
Seminar 8

1. Let F : R2 → R be the function defined by

F (x, y) := (1− x2) cos y − ex sin y ln(1 + x2 + y2).

Prove that there exists an open neighborhood U ⊆ R of 1 and there
exists a function f : U → R, which is of class C1 on U and satisfies

f(1) = 0 and F (x, f(x)) = 0 for all x ∈ U.

Determine f ′(1).

2. Let a > 0 be a real number, and let C be the set defined by

C :=
{

(x, y)
∣∣∣ x2 + y2 − a

2

(
x+

√
x2 + y2

)
= 0
}
.

The points of C lie on a plane curve, called cardioid (see figure 1).
Determine all the points of the cardioid around which one can express
the variable y as a function of x.

Figure 1: The cardioid
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3. (Homework) Prove that the equation x2+xy+2y2+3z4−z = 9 defines
implicitly around the point (1,−2) a function z = f(x, y), which is of
class C1 and satisfies f(1,−2) = 1. Determine the first order partial
derivatives and the differential of f at (1,−2).

4. (Homework) Let a > 0 be a real number, and let C be the set defined
by

C := { (x, y, z) ∈ R3 | x2 + y2 + z2 = a2, x2 + y2 = ax }.
The points of C lie on a space curve, called Viviani’s curve or Vi-
viani’s window (see figure 2). Determine all the points of Viviani’s
curve around which it can be parameterized by using y as parameter.

Figure 2: Curba lui Viviani

5. Prove that the system {
x2 + uy + ev = 0
2x+ u2 − uv = 5

defines implicitly in a neighborhood of (2, 5) a function

f = (f1(x, y), f2(x, y)),

which is of class C1 and satisfies f(2, 5) = (−1, 0). Determine df(2, 5).

6. (Homework) Prove that the system
x2 − y cos(uv) + z2 = 0
x2 + y2 − sin(uv) + 2z2 = 2
xy − cosu cos v + z = 1
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defines implicitly in a neighborhood of the point
(π

2
, 0
)

a function

f = (f1(u, v), f2(u, v), f3(u, v)),

which is of class C1 and satisfies f
(π

2
, 0
)

= (1, 1, 0). Determine the

differential df
(π

2
, 0
)

.

7. Let f : R3 → R be the function defined by f(x, y, z) := x+ y + z, and
let C be the set defined by

C := { (x, y, z) ∈ R3 | x2 + y2 + z2 = 1, 2x+ y + 2z = 1 }.

Determine min f(C) and max f(C).

8. (Homework) Let f be the function defined by f(x, y, z) := x2+y2−z2,
and let C be the set defined by

C := { (x, y, z) ∈ R3 | x2 + y2 + z2 = 9, x+ y + z = 5 }.

Determine min f(C) and max f(C).

9. Consider the function f : R3 → R, defined by

f(x, y, z) := x2 + y2 + z2 − 2x+ 2
√

2y + 2z

and the set B := { (x, y, z) ∈ R3 | x2 + y2 + z2 ≤ 1 }. Determine
min f(B) and max f(B).

10. Determine the stationary points of the following functions and investi-
gate their nature:

a) f : R3 → R, f(x, y, z) := 2x2 − xy + 2xz − y + y3 + z2;

b) f : R2 → R, f(x, y) := 3x− 3y − 2x3 − xy2 + 2x2y + y3;

c) f : R3 → R, f(x, y, z) := x2 + y2 + z2 − 2xyz;

d) f : R2 → R, f(x, y) := x4 + y4 − 2x2.
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Solutions

1. We have to prove that the equation

F (x, y) = 0 ⇔ (1− x2) cos y − ex sin y ln(1 + x2 + y2) = 0

defines implicitly the variable y as a function of the variable x around the
point (a, b) = (1, 0). We check the hypotheses of the implicit function the-
orem (Theorem 2.15.3 in the lecture notes). Obviously, F is of class C1 on
R2 and it satisfies F (a, b) = F (1, 0) = 0. The other condition is

det Jy(F )(1, 0) 6= 0 ⇔ ∂F

∂y
(1, 0) 6= 0.

