Seminar &

1. Let F: R? — R be the function defined by
F(z,y) := (1 —2%)cosy — e“sinyIn(1 + 22 + 3?).

Prove that there exists an open neighborhood U C R of 1 and there
exists a function f : U — R, which is of class C! on U and satisfies

f(1)=0 and F(z,f(z))=0 forallzelU.
Determine f'(1).

2. Let a > 0 be a real number, and let C' be the set defined by

a
C:= {(x,y) ‘ R Ve 3 <x+ x2—|—y2> :0}.
The points of C' lie on a plane curve, called cardioid (see figure 1).
Determine all the points of the cardioid around which one can express
the variable y as a function of z.

Figure 1: The cardioid



3. (Homework) Prove that the equation 2% +xy+2y*+32%—2 = 9 defines
implicitly around the point (1, —2) a function z = f(x,y), which is of
class C! and satisfies f(1,—2) = 1. Determine the first order partial
derivatives and the differential of f at (1,—2).

4. (Homework) Let a > 0 be a real number, and let C' be the set defined
by
C:={(z,y,2) R’ | 2* +y*+ 2> =0a”, 2’ +y’ =az}.
The points of C lie on a space curve, called Viviani’s curve or Vi-
viani’s window (see figure 2). Determine all the points of Viviani’s
curve around which it can be parameterized by using y as parameter.

Figure 2: Curba lui Viviani

5. Prove that the system

24+ uy+e' =0
20 +u? —uv=>5

defines implicitly in a neighborhood of (2,5) a function
f=(N(zy), falz,y)),
which is of class C'! and satisfies f(2,5) = (—1,0). Determine df(2,5).
6. (Homework) Prove that the system

z? — ycos(uv) + 22 =0
22+ y? — sin(uv) + 222 = 2
Ty —cosucosv + z =1
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10.

defines implicitly in a neighborhood of the point (g, 0) a function

f: (fl(uvv)a fQ(U,,'U), fg(U,U)),
which is of class C! and satisfies f (g,O) = (1,1,0). Determine the
. . T
differential d f (5, O).

Let f:R3> — R be the function defined by f(z,y,2) ==z +y + 2, and
let C' be the set defined by

Ci={(r,y,2) ER® |22 4+ y? + 22 =1, 20 +y+2z=1).

Determine min f(C) and max f(C').

. (Homework) Let f be the function defined by f(z,y, z) 1= 22+y*—22,

and let C' be the set defined by
C:={(r,y,2) eR® |2+ +22=9, 2 +y+z=5}.

Determine min f(C') and max f(C).

. Consider the function f : R?* — R, defined by

flz,y,2) ::x2+y2+22—2x+2\/§y+2z

and the set B := {(z,y,2) € R3 | 22 + y?> + 2> < 1}. Determine
min f(B) and max f(B).

Determine the stationary points of the following functions and investi-
gate their nature:

a) R >R, f
b) f:R? =R, f
c) f:RE =R, f
d) f:RZ= R, f

Y, 2) =222 —xy + 222 —y + > + 2%
) =3z — 3y — 22° — xy? + 222y + y>;
Y, 2) = a? 4y + 2% — 2xyz;

(2,y
(2,y
(2,y
(z,y) = 2t + y* — 222



Solutions
We have to prove that the equation
F(r,y)=0 < (1 —2*)cosy—e“sinyln(l +2*+y*) =0

defines implicitly the variable y as a function of the variable x around the
point (a,b) = (1,0). We check the hypotheses of the implicit function the-
orem (Theorem 2.15.3 in the lecture notes). Obviously, F' is of class C' on
R? and it satisfies F'(a,b) = F(1,0) = 0. The other condition is

det J,(F)(1,0) £0 < g—g (1,0) # 0.

Since
oF 2
Gy (09) = —(1=2)siny — " cosyln(l +2% +42) = “siny - T

oF
it follows that B (1,0) = —eln2 # 0, hence the implicit function theorem
Y

can be applied. According to it, there exists an open neighborhood U C R
of 1 and there exists a function f : U — R, which is of class C! on U, such

that f(1) =0 and
F(z, f(z)) = (1 — %) cos f(z) — e“sin f(z) In(1 + 2° + f*(z)) =0 VazeU.

