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Entropy rates

The AEP states that nH(X ) bits suffice on the average for n i.i.d.
RVs

What for dependent RVs?

For stationary processes H(X1,X2, . . . ,Xn) grows (asymptotically)
linearly with n at a rate H(X ) – the entropy rate of the process

A stochastic process {Xi}i∈I is an indexed sequence of random
variables, Xi : S → X is a RV ∀i ∈ I

If I ⊆N, {X1,X2, . . . } is a discrete stochastic process, called also a
discrete information source.

A discrete stochastic process is characterized by the joint probability
mass function

P((X1,X2, . . . ,Xn) = (x1, x2, . . . , xn)) = p(x1, x2, . . . , xn)

where (x1, x2, . . . , xn) ∈ X n.
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Markov chains I

Definition 1

A stochastic process is said to be stationary if the joint distribution of any
subset of the sequence of random variables is invariant with respect to
shifts in the time index

P(X1 = x1, . . . ,Xn = xn) = P(X1+` = x1, . . . ,Xn+` = xn) (1)

∀n, ` and ∀x1, x2, . . . , xn ∈ X .
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Markov chains II

Definition 2

A discrete stochastic process {X1,X2, . . . } is said to be a Markov chain or
Markov process if for n = 1, 2, . . .

P (Xn+1 = xn+1|Xn = xn,Xn−1 = xn−1, . . . ,X1 = x1)

= P(Xn+1 = xn+1|Xn = xn), x1, x2, . . . , xn, xn+1 ∈ X . (2)

The joint pmf can be written as

p(x1, x2, . . . , xn) = p(x1)p(x2|x1) . . . p(xn|xn−1). (3)
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Markov chains III

Definition 3

A Markov chain is said to be time invariant (time homogeneous) if the
conditional probability p(xn+1|xn) does not depend on n; that is for
n = 1, 2, . . .

P (Xn+1 = b|Xn = a) = P(X2 = b|X1 = a), ∀a, b ∈ X . (4)

This property is assumed unless otherwise stated.

{Xi} Markov chain, Xn is called the state at time n

A time-invariant Markov chain is characterized by its initial state and
a probability transition matrix P = [Pij ], i , j = 1, . . . ,m, where
Pij = P(Xn+1 = j |Xn = i).

The Markov chain {Xn} is irreducible if it is possible to go from any
state to another with a probability > 0
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Markov chains IV

The Markov chain {Xn} is aperiodic if ∀ state a, the possible times to
go from a to a have highest common factor = 1.

Markov chains are often described by a directed graph where the
edges are labeled by the probability of going from one state to
another.

p(xn) - pmf of the random variable at time n

p(xn+1) = ∑
xn

p(xn)Pxnxn+1 (5)

A distribution on the states such that the distribution at time n+ 1 is
the same as the distribution at time n is called a stationary
distribution - so called because if the initial state of a Markov chain is
drawn according to a stationary distribution, the Markov chain form a
stationary process.
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Markov chains V

If the finite-state Markov chain is irreducible and periodic, the
stationary distribution is unique, and from any starting distribution,
the distribution of Xn tends to a stationary distribution as n→ ∞.

Example 4

Consider a two-state Markov chain with a probability transition matrix

P =

[
1− α α

β 1− β

]
(Figure 1)
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Markov chains VI

Figure : Two-state Markov chain

The stationary probability is the solution of µP = µ or (I − PT )µT = 0.
We add the condition µ1 + µ2 = 0.
The solution is

µ1 =
β

α + β
, µ2 =

α

α + β
.
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Markov chains VII

Click here for a Maple solution Markovex1.html. The entropy of Xn is

H(Xn) = H

(
β

α + β
,

α

α + β

)
.
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Entropy rate I

Definition 5

The entropy rate of a stochastic process {Xi} is defined by

H(X ) = lim
n→∞

1

n
H (X1, . . . ,Xn) (6)

when the limit exists.

Examples

1 Typewriter - m equally likely output letters; he(she) can produce mn

sequences of length n, all of them equally likely.
H (X1, . . . ,Xn) = logmn , and the entropy rate is H(X ) = logm bits
per symbol.
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Entropy rate II

2 X1,X2, . . . i.i.d. RVs

H(X ) = lim
n→∞

H (X1, . . . ,Xn)

n
= lim

n→∞

nH(X1)

n
= H (X1) .

3 X1,X2, . . . independent, but not identically distributed RVs

H (X1, . . . ,Xn) =
n

∑
i=1

H(Xi )

It is possible that 1
n ∑H(xi ) does not exists
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Entropy rate III

Definition 6

H ′(X ) = lim
n→∞

H (Xn|Xn−1,Xn−2, . . .X1) . (7)

H(X ) is entropy per symbol of the n RVs; H ′(X ) is the conditional
entropy of the last RV given the past.
For stationary processes both limits exist and are equal.

