Calculus on R"
Seminar 7 2020

Differential Calculus. Part 2

1 The Differential for Branch Functions

This section contains examples of computing the differential function attached to real
functions of vector variable, so the codomain is R. Unlike the exercises proposed for
study in Seminar 6, the functions considered now are defined on branches. On the interior
of each branch, the study goes smooth, but at the meeting point of the branches, the
differentiability might suffer. In examples it is easy not notice all possible cases.

This is actually the place where we have to apply the entire algorithm for analyzing
the differentiability of a function at point. Let us once more recall the Algorithm:

Algorithm fornReal Functions of Vector Variables

ACTR"
a € intA
f:A—=>R

Step 1: Study if f has partial derivatives at a with respect to all variables.

YES — go to Step 2
— STOP the function does not have a differential at a

In fact, we have to determine

0
a_[L]‘:(a) VJ S {1,,71}
Step 2: Study the limit
1
= i od fa s 1) = @) - 5@ | )

Recall that a = (ay, ...,a,) and h = (hq, ..., h,) € R"

a+h=(a+hi,.,a,+h,) and k] =/ + ...+ h2.

Moreover, the gradient of a function at a point is the vector composed of all of its partial
derivatives at that point. Thus

of
axl

(h, Vf(a)) =hi- 57=(a) + ... + hn
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This means that the limit is actually

f(a1+h1,,,,7a2—|—h2)—f(ah...,an)—znf h ngj( )

[ = lim =1

h=0n hi+ ..+ h2 ' @
N EE

We encounter the following cases

=0 — go to Step 3
otherwise — STOP the function does not have a differential at a

Step 3: We are in the case when [ = 0. This means that the function f is differentiable
at the point a. Its differential is the linear function

df(a) : R® - R
defined by
df (a)(h) = (h,Vf(a Zh 63: (a), YheR".
J

Example 1.1: Study the differentiability of the function
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JiR2SR, flay) =4 7\
0 (x,y)=(0,0)
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Solution:
We notice that the obvious problem appears at the point (0,0). Let us consider the set

A:=R*\{(0,0)}

This set is open. We may compute the partial derivatives of f with respect to both x and
y at each random point. Let (z,y) € A be randomly chosen. Then

g(m J) = xt + 32%y? + 2a1°
ox "’ (2 + y?)?
and
of yt + 32?%y? + 223y

- x’ —
5y ") (22 +y?)?
These functions are continuous, therefore, f is differentiable on A.

The following step is to study the existence of the partial derivatives at (0, 0), starting
with respect to x:

z3—0
ox z—0 x—0 z—0 1 —

=1eR.
This means that f has a partial derivative at (0,0) with respect to .
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Then we study the existence of the partial derivatives at (0,0) with respect to y:

0—y3
OF (0.0 — 1y 0D = FO.0 B

dy z—0 z—0 y—>0y 0 Y3 = -leR.

This means that f has a partial derivative at (0,0) with respect to y.

We follow now the steps of the Algorithm from Section 4 of Seminar 6. We
are currently at Step 2. Recall that if the function were is differentiable at (0,0),
the differential would be the function

df(0,0) : R* — R,
defined by

of
Ox

of

o (0,0), V(hi,hy) € R?.

df (0,0)(hy, ha) = ((h1, ha,), V(0,0)) = h1==(0,0) + ho =~

WE DO NOT KNOW IF f IS DIFFERENTIABLE AT (0,0), SO

In order to study the differentiability of f at (0,0) we have to study the limit

f@&m+wbm0—f@m—(meowwwam)
| = lim .
(hl,hz)—>(0,0) H (h17 h2) - <O7 O)H

In order for the things to be simpler to analyse, we denote by

W(hl, hg)

the value of a function at a point (hy, hy) € R? generated by the limit that we have to
compute. So

f(ha.ha) = £(0.0) = hy2L(0.0) — hyZ (0.0)

w(hi. he) =
b \/ ]?1 + hQ
h$ — h3
———5 — h1 + h .
h? + h? R h3hg — hih3

\/m B (h2 + h3)3/2°

We show that

lim w(hl, hg),
(h1 ,hz)%(o,o)

with the help of sequences. So we consider the sequences, having as general terms, for all
pel 11 2 1
ap = (E’E) and b, = (E’E) .

