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Abstract

An extension of the standard barycentric coordinate functions for simplices to ar�

bitrary convex polytopes is described� The key to this extension is the construction�

for a given convex polytope� of a unique polynomial associated with that polytope�

This polynomial� the adjoint of the polytope� generalizes a previous two�dimensional

construction described by Wachspress� The barycentric coordinate functions for the

polytope are rational combinations of adjoints of various dual cones associated with

the polytope�

� Introduction

Let v�S� denote the set of vertices of a simplex S� Functions fBv�x�jv � v�S�g are barycentric

coordinates with respect to S if the following three properties are satis�ed�

� Non�negativity � For all v in v�S��

Bv�x� � � �x � S�

� Linear precision � Given a linear function L�x��

L�x� �
X

v�v�S�

L�v�Bv�x��

� Minimal degree � For all v in v�S�� Bv�x� is a linear polynomial�

If L�x� is the constant one� then linear precision implies that the barycentric coordinates

sum to one	 they form a partition of unity�






Barycentric coordinates for a simplex are typically expressed as the ratios of volumes of

various subsimplices� Figure 
 depicts a point p inside a triangle �v�v�v�� The barycentric

coordinate of the point p with respect to v� is

area��v�v�p�

area��v�v�v��
�

The areas of these triangles are linear functions of the position of p� Barycentric coordinates

for simplices arise in a variety of applications� For example� linear interpolation is simple

using barycentric coordinates� given L�v� at the vertices of a simplex� the linear precision

property can be used to compute L�x�� For this reason� barycentric coordinates for simplices

and various extensions to other types of polytopes appear in the �nite element literature

�Wac
���

The Bernstein�B�ezier representation of polynomial functions �Far��� also relies on barycen�

tric coordinates� Given a simplex� barycentric coordinates span the space of linear functions

over that simplex� Higher degree basis functions over that simplex can be constructed by

applying the multinomial theorem to the sum of the basis functions� Linear precision is

essential for guaranteeing that the space of all basis functions of degree k spans the space of

all polynomials of degree k�

Barycentric coordinates also exist for more general types of polytopes� For example� the

tensor product of the barycentric coordinate functions for a set of simplices are barycentric

over the tensor product of simplices� The unit square is the tensor of two unit intervals�

Barycentric coordinates over the square are exactly the bi�linear basis functions�

Figure � Barycentric coordinates for a triangle
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The goal of this paper is to construct rational coordinate functions for arbitrary convex

polytopes that are nonnegative� have linear precision� and have minimal degree� The degree

of these rational functions depends on the number of facets of the polytope and its dimension�

Several others have investigated this problem in the case of convex polygons� Wachspress

�Wac
�� de�nes barycentric �nite element basis functions for convexm�gons� These functions

are rational and of degree m � �� Wachspress also generalizes this construction to special

types of polyhedra� Loop and DeRose �LD��� independently develop similar functions for

de�ning multi�sided surface patches used in Computer�Aided Geometric Design� In the case

of general convex polytopes� Lee �Lee��� has developed non�rational basis functions that are

non�negative and have linear precision� In this paper� we focus on building rational basis

functions that are barycentric for arbitrary convex polytopes�

The next section reviews some of the properties of convex polytopes and polyhedral

cones in particular� Subsequent sections use these ideas to de�ne a fundamental polynomial

associated with a polyhedral cone� This polynomial� the adjoint of the cone� is the key

building block in creating barycentric coordinate functions�

� Polyhedral cones

A convex polytope P is the convex hull of a non�empty� �nite set of points� If the set of

points contains d � 
 a�nely independent points� then P has dimension d� A d�simplex

is the convex hull of d � 
 a�nely independent points� A face of P is the intersection of

P and a supporting hyperplane for P � If P has dimension d� then the facets of P are the

�d � 
��dimensional faces of P � The edges and vertices of P are faces of dimension one and

zero� respectively� Grunbaum �Gru�
� contains a complete exposition of the theory of convex

polytopes�

The convex hull of a set of rays emanating from the origin is a polyhedral cone �with apex

at the origin�� One natural way to create a polyhedral cone is to embed a given polytope

P in a hyperplane �x� � 
� and take the set of all rays from the origin through P � The

intersection of this polyhedral cone C in Rd�� with the hyperplane �x� � 
� is exactly P �

�P is the cross section polytope for C��

The dimension of C� dim�C�� is simply the dimension of P � �Note that this de�nition is

nonstandard� but simpli�es subsequent dimension formulas�� Vertices of C� v�C�� correspond
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to those rays that intersect vertices of P � For the sake of uniqueness� we represent this ray

by a unit length vector v� The facets of C� f�C�� correspond to the facets of P � If C has

maximal dimension� then each facet F has a unique inward unit normal nF �

One reason for our use of polyhedral cones is that they are projective	 parallel faces

cannot exist� Our second reason is that duality plays a large role in constructing barycentric

coordinates and duality is more easily de�ned in terms of cones� Given a polyhedral cone C�

its dual cone D�C� is the convex hull of those rays r such that C lies in the positive halfspace

de�ned by r� fxjr � x � �g�

Duality induces an isomorphism between faces of C and faces of D�C�� If v is a vertex

of C� then D�v� is the halfspace bounding a facet of D�C�� If F is a facet of C� then D�F �

is a cone de�ned by those halfspaces bounding a vertex of D�C�� More generally� if F is an

i�dimensional face of C� thenD�F � is a cone de�ned by those halfspaces bounding a �d�i�
��

dimensional face of D�C�� Note that this isomorphism obeys the classical characterization

of duality� face containment is reversed� If F� � F�� then D�F�� � D�F���

� Adjoints of polyhedral cones

Wachspress de�nes the adjoint of a polygon P as the minimal degree algebraic curve inter�

polating the intersection points of pairs of lines containing non�adjacent edges of P � This

approach has two drawbacks� First� the polynomials de�ning the algebraic curve are only

unique up to multiplication by a constant� De�ning barycentric coordinates requires a careful

choice of this constant� Second� this interpolation problem is very di�cult to pose correctly

in higher dimensions�

Our approach is to associate a unique polynomial A�C��x� with a polyhedral cone C� If

C is the cone associated with the original polytope P � then the zero contour of A�D�C���x�

is the adjoint in the sense of Wachspress� This approach avoids the normalization problem

and works in complete generality� We later show that this construction is equivalent to

Wachspress�s construction in the case of convex polygons�

��� Triangulations of cones

If the vertex rays of a polyhedral cone S are linearly independent� then S is a simplicial

cone� The cross�section polytope of a simplicial cone is a simplex� Just as a convex polytope
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can be triangulated using simplices� a polyhedral cone can be triangulated using simplicial

cones�

De�nition� A triangulation of a d�dimensional polyhedral cone C is a partition of C into a

collection of d�dimensional simplicial cones� t�C�� such that

� The vertex rays of each simplicial cone are a subset of the vertex rays of C�

� The union of the simplicial cones is exactly C�

� The intersection of any two simplicial cones is a face of both�

The Delaunay triangulation of a convex polytope is a well�known example of a triangulation�

�PS��� is good source for more material on triangulations�

��� A de�nition of adjoints

If S is a simplicial cone� then let aS denote the volume of the parallelepiped spanned by the

vertex rays in v�S�� These volume play an important role as normalizing constants in the

de�nition of adjoints� If v is the vertex ray opposite a facet F of S� then aS� v� and nF are

related in the following manner

aS � �v � nF �aF � �
�

The volume of the parallelepiped is the volume of its base� aF � time its height� the dot

product of v with the unit normal nF �

De�nition� Given a polyhedral cone C and a triangulation t�C�� the adjoint of C is

A�C��x� �
X

S�t�C�

aS
Y

v�v�C��v�S�

�v � x��

In the case of a simplicial cone S� the adjoint A�S��x� is simply the constant aS�

As stated� the de�nition of the adjoint of C appears to depend on the particular trian�

gulation chosen� Using theorem �� the adjoint is shown to be independent of the particular

triangulation� Therefore� we do not index the adjoint by the particular triangulation�

Theorem � A�C��x� is a homogeneous polynomial of degree jv�C�j � dim�C� � 
 that is

nonnegative for all x � D�C��

Proof� By de�nition� aS is nonnegative� Similarly� �v �x� is also nonnegative on C for all

v � v�C�� Therefore�A�C��x�must be nonnegative for all x � D�C�� Since jv�S�j � dim�C��


� the number of the homogeneous terms in the de�nition is exactly jv�C�j� dim�C�� 
� �
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� Properties of adjoints

��� A recurrence for adjoints of simplicial cones

The next theorem relates the adjoint of a simplex to the adjoints of its facets� This relation

is the starting point for constructing coordinate functions with linear precision�

Theorem � If S has maximal dimension� then for any linear function L�x�

L�x�A�S��x� �
X

F�f�S�

L�nF �A�F ��x��v � x�� ���

where v is the vertex opposite the facet F in S�

Proof� If equation � holds when L�x� � �w � x� for all w � v�S�� then the theorem must

hold for any linear L�x� since S has maximal dimension� It remains to show that

�w � x�aS �
X

F�f�S�

�w � nF �aF �v � x�� ���

where v is the vertex opposite the facet F in S� If w 	� v� then w � v�F � and w � nF � ��

When w � v� equation � reduces to

�w � x�aS � �v � nF �aF �w � x��

The theorem follows by equation 
� �

If the simplex S does not have maximal dimension� then the linear function L�x� must

be restricted to be in the span of the functions �v � x� where v � v�S�� A similar proof holds

as long as the normal nF is now chosen to lie in the span of S�

��� A recurrence for adjoints of polyhedral cones

The next theorem establishes a relation similar to that of equation � for polyhedral cones�

At a conceptual level� its proof is similar to that of Stokes� theorem �Fle

� in which the

integral over an object is related to an integral over the boundary of the object� In this case�

the object is the cone C� The adjoint of C is de�ned as a sum involving the adjoints of

simplicial cones triangulating C� Equation � relates the adjoint of a simplicial cone to the

adjoints of its facets� Composing these two equations� the adjoint of C is a sum over the

adjoints of facets of the triangulation of C�
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Terms corresponding to interior facets appear twice in the sum and cancel out� The

remaining facets tile the boundary of C� These exterior facets form a triangulation of facets

of C� Thus� the adjoint of a polyhedral cone is related to the adjoints of its facets�

Theorem � Let C have maximal dimension� then for any linear function L�x��

L�x�A�C��x� �
X

F�f�C�

L�nF �A�F ��x�
Y

v�v�C��v�F �

�v � x�� ���

subject to t�C� coinciding with t�F � on each facet F �

Proof� Recalling the de�nition of A�C��x� and multiplying both sides by L�x� yields

L�x�A�C��x� �
X

S�t�C��

L�x� aS
Y

v�v�C��v�S�

�v � x��

Replacing L�x�aS by the right hand side of equation � yields

L�x�A�C��x� �
X

S�t�C�

�
X

F�f�S�

L�nF �A�F ��x�
Y

v�v�C��v�F �

�v � x��� ���

If F is an interior facet of t�C�� then F is shared by two distinct simplicial cones in t�C� on

opposite sides of F � Since nF is oriented to point inward with respect to each of the these

simplicial cones� the two terms corresponding to an interior facet agree except for sign and

must cancel out� The remaining facets on the exterior of C can be organized in the following

fashion�

If S is a simplicial facet of t�C� lying on a facet F of C� then the set of all such S form

a triangulation� t�F �� of F �as stated in the theorem�� Thus� equation � can be rewritten as

L�x�A�C��x� �
X

F�f�C�

�
X

S�t�F �

L�nS�A�S��x�
Y

v�v�C��v�S�

�v � x���

Since nS � nF for all S � t�F �� the term L�nS� can be replaced by L�nF � and moved outside

the inner sum� Finally� the �nal product term can now split into two parts�

L�x�A�C��x� �
X

F�f�C�

L�nF ��
X

S�t�F �

A�S��x�
Y

v�v�F ��v�S�

�v � x��
Y

v�v�C��v�F �

�v � x��

By de�nition� the inner sum is the adjoint of A�F ��x�� Therefore�

L�x�A�C��x� �
X

F�f�C�

L�nF �A�F ��x�
Y

v�v�C��v�F �

�v � x��






�

If the cone C does not have maximal dimension� then the linear function L�x� must

be restricted to lie in the span of the functions �v � x� where v � v�C�� Using a reduced

dimension version of theorem � establishes a similar theorem� By relating the adjoint of a

cone C to the adjoints of its facets� we can prove the uniqueness of the adjoint�

Theorem � A�C��x� is independent of the triangulation t�C��

Proof� Proceed by induction on the dimension of C� If the dimension of C is zero� then

C is a ray and poses a single triangulation� If F is a facet of C� then the dimension of F

is less than the dimension of C� So� by the inductive hypothesis� A�F ��x� is triangulation

independent� Therefore� applying equation �� A�C��x� must be independent of the particular

triangulation t�C�� �

��� Planar restrictions of adjoints

The adjoint A�C��x� vanishes on certain important linear subspaces� This property is neces�

sary to ensure that barycentric coordinate functions have the proper degree when restricted

to the faces of a polytope� Speci�cally� if the two vertex rays v and w are not edge adjacent

in C� then A�C��x� vanishes on the linear space orthogonal to v and w�

Theorem � Let v and w be a pair of vertices of C that are not edge adjacent� Then

A�C��x� 
 � on the subspace

fxj�v � x � �� � �w � x � ��g�

Proof� The proof proceeds by induction on the dimension of C� If C is a single ray� then

C has no edges and the theorem follows� Otherwise� equation � holds

L�x�A�C��x� �
X

F�f�C�

L�nF �A�F ��x�
Y

v�v�C��v�F �

�v � x��

We next show that each term in the righthand sum vanishes on the appropriate space� If

either of v or w is not in v�F �� then the product term contains one of �v � x� or �w � x��

Otherwise� both v and w are in v�F �� Since v and w are not edge adjacent in C� they

are also not edge adjacent in F � By the inductive hypothesis� A�F ��x� must vanish on

�v � x � �� � �w � x � ��� �
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� Barycentric coordinates

Berycentric coordinates for polyhedral cones can be characterized by the same three prop�

erties used for simplices� If C is a polyhedral cone� then the functions fBv�x�jv � v�C�g are

homogeneous barycentric coordinates with respect to C if the following three properties are

satis�ed�

� Non�negativity � For all v in v�C��

Bv�x� � � �x � C�

� Linear precision � Given a linear function L�x��

L�x� �
X

v�v�C�

L�v�Bv�x��

� Minimal degree � For all v in v�C�� Bv�x� is a homogeneous rational function of degree

jf�C�j � dim�C��

The �rst two properties mirror the simplex de�nition� The third property� minimal

degree� guarantees that the barycentric coordinate functions have the lowest degree possible

and are unique� A proof of this fact will appear in a subsequent paper�

��� Barycentric coordinates for polyhedral cones

Given a polyhedral cone C� let D be the cone dual to C� Then� the barycentric coordinate

functions for C can be derived directly from equation ��

L�x�A�D��x� �
X

F�f�D�

L�nF �A�F ��x�
Y

v�v�D��v�F �

�v � x��

Dividing both sides by A�D��x� yields that

L�x� �
X

F�f�D�

L�nF �
A�F ��x�

Q
v�v�D��v�F ��v � x�

A�D��x�
�

We next reinterpret this equation in terms of C instead of D� Vertex rays of D are dual

to halfspaces de�ning facets in C� Facets of D are dual to certain cones associated with the
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vertices of C� If c�v� denotes the intersection of those halfspaces bounding v� then F is dual

to c�v�� Under this interpretation�

L�x� �
X

v�v�C�

L�v�
bv�x�

d�x�
� ���

where

bv�x� � A�D�c�v����x�
Y

F�f�C��v ��v�F �

�nF � x��

d�x� � A�D�C���x��

For a vertex v� bv�x� is the product of the adjoint of the dual to the cone of v and the

equations of faces opposite v� Note that the functions bv�x�
d�x�

have linear precision and are

nonnegative by construction� The polynomial d�x� has degree

jv�D�j � dim�D�� 
 � jf�C�j � dim�C�� 


by theorem 
� The degree of bv�x� is

jv�F �j � dim�F �� 
 � jv�D�� v�F �j � jv�D�j � dim�D� � jf�C�j � dim�C��

Thus� these rational functions are the homogeneous barycentric coordinates�

��� Barycentric coordinates on facets

Perhaps the most pleasing aspect of this construction is that the resulting barycentric coor�

dinate behave correctly on facets of C� Since the basis functions are nonnegative and have

linear precision over C� they also inherit these properties over any facet F of C� A more

interesting question concerns the degree of these basis function when restricted to F � For

example� if F is a simplex� the barycentric coordinates should simply be linear functions on

