] [
a b
0 d

]
= I2.

□

Finally, for integral anticommutator inverses we have the following characteriza-
tion.

Proposition 3.4. An upper triangular 2 × 2 matrix A =

[
a b
0 d

]
has an anti-

commutator inverse over Z iff A = ±E12 or else d = −a and 2a, b are coprime.

Remarks. 1) Since b ̸= 0, it follows from the first equation of the linear system
above that, over Z, A has an anticommutator inverse only if b is odd. If so,
gcd(2a, b) = 1 iff gcd(a, b) = 1.

As an example, A =

[
1 2
0 −1

]
is 1-Sylvester by Proposition 3.2 (or directly,

since it is invertible) but not ACI (actually, over any ring where 2 is not a unit).

Indeed, for any matrix B =

[
x y
z w

]
, the sum AB+BA = 2

[
x+ z x+ w
0 z − w

]
̸=

I2. Here gcd(1, 2) = 1 ̸= 2 = gcd(2, 2). This is also an example of unit that has no
anticommutator inverse.
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2) Since in the anticommutator inverse of the proof of the previous proposition,

the entry x2 is arbitrary, the matrices

[
a b
0 −a

]
(with coprime 2a and b) have

infinitely many anticommutator inverses over Z.

Not only invertible matrices may have an anticommutator inverse. We also have
the following result.

Proposition 3.5. Let a be an element of an arbitrary ring R. All upper triangular

matrices Aa =

[
a 1
0 −a

]
∈ M2(R) are ACI. As such, these are 1-Sylvester.

Proof. This follows as

[
a 1
0 −a

]
E21+E21

[
a 1
0 −a

]
= I2. It is easy to see that,

for a commutative ring R and arbitrary x, y ∈ R,

[
x y

1− 2ax −x

]
are all the

anticommutator inverses of Aa. □

Remarks. 1) Observe that

[
a b
0 −a

]
is a unit iff a is a unit. So all the Aa,

where a is not a unit, are not invertible upper triangular matrices that have many
anticommutator inverses.

2) An anticommutator inverse of the transpose (Aa)
T is E12 = (E21)

T .

To conclude this section, we establish a result concerning the uniqueness of the
anticommutator inverse.

Lemma 3.6. If 2a is a unit then
a−1

2
is an anticommutator inverse for a.

Proof. As 2 and a commute, the hypothesis is equivalent to 2, a ∈ U(R). □

In the remainder of this section, we apply two successive simplifications to es-
tablish a uniqueness result for ACI matrices. These simplifications also allow to
investigate properties of 1-Sylvester 3 × 3 matrices as well.

If A is an m × n matrix and B is a p × q matrix, then the Kronecker product
A⊗B is the pm× qn block matrix:

A⊗B =

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 .

Especially in linear algebra and matrix theory, the vectorization of a matrix is
a linear transformation which converts the matrix into a vector. Specifically, the
vectorization of a m × n matrix A, denoted vec(A), is the mn × 1 column vector
obtained by stacking the columns of the matrix A on top of one another:

vec(A) = [a11, ...am1, a12, ..., am2, ..., amn]
T .

Using the Kronecker product notation and the vectorization operator vec, we
can rewrite Sylvester’s equation (i.e., AX +XB = C) in the form

(Im ⊗A+BT ⊗ In)vecX = vecC,
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where (in general) A is of dimension n × n, B is of dimension m × m, X is of
dimension n × m and Ik is the k × k identity matrix. In this form, the equation
can be seen as a linear system of dimension mn×mn.

If we take matrices of the same size and C = In, we obtain the 1-Sylvester
n × n matrices studied in this paper. In particular, if we also take A = B we get
the ACI matrices. That is, the ACI equation AB + BA = In is represented as
(In ⊗A+AT ⊗ In)vec(B) = vec(In).

From this representation it follows that A has a unique anticommutator inverse
iff In ⊗A+AT ⊗ In is invertible.

Theorem 3.7. Let R be a commutative ring and let A ∈ M2(R). Then, A has a
unique anticommutator inverse if and only if 2, Tr(A), and det(A) are units of R.

In this case, the unique anticommutator inverse is
1

2
A−1.

Proof. Written as 2× 2 blocks we have

I2 ⊗A+AT ⊗ I2 =

[
A 0
0 A

]
+

[
aI2 cI2
bI2 dI2

]
=

[
A+ aI2 cI2

bI2 A+ dI2

]
.

To check when this matrix is invertible, we have to compute the determinant of the
4× 4 matrix

M =


2a b c 0
c a+ d 0 c
b 0 a+ d b
0 b c 2d

 .

Subtracting col4(M) from col1(M) and row4(M) from row1(M), simplify a lot the
computation of det(M) = 4Tr2(A) det(A).

By computation we also get ∆x = 2dTr2(A) , ∆y = −2bTr2(A) , ∆z =
−2cTr2(A) , ∆w = 2aTr2(A).

Hence, if 2 det(A) is a unit (and Tr2(A) ̸= 0), we get x =
d

2 det(A)
, y =

− b

2 det(A)
, z = − c

2 det(A)
, w =

a

2 det(A)
. This gives B =

1

2det(A)
adj(A) where

the adjugate matrix is adj(A) =

[
d −b
−c a

]
. Finally, B =

1

2
A−1.

Conversely, if 4Tr2(A) det(A) is a unit, then 2, Tr(A( and det(A) must be units.
□

Remark. The existence of
1

2
A−1 in M2(R) does not imply that A has a unique

anticommutator inverse. For an explicit example, let R be any ring for which

2 ∈ U(R), and take A =

[
0 −1
2 0

]
. Then, both

1

2
A−1 =

 0
1

4

−1

2
0

 and

B = −E21 are anticommutator inverses of A.

In closing, to determine suitable conditions characterizing ACI 3 × 3 matrices,
one may apply Jameson’s approach (see [3]) for solving the Sylvester equation.
However, the resulting conditions are rather unwieldy. A sample is given below.

Theorem 3.8. Let R be any commutative ring and A a 3× 3 matrix over R. The
matrix A is ACI iff 2, det(A) and det(Tr(A)A2 + det(A)I3) are units in R.
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