Differentiating both sides of this equality, we deduce that for all x € U it
holds

—2zcos f(z) — (1 — 2 sin f(x) - f/(x) — e"sin f(x) In(1 4+ 2 + f3(2))
—e®cos f(x) - f/(x)In(1+ 2* + f3(2))
i oy 2200 2)

T o)

Letting x = 1 and tacking into consideration that f(1) = 0, we get

2

—2—eln2-f'(1)=0 = f(1)= o

Let F : R? — R be the function defined by

F(z,y) :=x2+y2—g<x+ w2+y2>,
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and let (xg,70) € C. The condition that y can be expressed as a function
of x around the point (zg,yo) is actually the condition that the equation
F(z,y) = 0 defines implicitly y as a function of x around (xg, yo). This is

oF ayo

— (X0, %0) #0 & 2y — —F—= #0

Ay ) 2v/23 + y?
Solving the system

Qy_L—O

NEE

m2+y2—g<x+ a:2—|—y2>20,

we get (z,y) € {(0,0), (a,0), (—%, %) , (—%,—%) } Therefore,

the points of the cardioid around which one can express the variable y as a

function of x are (z,y) € C'\ {(0,0), (a,0), (—%, %) : (—%, —%) }

(see figure 3).

Figure 3:

Consider the function F : R? x R — R, defined by

F(z,y,2) =2+ oy +2> +32* —2 -9
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and the points a := (1,—2), b := 1. We have to prove that the equation
F(z,y,z) = 0 defines implicitly the variable z as a function of  and y around
the point (a,b) = (1,—2,1). We check the hypotheses of the implicit function
theorem. Obviously, F' is of class C' on R?® and F(a,b) = F(1,-2,1) = 0.
The other condition is

det J.(F)(1,—2,1) £ 0 aa—F (1,-2,1) £0.
z
Since oF
— =122° —1
5, (©Y,2) =122 -1,

oF
it follows that 5 (1,—2,1) = 11 # 0, hence the implicit function theorem
z

can be applied. According to it, there exists an open neighborhood U C R?
of a and there exists a function f : U — R, of class C! on U, such that
f(1,-2) =1 and

2+ a2y +2y° + 3z, y) — f(z,y) —9=0 V (2,y) € U.

Differentiating both sides of this equality, first with respect to x, then with
respect to y, we obtain

of of
3 —_— _ — —
2 +y+12f %z, y) 5= (@,y) = 5 (2,y) =0 V(z,y) €U
and o o7
3 —_ _— =
z+4y + 121 (2, y) 3y (7,9) 3y (z,y) =0 V (z,y) €U
Letting (x,y) = (1, —2) and tacking into account that f(1,—2) =1, we get
of B . Of T
Iz (1,-2) =0 si By (1,-2) = Th

Consequently, we have df(1, —=2)(hi, ho) = 5 ho for all (hy, ho) € R2
Consider the function F : R x R? — R2, defined by
Flz,y,2) = (2 +y* +2° — a*, 2” +y* — ax).

We have to find all the points (xg, 30, 20) € C with the property that the
equation F'(z,y, z) = (0,0) defines implicitly around (xg, yo, 20) the variables
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Figure 4:

x and z as functions of y. Proceeding as in the solution of problem , we

obtain (see figure 4)

e efen 159) (8)
(5-9) (39

Consider the function F' : R? x R? — R?, defined by

Q
w%
)

N

F(z,y,u,v) = (;762+uy+ei, 2x+u2—uv—§)

-~

Fy(x,y,u,v)  Fo(x,y,u,v)

and the points a := (2,5), b := (—1,0). We have to prove that the vector
equation (or that the system of scalar equations) F'(z,y,u,v) = (0,0) defines
implicitly the variables u and v as functions of x and y around the point
(a,b) = (2,5,—1,0). We check the hypotheses of the implicit function theo-
rem. Obviously, F is of class C! on R* and F(2,5,—1,0) = (0,0). The other

condition is

det J(u’v)(F)(Q, 5,—1,0) # 0.