lim ay, = hm b, = (0,0),

k—o0

We have that



but

e (L) 20 i mmw (2022
el VAN R = AV T

SO

lim w(ag) # lim w(by).
k—ro0 k—ro0

Therefore

lim w (hl s h2)
(h1 ,h2)~>(0,0)

so the limit that we are looking for does not exist. This means that the function f
is not differentiable at (0,0).

In conclusion the function f is differentiable on R*\{(0,0)}.
Example 1.2: Study the differentiability of the function

iy
38in <
rssin? x#0

' R? 5 R, T.1) =
fRT =R, f(z,y) { 0 roo0

Solution:

To begin with, we see that the problem is this time represented by a large set..., not
just the point (0,0), like it was the case in the other exercise. Set now

B = {(v,y) € R* : x # 0}.

Is is an open set, on which f has partial derivatives with respect to both x and y at each
given point (z,y) randomly chosen.

7] 4 o1 : 1
—f (z,y) = — /3 sin Y eos?
dx 3 T T
and
0 1
—f (z,y) = 213 cos J
dy T

These two partial derivatives are continuous functions on B, this means that the
function f is differentiable on B. (We are not specifically asked to write the expression
of the differential function).

Part 2 We are left to study the differentiablity of f on R\B. Consider a random
point in this set,

(0,a) with a € R.

First we analyze the partial derivatives. For %(O, a) we have to analyze



.
A3

. r,a)— f(0,a . SHL— . a . i
lim f(z,a) f( @) =lim —L = lim 2'/3 ssmE =0
2—0 r—0 x—0 T 2—0 T
while for %(O’ a) we have to analyze
. f(0.y) = f(0,a) .0
lim = lim =0,

We arrive at the conlusion that both partial derivatives at (0, a) exist, and

c)f ()f
), = 0.
77 (0,a) = (0,a) =0

We have arrived at the Step 2 of the Algorithm, in which we analyze

. y fO+hy,a+ hy)— f(0,a) —h.lg([].a) hga (0,a)
| = im

(h1,h2)—(0,0) \/ h% 4+ h-%

Once again we make use of the notation w the function whose limit we have to compute
now at (0,a), thus we are interested in

hm  w(hy.he)
(hi,h2)—(0,0)
with
f(hi.a+ hs)

\/ h.% + h%

In this case we will prove that f is indeed differentiable at (0, a), so the limit
has to be 0. We make use of the sandwich theorem. We distinguish two cases:
Case 1: h; # 0, when

w(hy, hy) =

h-
|J’11|4/3 si11a+ 12 U
|{UU?]_ h.g)‘ = hl < “2'1‘ — ‘h'l‘ | |1/3
S “1-1‘1/3.



Case 2: hy =0, when f(0,a + hg) = 0.
From the Cases 1 and 2, we conclude that

lwo(ha, h)|| < [[Ba]|3, Y (R, ho) € R?
Therefore,

lim  lw(hy, ho)| < lim thH% -0
(h17h2)—>(0,0) (h17h2)—>(0,0)

So, the limit [ of the Step 2 of the Algorithm exists, and is equal to 0. This means that
the function f is differentiable at (0,a) and the differential is the fucntion

df(0,a) : R* = R
defined by

df(0,a)(hy, ha) = ((hy, ha), VF(0,a)) = hy -0+ hy -0 =0, V(hy, hy) € R?.

In conclusion, f is differentiable on R?.