F � In fact� the degree of these basis functions on F is minimal as shown in the next theorem�

Theorem � If F is a facet of C� then the restriction of
bw�x�
d�x� to �nF � x � �� is a rational

function of degree jf�F �j � dim�F ��

Proof� The remaining facets of C �excluding F � can be characterized as one of two types�

� Facets whose intersection with F de�nes a facet of F �
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� Facets whose intersection with F is either empty or a lower dimensional face of F �

Let v be the vertex of D dual to F � If �F is a facet in the second category� then its

dual �v on D is not edge adjacent to v� By theorem �� the adjoint A�D��x� �and the terms

comprising the righthand side of equation �� vanishes on �v � x � �� � ��v � x � ��� So� on

�v � x � ��� the functions bw�x� and d�x� share a common linear factor�

The degree of bw�x�
d�x�

on C is jf�C�j � dim�C� � jf�C�j � dim�F �� 
 by theorem 
� Since

the degree of this function decreases by one for each of the jf�C�j � 
� jf�F �j facets in the

second category� the degree of bw�x�
d�x�

restricted to �v � x � �� is exactly jf�F �j � dim�F �� �

Wachspress �Wac
�� �rst introduced the notion of adjoints in his construction of �nite

element bases for convexm�gons� Given a convexm�gon P � the m lines bounding P intersect

in exactly �m��m���
� points �including points at in�nity�	 m of these points are vertices of P �

According to Wachspress� the adjoint of P is the unique algebraic curve of degree m � �

that interpolates the remaining �m��m���
�

points where the extensions of non�adjacent edges

intersect� Figure � illustrates the situation in the case of a pentagon�

If C is the cone associated with P � then vertices of D�C� correspond to edges of C �and

P �� Two edges of C share a vertex if and only if their dual vertices in D�C� are adjacent�

By theorem 
� the adjoint of D�C� vanishes at the intersection of those edges of C that do

not intersect in a vertex� Since the adjoint has degree m��� its zero set must be the adjoint

Figure � A pentagon and its adjoint curve







in the sense of Wachspress�

��� Barycentric coordinates for convex polytopes

The restriction of the cone C to �x� � 
� is the original convex polytope P � If v �

�v�� v�� ���� vd� is a vertex ray of C� then �
� v�
v�
� ���� vd

v�
� is the corresponding vertex of P � Using

this observation� we can view rewrite equation � to evaluate L at the vertices of P �

L�x� �
X

v�v�C�

L�
�
v�

v�
� ����

vd

v�
�
v�bv�x�

d�x�
�

Dehomogenizing this equation yields the a�ne barycentric basis functions for P � Since

P lies in �x� � 
�� v� must be positive and the basis functions remain nonnegative�

� Future work

Several areas associated with this problem merit further research� Barycentric coordinates

for simplices can be de�ned solely in terms of volumes of various simplices� Loop and

DeRose construct barycentric coordinates for convex polygons in terms of the areas of various

triangles� A similar construction for polytopes would yield a more natural de�nition of

barycentric coordinates without resorting to the homogeneous formulation of polyhedral

cones�

Another interesting question is whether barycentric coordinates as de�ned here are unique�

The answer is yes� A proof of this fact will appear in a subsequent paper� One consequence

is that the barycentric coordinates described here are equivalent to coordinate functions

created by tensoring barycentric coordinate functions for simplices�

The proof of theorem � establishes that the adjoint of C can be viewed as the sum of

various terms associated with triangulations of facets of C� This observation can be used

to derive a fast method for evaluating adjoints� For tensors of simplices� this method is

competitive with standard multi�linear interpolation� This problem will also be addressed

in a subsequent paper�

Finally� applications of barycentric coordinates for polyhedra merit exploration� Such

functions could be used to create continuous trivariate maps over a partition of space into

convex polyhedra� Free�form deformations over such partitions would now be straightfor�

ward� The center of �gure � depicts a sphere embedded in octahedron� The sphere is


�



represented in terms of barycentric coordinates over the original octahedron� The left and

right objects are deformations of the sphere as the de�ning octahedron is deformed�
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