Workshop dedicated to the memory of Professor Gabriela Kohr (4th edition) Geometric Function Theory in Several Complex Variables and Complex Banach Spaces

Cluj-Napoca, Romania

November 29 – December 1, 2024

Q-difference operator extension of Nehari's inequality and applications to majorization results

Teodor Bulboacă Babeș-Bolyai University, Cluj-Napoca, Romania

Abstract

We gave an extension of the well-known Nehari's inequality [3, p. 168] using the D_q Jackson's *q*-derivative operator and this result will be used to the prove some majorisation problems:

Lemma 1. If ω is an analytic function in \mathbb{D} , such that $|\omega(z)| < 1$, $z \in \mathbb{D}$, then

$$\left| D_q(\omega(z)) \right| \le \frac{\left| 1 - \overline{\omega(zq)}\omega(z) \right|}{1 - |z|^2 q}, \ z \in \mathbb{D}, \ (0 < q < 1).$$

For $q \to 1^-$ in the above result reduces to the Nehari's inequality.

Let \mathcal{P} be the subclass of all analytic functions χ in the open unit disk \mathbb{D} , such that χ has positive real part in \mathbb{D} with $\chi(0) = 1$, and let \mathcal{A} denotes the class of functions f analytic in \mathbb{D} usually normalized by f(0) = f'(0) - 1 = 0. For a given $\chi \in \mathcal{P}$ and $q \in (0, 1)$ we define the family $\mathcal{S}_q(\chi) \subset \mathcal{A}$ by

$$\mathcal{S}_q(\chi) := \left\{ k \in \mathcal{A} : \frac{z D_q k(z)}{k(z)} \prec \chi(z) \right\}.$$

Assuming that k and h are two analytic functions in \mathbb{D} , then k is said to be *majorized* by h in \mathbb{D} , denoted by $k(z) \ll h(z)$, if there exists an analytic function μ in \mathbb{D} such that $|\mu(z)| \leq 1$ and $k(z) = \mu(z)h(z)$ for all $z \in \mathbb{D}$ (see [1]).

A consequence of the above lemma is the following modified version of majorization problem for the class $S_q(\chi)$ connected with Theorem 1.1 of [2]:

Theorem 1. Let l be analytic in \mathbb{D} with $l \neq 0$, and let $h \in S_q(\chi)$. If $l(z) \ll h(z)$ in \mathbb{D} such that $l \neq ch$ with |c| = 1, and $q \in (0, 1)$, then

$$|D_q l(z)| \le |D_q h(z)|, \ |z| \le r \le r^*,$$

where r^* is the positive root of the equation

$$(1-\eta)\rho qr^2 + (1+\eta)r - (1-\eta)\rho = 0,$$

with $\eta = \eta(r,q) := \max_{|\zeta|=qr} |\mu(\zeta)|$ and $\rho = \rho(r) := \min_{|z|=r} |\chi(z)|$. The function μ is those that realize the majorization $l(z) \ll h(z)$ in \mathbb{D} , shown in the above definition.

The theorem is followed by many particular and special cases obtained for different choice of the parameters and the involved functions.

- T.H. MacGregor, Majorization by univalent functions, Duke Math. J., 34(1)(1967), 95–102. https://doi.org/10.1215/S0012-7094-67-03411-4
- N. Hameed Mohammed and E.A. Adegani, Majorization problems for class of qstarlike functions, Afr. Mat., 34(2023), Art. ID 66, 7 pages. https://link.springer.com/article/10.1007/s13370-023-01107-y
- 3. Z. Nehari, Conformal mapping, MacGraw-Hill Book Company, New York, Toronto and London, 1952.