Example 1.3: Study the differentiability of the function

G
.2 N Ter 2 (fL’ay) a ( ) )

Solution:
We notice that the obvious problem appears at the point (0,0). Let us consider the set

A:=R*\{(0,0)}

This set is open. We may compute the partial derivatives of f with respect to both x and
y at each random point. Let (z,y) € A be randomly chosen. Then

%(:c )= aty + 4Py’ — o

o7 (22 + y?)?
and

of x® — 423y? — xy?

dy (22 +y?)

These functions are continuous, therefore, f is differentiable on A.
The following step is to study the existence of the partial derivatives at (0, 0), starting
with respect to x:

z-0(z—0)—0
0 0)— f(0,0 —Zro 0
—f(0,0)zlimf(x’ )= (O, )zhmﬂzhm—:hmo:()ek.
aiL‘ z—0 x—0 z—0 x—0 z—0 :L'3 z—0

This means that f has a partial derivative at (0,0) with respect to x.



Then we study the existence of the partial derivatives at (0,0) with respect to y:

0-y(0—y*)
0 0,y) — (0,0 0
—f(0,0)zlimf(’y) /10, ):limM—hm——hmO:OGR
ay z—0 x—0 y—=0 Yy — 0 y—0 y3 y—0

This means that f has a partial derivative at (0,0) with respect to y.

We follow now the steps of the Algorithm from Section 4 of Seminar 6. We
are currently at Step 2. Recall that if the function were is differentiable at (0,0),
the differential would be the function

df(0,0) : R* — R,
defined by

of
Yo

of

df (0,0)(h1, he) = ((ha, ha, ), V£(0,0)) = by dy

==(0,0)+hy==(0,0) = hy-0+hy-0, V(hy, hy) € R?.

WE DO NOT KNOW IF f IS DIFFERENTIABLE AT (0,0), SO

In order to study the differentiability of f at (0,0) we have to study the limit

f(<o,o> (h h2>) — £(0,0) - (hﬁfm 0) + (0, o>)
[ = lim .
o Tt ) = 001

In order for the things to be simpler to analyse, we denote by

w(hl, hg)

the value of a function at a point (hy, hy) € R? generated by the limit that we have to

compute. So

hy-ha(h
h2(+22 )_O 0 hl h2(h2 h2)

VI3 + h3 (m)

We will make use once again of the sandwich theorem. First of all let us recall that by
the classical mean theorem

[ ., hi+h3 o1
2,02 < 1 2

Moreover, it is clear that

w(hl, hg) =

|7 s
—— <1 and —=<1
VI + h3 Vh?+ k3
This is why
bl bl W1 w3

VAR VB B BT
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w(hy, ha)| =




2
L Sy S W]
Vhi+ h3 2
1
li h2 - x] Z|hihol =
lm e[ 5 lhihe| =0,

from the sandwich theorem we have that

Due to the fact that

lim a}(hl,hg) = 0.

(hl,hz)—>0

So, the limit exists and is 0 in Step 2 of the algorithm. This means that the function f
is differentiable at (0, 0)
In conclusion the function f is differentiable on RZ.

2 Partial Derivatives of Composed Functions.

Even tough the general theory is proved for vector spaces of random dimension, we will
just analyze particular cases so, let us begin with the following example

Eample 2.1:
( f:R* > R’

§ 9 R =R gz,y,2) = (2 —y+292°, 2%™), VY(z,y,2) €R’

| F:R* =R, F(z,y,2) = (fog)(z,y,2), V(z,y,2) R,

We will determine the partial derivatives of F' with respect to
x,y and z, respectively, in terms of the partial derivatives of f.
Note that the actual expression of f is unknown, but it is assumed
that it has partial derivatives with respect to all variables at all
the points in its domain.