Lemma 7

For a stationary stochastic process, H(Xn|Xn−1, . . . ,X1) is nonincreasing
in n and has a limit H ′(X ).
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Entropy rate IV

Proof.

H(Xn+1|X1,X2, . . . ,Xn) ≤ H(Xn+1|Xn, . . . ,X2) conditioning

= H(Xn|Xn−1, . . . ,X1). stationarity

(H(Xn|Xn−1, . . . ,X1))n is decreasing and nonnegative, so it has a limit
H ′(X ).

Lemma 8 (Cesáro)

If an → a and bn = 1
n ∑n

i=1 ai then bn → a.
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Entropy rate V

Theorem 9

For a stationary stochastic process H(X ) (given by (6)) and H ′(X ) (given
by (7)) exist and

H(X ) = H′(X ). (8)
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Entropy rate VI

Proof.

By the chain rule,

H (X1, . . . ,Xn)

n
=

1

n

n

∑
i=1

H(Xi |Xi−1, . . . ,X1).

But,

H(X ) = lim
n→∞

H (X1, . . . ,Xn)

n

= lim
n→∞

1

n

n

∑
i=1

H(Xi |Xi−1, . . . ,X1)

= lim
n→∞

H(Xn|Xn−1, . . . ,X1) (Lemma 8)

= H ′(X ) (Lemma 7)
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Entropy rate for Markov chain I

For a stationary Markov chain, the entropy rate is given by

H (X ) = H ′ (X ) = limH (Xn|Xn−1, . . . ,X1) = limH (Xn|Xn−1)

= H(X2|X1), (9)

where the conditional entropy is calculated using the given stationary
distribution.

The stationary distribution µ is the solution of the equations

µj = ∑
i

µiPij , ∀j .

Expression of conditional entropy:
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Entropy rate for Markov chain II

Theorem 10

{Xi} stationary Markov chain with stationary distribution µ and transition
matrix P. Let X1 ∼ µ. then the entropy rate is

H(X ) = −∑
i

∑
j

µiPij logPij . (10)

Proof.

H(X ) = H(X2|X1) = ∑i µi

(
−∑j Pij logPij

)
.
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Entropy rate for Markov chain III

Example 11 (Two-state Markov chain)

The entropy rate of the two-state Markov chain in Figure 1 is

H(X ) = H(X2|X1) =
β

α + β
H(α) +

α

α + β
H(β).

Remark. If the Markov chain is irreducible and aperiodic, it has a unique
stationary distribution on the states, and any initial distribution tends to
the stationary distribution as n→ ∞. In this case, even though the initial
distribution is not the stationary distribution, the entropy rate, which is
defined in terms of long-term behavior, is H(X ), as defined in (9) and
(10).
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Entropy of a random walk on a weighted graph 1

Assume irreducible and aperiodic (d(i) = 1 for all i) so unique
stationary distribution.

Graph G = (V ,E ) with m nodes labeled {1, 2, . . . ,m} and edges
with weight Wij > 0.

Random walk: start at a
node, say i , and choose
next node with probability
proportional to edge
weight, i.e., pij as

Pij =
Wij

∑k Wik
=

Wij

Wi
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Entropy of a random walk on a weighted graph 2

Guess that stationary distribution has probability proportional to wi .

If W = ∑i ,j ;j>i Wij then ∑i Wi = 2W , so guess a stationary µ
distribution with µi = wi/2w .

This is stationary since

∀j µ′j = ∑
i

µiPij = ∑
i

Wi

2W

Wij

Wi
=

1

2W ∑
i

Wij

=
Wj

W
= µj .

Can swap edges elsewhere (i.e., edges between nodes not including i),
does not change the stationary condition which is local.
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What is entropy of this random walk

H(X ) = H(X2|X1) = −∑
i

µi ∑
j

Pij logPij

= −∑
i

Wi

2W ∑
j

Wij

Wi
log

Wij

Wi
= −∑

i
∑
j

Wij

2W
log

Wij

Wi

= −∑
i

∑
j

Wij

2W
log

Wij

2W
+ ∑

i
∑
j

Wij

2W
log

Wi

2W

= H

(
. . . ,

Wij

2W
, . . .

)
−H

(
. . . ,

Wi

2W
, . . .