Since

∂F

∂y
(x, y) = −(1− x2) sin y − ex cos y ln(1 + x2 + y2)− ex sin y · 2y

1 + x2 + y2
,

it follows that
∂F

∂y
(1, 0) = −e ln 2 6= 0, hence the implicit function theorem

can be applied. According to it, there exists an open neighborhood U ⊆ R
of 1 and there exists a function f : U → R, which is of class C1 on U , such
that f(1) = 0 and

F (x, f(x)) = (1− x2) cos f(x)− ex sin f(x) ln(1 + x2 + f 2(x)) = 0 ∀ x ∈ U.

Differentiating both sides of this equality, we deduce that for all x ∈ U it
holds

−2x cos f(x)− (1− x2) sin f(x) · f ′(x)− ex sin f(x) ln(1 + x2 + f 2(x))

−ex cos f(x) · f ′(x) ln(1 + x2 + f 2(x))

−ex sin f(x)
2x+ 2f(x)f ′(x)

1 + x2 + f 2(x)
= 0.

Letting x = 1 and tacking into consideration that f(1) = 0, we get

−2− e ln 2 · f ′(1) = 0 ⇒ f ′(1) = − 2

e ln 2
.

2. Let F : R2 → R be the function defined by

F (x, y) := x2 + y2 − a

2

(
x+

√
x2 + y2

)
,
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and let (x0, y0) ∈ C. The condition that y can be expressed as a function
of x around the point (x0, y0) is actually the condition that the equation
F (x, y) = 0 defines implicitly y as a function of x around (x0, y0). This is

∂F

∂y
(x0, y0) 6= 0 ⇔ 2y0 −

ay0

2
√
x20 + y20

6= 0.

Solving the system
2y − ay

2
√
x2 + y2

= 0

x2 + y2 − a

2

(
x+

√
x2 + y2

)
= 0,

we get (x, y) ∈

{
(0, 0), (a, 0),

(
−a

8
,
a
√

3

8

)
,

(
−a

8
,−a
√

3

8

)}
. Therefore,

the points of the cardioid around which one can express the variable y as a

function of x are (x, y) ∈ C \

{
(0, 0), (a, 0),

(
−a

8
,
a
√

3

8

)
,

(
−a

8
,−a
√

3

8

)}
(see figure 3).

Figure 3:

3. Consider the function F : R2 × R→ R, defined by

F (x, y, z) := x2 + xy + 2y2 + 3z4 − z − 9
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and the points a := (1,−2), b := 1. We have to prove that the equation
F (x, y, z) = 0 defines implicitly the variable z as a function of x and y around
the point (a, b) = (1,−2, 1). We check the hypotheses of the implicit function
theorem. Obviously, F is of class C1 on R3 and F (a, b) = F (1,−2, 1) = 0.
The other condition is

det Jz(F )(1,−2, 1) 6= 0 ⇔ ∂F

∂z
(1,−2, 1) 6= 0.

Since
∂F

∂z
(x, y, z) = 12z3 − 1,

it follows that
∂F

∂z
(1,−2, 1) = 11 6= 0, hence the implicit function theorem

can be applied. According to it, there exists an open neighborhood U ⊆ R2

of a and there exists a function f : U → R, of class C1 on U , such that
f(1,−2) = 1 and

x2 + xy + 2y2 + 3f 4(x, y)− f(x, y)− 9 = 0 ∀ (x, y) ∈ U.

Differentiating both sides of this equality, first with respect to x, then with
respect to y, we obtain

2x+ y + 12f 3(x, y)
∂f

∂x
(x, y)− ∂f

∂x
(x, y) = 0 ∀ (x, y) ∈ U

and

x+ 4y + 12f 3(x, y)
∂f

∂y
(x, y)− ∂f

∂y
(x, y) = 0 ∀ (x, y) ∈ U.

Letting (x, y) = (1,−2) and tacking into account that f(1,−2) = 1, we get

∂f

∂x
(1,−2) = 0 s, i

∂f

∂y
(1,−2) =

7

11
.

Consequently, we have df(1,−2)(h1, h2) = 7
11
h2 for all (h1, h2) ∈ R2.

4. Consider the function F : R× R2 → R2, defined by

F (x, y, z) :=
(
x2 + y2 + z2 − a2, x2 + y2 − ax

)
.