Let (z,y,2) € R* be a random point.
Step 1: The partial derivative with respect to z, i.e

oF O(f o
%(l‘,y,Z): (J;xg)(x,y,z)

Be aware of the fact that g is a vector function, of vector variable, so from its expression,
since its codomain is R? it may be written as a pair of two real functions of vector variable,

namely

g=1(g1,92), where gi,0o:R* >R



3y

and
gz, y,2) =2 —y+2y2* and  go(z,y,2) = 2™

Then
d(f o @ 0 8 (9

In exercises, in order not to get too many thing to write, we might skip some details

and the formula above may be written as

8F:8(fog)(x 2) = af '8914_ of '392
ox Ox x4 dgr Ov  Ogo Oz’

With a similar reasoning, we deduce the partial derivatives with respect to y and z

respectively,
(9F:(9(fog)(x y.2) = of .3914_ of _@gg
dy oy 7 dgi OJy ~ O0ga 0Oy
and
0z Ox 4 dg1 0z 0Ogo Oz

We see that we actually need the partial derivatives of g, with respect to all variables

0 0 dgo
8—i(fv,y72) = <ail (@.y,2): 5 2 (z,y, 2 )) = (22,2%™ - y) = (2z,yz"e™)

%(x,y,z) = (%@,y, 2), % (z,y, 2 )) = (—1+22% 2% x) = (=1 + 22 22e™)
y y

0 7] 0]
) = (B2 ). Fona)) = (1 32).

0z
Coming back to F' we conclude that
OF of of ;
- 9 ) , Ty
. (0y:2) = é)1( 9(x,y,2))- ﬂf+agz( 9(z,y, 2) -yz"e

0 0
= 2x—f (x —y+2y2? e W) + y2e xyaf (:1:2 —y 4 2y27, z?’emy)
92

dg1



g—z(x,y, z) = ggfl( (z,9,2)) - (=1 + 22 )+g_;2( (2,9, 2) - 220"
= (=1+22 )ggfl (27 — y +2y2%, 2°e™) + xz’e” o 9T (22 — y + 2y2?, 22e™)

092

oF 0 0
T2 0.02) = (oo, 2) Ay + 5ol 2) -3

/ (:132 —y + 2y2?, zgemy)

0
(xQ —y + 2y2%, 2369@) + 322 L
dga

=14
yzal

Here g—g{ means the partial derivative of f with respect to the

first variable, while g—gfz means the partial derivative of f with
respect to the second variable.

Sometimes, f is written as f(u,v). Pay attention, it is not f = (u,v), and instead of

g J we may write
of
ou
, and, instead of g—g]; we may write
of
ov
Example 2.2:
((f:R*—>R

L giRE =R g(n,y) = (<32 +2y,22 + 2, 22% — ¢?),  V(z,y) € R?

| F:R* %R, F(z,y)=(fog)(z,y), V(r,y) cR?.

We will determine the partial derivatives of F' with respect to

x and y, respectively, in terms of the partial derivatives of f.

Note that the actual expression of f is unknown, but it is as-
sumed that it has partial derivatives with respect to all variables
at all the points in its domain.

Let (z,y) € R? be a random point.
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Step 1: The partial derivative with respect to z, i.e

O ey = A29) )

Be aware of the fact that ¢ is a vector function, of vector variable, so from its expression,
since its codomain is R? it may be written as a pair of two real functions of vector variable,

namely
9= (91792793)7 where 91,92, 93 : R? — R

and

gi(z,y) = =3z +2y, gaz,y)=2>+y> and gs(x,y)=22" -y’

Then
a(fo G, ) 9 5, o) Jg:
2D (0,1) = 2 (ot.9) - B2 ) £ (0(0,) - 25 o) - ),

In exercises, in order not to get too many thing to write, we might skip some details,

and the formula above may be written as

OF _0(fog) _0f _(‘391+ af .angraf 0gs
Ox Ox dg1 Ox  Ogy Ox  0Ogs Ox

With a similar reasoning, we deduce the partial derivatives with respect to y and z

respectively,

(9F:(?(fog) _ of '3g1+ of .ag2+ of .893
y dy dgr Oy dg2 Oy  Jgs 0y

We see that we actually need the partial derivatives of g, with respect to all variables.