)
If all the edges have equal weight, the stationary distribution puts
weight Ei/2E on node i , where Ei is the number of edges emanating
from node i and E is the total number of edges in the graph.
In this case, the entropy rate of the random walk is

H(X ) = log 2E −H

(
E1

2E
,
E2

2E
, . . . ,

Em

2E

)
.
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What is entropy of this random walk

So, the entropy of the random walk is

H(X ) = (overall edge uncertainty)

− (overall node uncertainty in stationary condition)

Intuition: As node entropy decreases while keeping edge uncertainty
constant, the network becomes more concentrated, fewer nodes are
hubs, and the hubs that remain are widely connected (since edge
entropy is fixed).

In such case (few well connected hubs), it is likely one will land on
such a hub (in a random walk) and then will be faced with a wide
variety of choice as to where to go next =⇒ increase in overall
uncertainty of the walk.

If node entropy goes up with edge entropy fixed, then many nodes are
hubs all with relatively low connectivity, so hitting them doesn’t
provide much choice =⇒ random walk entropy goes down.
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Functions of Markov chains I

X1,X2, . . . ,Xn, . . . stationary Markov chain, Yi = φ(Xi ), H(Y) =?

in many cases Y1,Y2, . . . ,Yn, . . . is not a Markov chain, but it is
stationary

lower bound

Lemma 12

H(Yn|Yn−1, . . . ,Y2,X1) ≤ H(Y). (11)
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Functions of Markov chains II

Proof.

For k = 1, 2, . . .

H(Yn|Yn−1, . . . ,Y2,X1)
(a)
= H(Yn|Yn−1, . . . ,Y2,Y1,X1)

(b)
= H(Yn|Yn−1, . . . ,Y2,Y1,X1,X0,X−1, . . . ,X−k)

(c)
= H (Yn|Yn−1, . . . ,Y2,Y1,X1,X0,X−1, . . . ,

X−k ,Y0, . . . ,Y−k)

(d)

≤ H (Yn|Yn−1, . . . ,Y2,Y1,Y0, . . . ,Y−k)

(e)
= H (Yn+k+1|Yn+k , . . . ,Y1) ,

(a) follows from the fact that Y1 = φ(X1), (b) from the Markovity, (c)
from Yi = φ(Xi ), (d) conditioning reduces entropy, (e) stationarity.
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Functions of Markov chains III

Proof - continuation.

Since inequality is true for all k , in the limit

H(Yn|Yn−1, . . . ,Y2,X1) ≤ lim
k

H (Yn+k+1|Yn+k , . . . ,Y1)

= H(Y).

Lemma 13

H(Yn|Yn−1, . . . ,Y2,X1)−H(Yn|Yn−1, . . . ,Y2,Y1,X1)→ 0. (12)
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Functions of Markov chains IV

Proof.

Expression of interval length:

H(Yn|Yn−1, . . . ,Y2,X1)−H(Yn|Yn−1, . . . ,Y2,Y1,X1)

= I (X1;Yn|Yn−1, . . . ,Y1).

By properties of mutual information,

I (X1;Y1, . . . ,Yn) ≤ H(X1),

and I (X1;Y1, . . . ,Yn) increases with n. Thus, lim I (X1;Y1, . . . ,Yn) exists
and

lim
n→∞

I (X1;Y1, . . . ,Yn) ≤ H(X1).
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Functions of Markov chains V

Proof - continuation.

By the chain rule

H(X1) ≥ lim
n→∞

I (X1;Y1, . . . ,Yn)

= lim
n→∞

n

∑
i=1

I (X1;Yi |Yi−1, . . . ,Y1)

=
∞

∑
i=1

I (X1;Yi |Yi−1, . . . ,Y1)

The general term of the series must tend to 0

lim I (X1;Yn|Yn−1, . . . ,Y1) = 0.

The last two lemmas imply
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Functions of Markov chains VI

Theorem 14

X1,X2, . . . ,Xn, . . . stationary Markov chain, Yi = φ(Xi )

H(Yn|Yn−1, . . . ,Y1,X1) ≤ H(Y) ≤ H(Yn|Yn−1, . . . ,Y1) (13)

and

limH(Yn|Yn−1, . . . ,Y1,X1) = H(Y) = limH(Yn|Yn−1, . . . ,Y1) (14)
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Hiden Markov models

We could consider Yi to be a stochastic function of Xi

X1,X2, . . . ,Xn, . . . stationary Markov chain, Y1,Y2, . . . ,Yn, . . . a new
process where Yi is drawn according to p(yi |xi ), conditionally
independent of all the other Xj , j 6= i

p(xn, yn) = p(x1)
n−1

∏
i=1

p(xi+1|xi )
n

∏
i=1

p(yi |xi ).

Y1,Y2, . . . ,Yn, . . . is called a hidden Markov model (HMM)

Applied to speech recognition, handwriting recognition, and so on.

The same argument as for functions of Markov chain works for
HMMs.
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