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Abstract

We gave an extension of the well-known Nehari’s inequality [3, p. 168] using the D,
Jackson’s g-derivative operator and this result will be used to the prove some majorisation
problems:

Lemma 1. Ifw is an analytic function in D, such that |w(z)| < 1, z € D, then

|1 — w(zq)w(z)|
1—|2|%q

‘Dq(w(z))‘ < ,2zeD, (0<qg<1).
For ¢ — 17 in the above result reduces to the Nehari’s inequality.

Let P be the subclass of all analytic functions x in the open unit disk D, such that
X has positive real part in D with x(0) = 1, and let A denotes the class of functions f
analytic in D usually normalized by f(0) = f/(0)—1 = 0. For a given y € P and q € (0, 1)
we define the family S,(x) C A by

S,(x) = {k ceA: %ﬁgz) < X(z)}

Assuming that & and h are two analytic functions in I, then k is said to be majorized
by h in D, denoted by k(z) < h(z), if there exists an analytic function g in D such that
ln(2)| <1 and k(z) = p(2)h(z) for all z € D (see [1]).

A consequence of the above lemma is the following modified version of majorization
problem for the class S,(x) connected with Theorem 1.1 of [2]:

Theorem 1. Let | be analytic in D with | # 0, and let h € Sy(x). If I(z) < h(z) in
D such that | # ch with |c| =1, and q € (0,1), then

[Dgl(2)] < [Dgh(z)], [2| <r <77,
where r* 1s the positive root of the equation
(1= n)par® + (1 +n)r — (L =n)p =0,

with n = n(r,q) = |I<I‘1aX |1(Q)| and p = p(r) := |1r|11n IX(2)|. The function p is those that
=qr zl=r
realize the magjorization l(z) < h(z) in D, shown in the above definition.
The theorem is followed by many particular and special cases obtained for different

choice of the parameters and the involved functions.
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