We have to find all the points (x0, y0, z0) ∈ C with the property that the
equation F (x, y, z) = (0, 0) defines implicitly around (x0, y0, z0) the variables
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Figure 4:

x and z as functions of y. Proceeding as in the solution of problem 2 , we
obtain (see figure 4)

(x0, y0, z0) ∈ C \

{
(a, 0, 0),

(
a

2
,−a

2
,−a
√

2

2

)
,

(
a

2
,−a

2
,
a
√

2

2

)
,(

a

2
,
a

2
,−a
√

2

2

)
,

(
a

2
,
a

2
,
a
√

2

2

)}
.

5. Consider the function F : R2 × R2 → R2, defined by

F (x, y, u, v) :=
(
x2 + uy + ev︸ ︷︷ ︸
F1(x, y, u, v)

, 2x+ u2 − uv − 5︸ ︷︷ ︸
F2(x, y, u, v)

)

and the points a := (2, 5), b := (−1, 0). We have to prove that the vector
equation (or that the system of scalar equations) F (x, y, u, v) = (0, 0) defines
implicitly the variables u and v as functions of x and y around the point
(a, b) = (2, 5,−1, 0). We check the hypotheses of the implicit function theo-
rem. Obviously, F is of class C1 on R4 and F (2, 5,−1, 0) = (0, 0). The other
condition is

det J(u,v)(F )(2, 5,−1, 0) 6= 0.
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We have

J(u,v)(F )(x, y, u, v) =


∂F1

∂u
(x, y, u, v)

∂F1

∂v
(x, y, u, v)

∂F2

∂u
(x, y, u, v)

∂F2

∂v
(x, y, u, v)


=

(
y ev

2u− v −u

)
.

Therefore,

det J(u,v)(F )(2, 5,−1, 0) =

∣∣∣∣ 5 1
−2 1

∣∣∣∣ = 7 6= 0,

hence the implicit function theorem can be applied. According to it, there
exists an open neighborhood U ⊆ R2 of the point a as well as a function
f = (f1, f2) : U → R2, which is of class C1 pe U , such that f(2, 5) = (−1, 0)
and

(1) ∀ (x, y) ∈ U :

{
x2 + f1(x, y)y + ef2(x,y) = 0
2x+ f 2

1 (x, y)− f1(x, y)f2(x, y)− 5 = 0.

Differentiating with respect to x both equalities in (1), we obtain
2x+

∂f1
∂x

(x, y) y + ef2(x,y)
∂f2
∂x

(x, y) = 0

2 + 2f1(x, y)
∂f1
∂x

(x, y)− ∂f1
∂x

(x, y) f2(x, y)− f1(x, y)
∂f2
∂x

(x, y) = 0

for all (x, y) ∈ U . Then letting (x, y) = (2, 5) and tacking into consideration
that f1(2, 5) = −1 and f2(2, 5) = 0, we get

5
∂f1
∂x

(2, 5) +
∂f2
∂x

(2, 5) = −4

−2
∂f1
∂x

(2, 5) +
∂f2
∂x

(2, 5) = −2,

whence
∂f1
∂x

(2, 5) = −2

7
,
∂f2
∂x

(2, 5) = −18

7
.
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Differentiating now with respect to y both equalities in (1), and proceed-

ing as above, we obtain
∂f1
∂y

(2, 5) =
1

7
,
∂f2
∂y

(2, 5) =
2

7
. Consequently, we

have

J(f)(2, 5) =

 −2

7

1

7

−18

7

2

7

 ,

whence

df(2, 5)(h1, h2) =

 −2

7

1

7

−18

7

2

7

( h1
h2

)
=

 −2h1 + h2
7

−18h1 + 2h2
7

 .

7. C is the set of points lying on the circle obtained by intersecting the
sphere (S) : x2 + y2 + z2 = 1 with the plane (π) : 2x + y + 2z = 1 (see
figure 5).

Figure 5:

Therefore, C is a compact set. Since the function f is continuous, in
virtue of the Weierstrass theorem it follows that it is bounded and attains
its bounds on C. Consequently, there exist two points (a, b, c) ∈ C and
(a′, b′, c′) ∈ C such that

f(a, b, c) = min f(C) and f(a′, b′, c′) = max f(C).