We have
=1 ($ u U) =1 (.’17 u ’U)
o Y, U, v Y, U,

JA(u,v) (1 )(l‘, Yy, u, 'U)
—2 (ZE u U) —2 (.I' u U)
0 Y, U, N » Y, U,

y e’
2u—v —u )

det J(u,v)(F)(2757_170) = ‘ _52 1 ‘ = 77& 0,

Therefore,

hence the implicit function theorem can be applied. According to it, there
exists an open neighborhood U C R? of the point a as well as a function
f=(f1,f) : U— R2 which is of class C' pe U, such that f(2,5) = (—1,0)
and

_ 22+ fi(x,y)y + 2@V =0
(1)  V(xyeU: {2x+f1(x,?;)y fi(z,y) fo(z,y) —5 = 0.

Differentiating with respect to x both equalities in (1), we obtain

a 5y (@:y) =0

2+2f1(w,y)%(x,y) - %(:&y) fao(w,y) — fi(z,y) %f (z,y) =0

for all (x,y) € U. Then letting (z,y) = (2,5) and tacking into consideration
that f1(2,5) = —1 and f»(2,5) = 0, we get

9 of2

55 (2.5) + 52 (2,5) = —4
of dfs
—25(2,5) + 57 (2,5) = -2,
fy 2 0f _ 18
whence % (2 5) ?, % (275) = 7 .



Differentiating now with respect to y both equalities in (1), and proceed-

. . O0fy 1 J0fy 2
b btain — (2,5) ==, =—(2,5)==. C tl
ing as above, we obtain o (2,5) 7 (2,5) - onsequently, we
have
2 1
JH25) = & & |,
77
whence
2 1 —2h1 + ho
_Zz Z hy A
df(2,5)(h1, ho) = _1_78 % ( hs ) = —18h17+ 2hs
7T T 7

C is the set of points lying on the circle obtained by intersecting the
sphere (S) : 2?4+ y? + 2% = 1 with the plane (7) : 2z +y + 22z = 1 (see
figure 5).

%

Figure 5:

Therefore, C' is a compact set. Since the function f is continuous, in
virtue of the Weierstrass theorem it follows that it is bounded and attains
its bounds on C. Consequently, there exist two points (a,b,c¢) € C and
(a',b', ') € C such that

f(a,b,c) =min f(C) and f(d',V,c) = max f(C).

According to the method of Lagrange multipliers (Theorem 2.17.1 in the
lecture notes), for each of the two extrema there exists a pair of multipliers
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(Xos 10), (M, 1) € R? such that
(a,b,¢, N, o) and (a',b', ¢, ), o)
are stationary points for the Lagrange function. Let
Fi(z,y,z) =2 +y* +22 =1 and Fy(z,y,2) =20 +y+2z—1

be the functions expressing the constraints on the variables in the definition
of the set C, and let

L(z,y,z,\p) = [,y 2) + AFi(2,y, 2) + pha(z,y, 2)
= o4yt A2+ + 22— D) +pRe+y+22—1)

be the Lagrange function. All that remains to be done is to determine the
stationary points of L. They are solutions to the system

L (x,y,z,\, ) =1+2 x4+ 2u =0

2 )
L(x,y, 2, \,pu) =1+2\y+pu=0
L,y 2, A p) =142 2 +2u =0
L\(z,y,z, \\ ) =2+ + 22— 1=0
L(r,y,2,A\,p) =2x+y+22—-1=0.

Subtracting side by side the first and the third equation, we get 2A(z—2z) = 0,
whence z = z (we cannot have A\ = 0 because, otherwise, it would result that
1+ 2u=0=1+ u, which is absurd). Therefore, we have

{2x2+y2—1:0

0
de+y—1=0 = Zr
9

Finally, the stationary points of L are

4 7 4
0,1,0,...,... d (=== s ).
(777 7)an (97 9797 7>

We have not yet determined the values of the multipliers because they have
no relevance to the problem. Since f(0,1,0) = 1 and f (% ,—1 é) =1 it

9°9 9
follows that min f(C) = § si max f(C) = 1.
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The set B is compact, while the function f is continuous. According to
the Weierstrass theorem, there exist two points (a,b,¢), (a/,¥', ') € B such
that

f(a,b,c) =min f(B) and f(d',V,d) = max f(B).