According to the method of Lagrange multipliers (Theorem 2.17.1 in the
lecture notes), for each of the two extrema there exists a pair of multipliers
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(λ0, µ0), (λ
′
0, µ

′
0) ∈ R2 such that

(a, b, c, λ0, µ0) and (a′, b′, c′, λ′0, µ
′
0)

are stationary points for the Lagrange function. Let

F1(x, y, z) := x2 + y2 + z2 − 1 and F2(x, y, z) := 2x+ y + 2z − 1

be the functions expressing the constraints on the variables in the definition
of the set C, and let

L(x, y, z, λ, µ) := f(x, y, z) + λF1(x, y, z) + µF2(x, y, z)

= x+ y + z + λ(x2 + y2 + z2 − 1) + µ(2x+ y + 2z − 1)

be the Lagrange function. All that remains to be done is to determine the
stationary points of L. They are solutions to the system

L′
x(x, y, z, λ, µ) = 1 + 2λx+ 2µ = 0

L′
y(x, y, z, λ, µ) = 1 + 2λy + µ = 0

L′
z(x, y, z, λ, µ) = 1 + 2λz + 2µ = 0

L′
λ(x, y, z, λ, µ) = x2 + y2 + z2 − 1 = 0

L′
µ(x, y, z, λ, µ) = 2x+ y + 2z − 1 = 0.

Subtracting side by side the first and the third equation, we get 2λ(x−z) = 0,
whence x = z (we cannot have λ = 0 because, otherwise, it would result that
1 + 2µ = 0 = 1 + µ, which is absurd). Therefore, we have

{
2x2 + y2 − 1 = 0
4x+ y − 1 = 0

⇒


x = 0, y = 1

or
x = 4

9
, y = −7

9
.

Finally, the stationary points of L are

(0, 1, 0, ... , ...) and

(
4

9
,−7

9
,
4

9
, ... , ...

)
.

We have not yet determined the values of the multipliers because they have
no relevance to the problem. Since f(0, 1, 0) = 1 and f

(
4
9
,−7

9
, 4
9

)
= 1

9
, it

follows that min f(C) = 1
9

s, i max f(C) = 1.
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9. The set B is compact, while the function f is continuous. According to
the Weierstrass theorem, there exist two points (a, b, c), (a′, b′, c′) ∈ B such
that

f(a, b, c) = min f(B) and f(a′, b′, c′) = max f(B).

Note that

∇f(x, y, z) = (0, 0, 0) ⇔


2x− 2 = 0

2y + 2
√

2 = 0
2z + 2 = 0

⇔


x = 1

y = −
√

2
z = −1,

and (1,−
√

2,−1) 6∈ intB. Therefore, (a, b, c), (a′, b′, c′) ∈ bdB. We have

bdB = {(x, y, z) | x2 + y2 + z2 = 1}.

Consider the function F (x, y, z) := x2+y2+z2−1. According to the method
of Lagrange multipliers, for each of the two extrema there exists a multiplier
λ0, λ

′
0 ∈ R such that (a, b, c, λ0) and (a′, b′, c′, λ′0) are stationary points for

the Lagrange function

L(x, y, z, λ) := f(x, y, z) + λF (x, y, z)

= x2 + y2 + z2 − 2x+ 2
√

2y + 2z + λ(x2 + y2 + z2 − 1).

A simple calculation shows that the only stationary points of L are(
1

2
, −
√

2

2
, −1

2
, 1

)
and

(
−1

2
,

√
2

2
,

1

2
, −3

)
.

Tacking into account that f
(

1
2
, −

√
2
2
, −1

2

)
= −3 and f

(
−1

2
,

√
2
2
, 1

2

)
= 5,

we conclude that min f(B) = −3 and max f(B) = 5.

Geometric interpretation. The set B is the closed unit ball in R3. We
have f(x, y, z) = (x− 1)2 + (y +

√
2 )2 + (z + 1)2 − 4, hence

f(x, y, z) = PM2 − 4, where P (x, y, z), M(1,−
√

2,−1).

Therefore, the problem is to determine the smallest and largest distance PM ,
when the point P lies in B. The points P ′ and P ′′ for which the distance
PM is minimum/maximum can be obtained by intersecting the line OM
with the sphere (S) : x2 + y2 + z2 = 1 (see figure 6). The parametric
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Figure 6:

equations of the line OM are OM : x = t, y = −
√

2t, z = −t. Assuming

that (t,−
√

2t,−t) ∈ S, we deduce that t = ±1
2
, whence P ′

(
1
2
, −

√
2
2
, −1

2

)
and P ′′

(
−1

2
,

√
2
2
, 1

2

)
.

10. a) I. We first determine the stationary points of f . They are solutions
to the system

f ′
x(x, y, z) = 4x− y + 2z = 0

f ′
y(x, y, z) = −x− 1 + 3y2 = 0

f ′
z(x, y, z) = 2x+ 2z = 0.

Solving the system, we find the stationary points
(
1
3
, 2

3
, −1

3

)
,
(
−1

4
, −1

2
, 1

4

)
.

II. We determine the second order partial derivatives of f and the Hessian
matrix. We have

f ′′
xx(x, y, z) = 4, f ′′

xy(x, y, z) = f ′′
yx(x, y, z) = −1,

f ′′
yy(x, y, z) = 6y, f ′′

yz(x, y, z) = f ′′
zy(x, y, z) = 0,

f ′′
zz(x, y, z) = 2, f ′′

zx(x, y, z) = f ′′
xz(x, y, z) = 2.

Therefore,

H(f)(x, y, z) =

 4 −1 2
−1 6y 0
2 0 2

 .
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III.1. The Hessian matrix in the first stationary point is

H(f)

(
1

3
,

2

3
, −1

3

)
=

 4 −1 2
−1 4 0
2 0 2

 ,

while the diagonal principal minors in the Sylvester theorem are

∆1 = 4, ∆2 =

∣∣∣∣ 4 −1
−1 4

∣∣∣∣ = 15, ∆3 =

∣∣∣∣∣∣
4 −1 2
−1 4 0
2 0 2

∣∣∣∣∣∣ = 14.

Since ∆1 > 0, ∆2 > 0 and ∆3 > 0, it follows that
(
1
3
, 2

3
, −1

3

)
is a local

minimum point for f .

III.2. For the second stationary point we have

H(f)

(
−1

4
, −1

2
,

1

4

)
=

 4 −1 2
−1 −3 0
2 0 2


and

∆1 = 4, ∆2 =

∣∣∣∣ 4 −1
−1 −3

∣∣∣∣ = −13, ∆3 =

∣∣∣∣∣∣
4 −1 2
−1 −3 0
2 0 2

∣∣∣∣∣∣ = −14.

Therefore,
(
−1

4
, −1

2
, 1

4

)
is a saddle point.

Remark. Although f has only one extremum point (a minimum), this
point is not a global minimum for f . Indeed, we have

f(0, y, 0) = y3 − y −→ −∞ as y → −∞.

b) I. The stationary points of f are solutions to the system

f ′
x(x, y) = 3− 6x2 − y2 + 4xy = 0

f ′
y(x, y) = −3− 2xy + 2x2 + 3y2 = 0.

Solving the system, we find the stationary points (1, 1), (−1,−1),
(

1√
6
, − 2√

6

)
and

(
− 1√

6
, 2√

6

)
.
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II. We determine the second order partial derivatives of f and the Hessian
matrix. We have

f ′′
xx(x, y) = −12x+ 4y, f ′′

xy(x, y) = f ′′
yx(x, y) = −2y + 4x,

f ′′
yy(x, y) = −2x+ 6y.

Therefore,

H(f)(x, y) =

(
4y − 12x 4x− 2y
4x− 2y 6y − 2x

)
.

III.1. Since

H(f)(1, 1) =

(
−8 2
2 4

)
,

it follows that

∆1 = −8, ∆2 =

∣∣∣∣ −8 2
2 4

∣∣∣∣ = −36,

hence (1, 1) is a saddle point.