Note that
Vf(x,y,2)=(0,0,0) <« 2y+2v2=0 & y=—V2
2z+2=0 z=—1,

and (1, —v/2, —1) ¢ int B. Therefore, (a,b,c), (a’,¥,c) € bd B. We have
bd B = {(z,y,2) | 2* +y* + 2> = 1}.

Consider the function F(z,y, z) := 2*+y?+ 2% —1. According to the method
of Lagrange multipliers, for each of the two extrema there exists a multiplier
Ao, Ay € R such that (a,b,c, A\g) and (a/,b', ¢, \) are stationary points for
the Lagrange function

L(z,y,z,\) = f(z,y,2)+ \F(x,y,2)
= 22+ 42720+ 2V + 22+ A2+ P+ 22— 1),

A simple calculation shows that the only stationary points of L are

20 2
we conclude that min f(B) = —3 and max f(B) = 5.

Tacking into account that f <%, — Y2 —l) = —3 and f (—%, ¥2 l) =
Geometric interpretation. The set B is the closed unit ball in R3. We
have f(z,y,2) = (x — 1) + (y + v2)? + (2 + 1)® — 4, hence

f(z,y,2) = PM? —4, where P(z,y,2), M(1,—v2,—1).

Therefore, the problem is to determine the smallest and largest distance PM,,
when the point P lies in B. The points P’ and P” for which the distance
PM is minimum/maximum can be obtained by intersecting the line OM
with the sphere (S) : 2 + y* + 22 = 1 (see figure 6). The parametric
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Figure 6:

equations of the line OM are OM : z =t, y = —/2t, z = —t. Assuming
that (t, —V/2t, —t) € S, we deduce that t = 41, whence P’ (%, V2 —l>

27 2 2
1 1 v2 1
and P <—§,7,§>

a) I. We first determine the stationary points of f. They are solutions
to the system

fi(z,y,2) =4 —y+22=0
fi(@,y,2)=—2—143y" =0

fiz,y,2) =2z +22=0.
Solving the system, we find the stationary points (% , % , —%), (—;11 , —% , %)
I1. We determine the second order partial derivatives of f and the Hessian
matrix. We have

fg/c,x<x?yaz) = 47 f;:/y<x7yaz) = f;;(xayaz) = _17
f;’y(x,y,z) = 0y, f;;(xayaz) = f!y(mnyaz) =0,
f;'z(x,y,z) =2, f;;<x7y72> = fg’c’z(:r,y,z) =
Therefore,
4 -1 2
H(f)(z,y,z)=| —1 6y 0
2 0 2



IT1.1. The Hessian matrix in the first stationary point is

4 -1 2
(22, -5 -1 4 0.
33 3 9 0 2

while the diagonal principal minors in the Sylvester theorem are

4 1 4 -1 2
A1:4, AQZ‘ 1 4 ‘:15, Agz -1 4 0| =14.
2 0 2
Since A; > 0, Ay > 0 and Az > 0, it follows that (%, %, —%) is a local
minimum point for f.
II1.2. For the second stationary point we have
4 -1 2
1 11
H(f)(_Z’_§’Z): -1 =30
2 0 2
and
4 1 4 -1 2
Ay =4, A2:’_1 _3’:—13, Az=| -1 =3 0|=-14.
2 0 2

Therefore, (—;11 , —% , i) is a saddle point.