III.2. Since

H(f)

(
1√
6
, − 2√

6

)
=

(
− 20√

6
8√
6

8√
6
− 14√

6

)
,

it follows that

∆1 = − 20√
6
, ∆2 =

∣∣∣∣∣ − 20√
6

8√
6

8√
6
− 14√

6

∣∣∣∣∣ = 36,

hence
(

1√
6
, − 2√

6

)
is a local maximum for f .

Proceeding as above, it is found that (Homework) (−1,−1) is a saddle

point, while
(
− 1√

6
, 2√

6

)
is a local minimum.

c) I. The stationary points of f are solutions to the system

f ′
x(x, y, z) = 2x− 2yz = 0

f ′
y(x, y, z) = 2y − 2zx = 0

f ′
z(x, y, z) = 2z − 2xy = 0.

Solving the system, we find that the the stationary points of f are (0, 0, 0),
(1, 1, 1), (−1,−1, 1), (1,−1,−1) and (−1, 1,−1).
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II. We determine the second order partial derivatives of f and the Hessian
matrix. We have

f ′′
xx(x, y, z) = 2, f ′′

xy(x, y, z) = f ′′
yx(x, y, z) = −2z,

f ′′
yy(x, y, z) = 2, f ′′

yz(x, y, z) = f ′′
zy(x, y, z) = −2x,

f ′′
zz(x, y, z) = 2, f ′′

zx(x, y, z) = f ′′
xz(x, y, z) = −2y.

Therefore,

H(f)(x, y, z) =

 2 −2z −2y
−2z 2 −2x
−2y −2x 2

 .

III.1. Since

H(f)(0, 0, 0) =

 2 0 0
0 2 0
0 0 2

 ,

we have ∆1 = 2, ∆2 = 4, ∆3 = 8, hence (0, 0, 0) is a local minimum.

III.2. Since

H(f)(1, 1, 1) =

 2 −2 −2
−2 2 −2
−2 −2 2

 ,

we have ∆1 = 2, ∆2 = 0, hence the Sylvester theorem cannot be applied. We
determine the second order differential of f at the stationary point (1, 1, 1).
This is the quadratic form

d2f(1, 1, 1)(h1, h2, h3) = 2h21 + 2h22 + 2h23 − 4h1h2 − 4h2h3 − 4h3h1.

Since d2f(1, 1, 1)(1, 0, 0) = 2 > 0 and d2f(1, 1, 1)(1, 1, 1) = −6 < 0, it follows
that d2f(1, 1, 1) is an indefinite quadratic form. Consequently, (1, 1, 1) is a
saddle point.

Proceeding analogously, it is found that (Homework) the three remain-
ing stationary points of f are saddle points, too.

d) The stationary points of f are (Homework) (0, 0), (1, 0) and (−1, 0),
while the Hessian matrix is

H(f)(x, y) =

(
12x2 − 4 0

0 12y2

)
.
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Since H(f)(0, 0) =

(
−4 0
0 0

)
, we have ∆1 = −4, ∆2 = 0, hence the

Sylvester theorem cannot be applied. The second order differential of f at
(0, 0), d2f(0, 0)(h1, h2) = −4h21 is a negative semi-definite quadratic form,
hence it is useless in establishing the nature of (0, 0). Note that

f(0, y) = y4 > 0 = f(0, 0) for all y ∈ R \ {0},

hence (0, 0) cannot be a local maximum for f . On the other hand, since

f(x, 0) = x2(x2 − 2) < 0 = f(0, 0) for all x ∈ (−
√

2,
√

2 ) \ {0},

it follows that (0, 0) cannot be a local minimum for f . In conclusion, (0, 0)
is a saddle point.

Since H(f)(1, 0) = H(f)(−1, 0) =

(
8 0
0 0

)
, we have ∆1 = 8, ∆2 = 0,

hence the Sylvester theorem cannot be applied even now. The second order
differential of f at (1, 0) and at (−1, 0),

d2f(1, 0)(h1, h2) = d2f(−1, 0)(h1, h2) = 8h21

is a positive semi-definite quadratic form, hence it is useless in establishing
the nature of of the points (1, 0) and (−1, 0). Note that

f(x, y) = (x2 − 1)2 + y4 − 1 ≥ −1 = f(1, 0) = f(−1, 0)

for all (x, y) ∈ R2, hence (1, 0) and (−1, 0) are global minimum points for f .
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