Remark. Although f has only one extremum point (a minimum), this
point is not a global minimum for f. Indeed, we have

f(0,4,0) =9* —y — —0c0 asy — —oo.
b) I. The stationary points of f are solutions to the system

fi(z,y) =3 —62" —y* +4dxy =0

x

folx,y) = =3 = 2xy + 22 4+ 3y* = 0.
Solving the system, we find the stationary points (1, 1), (-1, —1), <\/L6 : —\/lé)
12
and (_76’ 76) .
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IT. We determine the second order partial derivatives of f and the Hessian
matrix. We have

fan(®,y) = =122 + 4y, Joy(@,y) = [a(w,y) = =2y + 4a,
foy(@,y) = =22 + 6y.
Therefore,
4y —122 4o -2y
e = (5 ).
IT1.1. Since

-8 2
nnu=( 5 1),
it follows that

A1:—8, AQI'

hence (1,1) is a saddle point.
ITI.2. Since

1 92 _ 20 8
H =y T T = = Yo Vs )
(%) <7 —1—z>
it follows that

20 £
AI = _%7 AQ = 8\/6 \/164 = 367

S

hence (\/Lé , —\%) is a local maximum for f.

Proceeding as above, it is found that (Homework) (—1, —1) is a saddle
point, while (—\/Lé , \%) is a local minimum.
c¢) I. The stationary points of f are solutions to the system
folw y,z) =2z — 2yz =0
fo(@,y,2) =2y — 220 =0
fi(w,y,2) =22 — 22y = 0.

Solving the system, we find that the the stationary points of f are (0,0,0),
(1,1,1), (—=1,—-1,1), (1,—1,-1) and (—1,1,—1).
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IT. We determine the second order partial derivatives of f and the Hessian
matrix. We have

f;/x(x’y’ Z) - 2’ f;/y(x7ya Z) = fz///x<x>ya Z) = _2Z7
f?;/y(‘x’y’ Z) =2, fé;(ﬁ(],y,Z) :f,gy(%y,z) = —2x,
fh(z,y,z) =2, fro(@,y,2) = fi.(2,y,2) = —2y.
Therefore,
2 —2z =2y
H(f)(z,y,2)=| -2z 2 -2
—2y —2x 2
IT1.1. Since
2 00
H(f)(0,0,0)=10 2 0 |,
00 2
we have Ay =2, Ay =4, Az = 8, hence (0,0,0) is a local minimum.

IT1.2. Since
2 =2 =2

HAHLL,D = -2 2 -2 |,
-2 =2 2
we have A; = 2, Ay = 0, hence the Sylvester theorem cannot be applied. We

determine the second order differential of f at the stationary point (1, 1,1).
This is the quadratic form

d?f(1,1,1)(hy, hy, hs) = 2h3 + 2h3 + 2h3 — 4hyhy — 4hyhs — 4hsh,.

Since d?f(1,1,1)(1,0,0) =2 > 0 and d?f(1,1,1)(1,1,1) = —6 < 0, it follows
that d2f(1,1,1) is an indefinite quadratic form. Consequently, (1,1,1) is a
saddle point.

Proceeding analogously, it is found that (Homework) the three remain-
ing stationary points of f are saddle points, too.

d) The stationary points of f are (Homework) (0,0), (1,0) and (—1,0),
while the Hessian matrix is

Hea = (7 )
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Since H(f)(0,0) = ( _04 8 ), we have A; = —4, Ay = 0, hence the

Sylvester theorem cannot be applied. The second order differential of f at
(0,0), d?£(0,0)(hy, ho) = —4h? is a negative semi-definite quadratic form,
hence it is useless in establishing the nature of (0,0). Note that

f(0,) =y*>0= f(0,0) forallycR\J{0},

hence (0,0) cannot be a local maximum for f. On the other hand, since
f(x,0) =2%(2® —2) < 0= f(0,0) forall z € (—v/2,v2)\ {0},

it follows that (0,0) cannot be a local minimum for f. In conclusion, (0,0)
is a saddle point.
8 0

hence the Sylvester theorem cannot be applied even now. The second order
differential of f at (1,0) and at (—1,0),

, we have A; = 8, Ay =0,

d?f(1,0)(hy, hy) = d*f(—1,0)(hy, hy) = 8h?

is a positive semi-definite quadratic form, hence it is useless in establishing
the nature of of the points (1,0) and (—1,0). Note that

fla,y) = (2* =1 +y' =1 > 1= f(1,0) = f(~1,0)

for all (z,y) € R? hence (1,0) and (—1,0) are global minimum points for f.
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