% () = (%@c,y), 992 (4, 292 <x,y>) _ (=320, 629)

Ox o Ox " Ox
dg 991 992 9gs >
et — (=t -2 23 — (2.9y. —
o) = (2. 2 ). G2 ) ) = (2207
Coming back to F' we conclude that
oF of af of 9
—(z,y) = =—(9(z,y)) - (=3) + =—(9(z,y) - 20 + =—(g(z,y) - 6z
5 (21 Y) D0, (9(z,9)) - (=3) 945 (9(z,y) 941 (9(z,y)
= —3a—f (=3z 4 2y,2° + *,22° — y°) + Zxa—f (=3 + 2y, 2° + y*, 22° — ¢°)
dg dga

%)
+6x23_;3, (=3 4 2y,2° + y*, 22° — ¢°) .
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OF of of of 2
= = L . —L SOy 4+ —L (=
oy DY) = g, @) - () + 5 ~(g(w,y) - 2y + 5o-lg (@ y) - (=3y)

= 20—f (—Sx + 2y, 2 +y?, 22" — y3) + Zya—f (—Sx + 2y, 2% + 32, 22° — y3)
o9 992

)
—3y28—f (=3 + 2y, 2° + y*,22° — ¢°) .
g3

Here g—g{ means the partial derivative of f with respect to the
first variable, while g—gj; means the partial derivative of f with re-

spect to the second variable, and % means the partial derivative
of f with respect to the second variable.

Sometimes, f is written as f(u, v, w). Pay attention, it is not f = (u,v,w), and instead
of g—g’z we may write
of
ou
instead of g—gfz we may write
of
o
and instead of g—g]; we may write
of
ow

Example 2.3: Let f : R® — R? be a differentiable function on
R3, and let F : R? — R? defined by

F(xv y) = f(COSJ; + sin Z, sin & -+ cos T, ea:—g/)

1 3 4

Knowing that J(f)(1,1,1) = <2 1 3

) determine dF(7,7) .

Solution:
This exercise once again deals with the differentials of composed functions. First of
all we have to know good all the entry data. Thus:

f:R®— R?
F:R* - R?

g:R* - R* g(z,y) = (cosx +sinz,sinz + cos, ")
F=(fey)

12



In order to solve the exercise we must acknowledge a result from the lectu-
re, which states that the Jacobi matrix of composed differentiable functions
satisfies the following equality

J(fog)la) = J(f)(g(a))- J(g)(a), (3)

where a is in the domain of g.
We have to do a detective work now :), but fortunately for us, we have all the date
we need. Thus, the conclusion asks as to determine J(F') (“ ”), so our point is

272
(22)
a=(=,=).
272

We notice that g (3,%) = (1,1,1). In order to fill in the expressions in (3),

T
272

m™ T

J(fog)(55) =INMLY - I(feg) (5.5) = JNHA1L) - T0)(55) -

272
Since J(f)(1,1,1) is already given, we just need J(g) (%,%) .

Lucky for us, we have already determined this Martrix in Seminar 6, the last exercise.
(for details, take a look at Seminar6 , just note that the function g was there denoted by
f)

The searched for Jacobi matrix is

(G-

Finally we are able to conclude that

e (3.5) e (5= (3 4 4) (0 )= (3 ).

Having this Jacobi matrix, we are able to write the expression of the differential function
associated to F' at the point (%, 5)7 namely

d(F) (

T

— =) :R? 5 R?
2’2) —

T T B T hi \ (3 =7 hi\ [ 3hi—Thy
d(F)<§7§>(h17h2>_‘](F)(575)(h2>_(1 _2) (hg)_(h1—2h2>7
for all (hy,hy) € R?, differential written in its matrix form. In the vector form we have

that
T T

d(F) (5, 5) (h1, o) = (3hy — Tha, hy — 2hs)  ¥(hi, ho) € RZ.

13


http://math.ubbcluj.ro/~ancagrad/Analiza2Seminarii/Seminarii/Seminar6.pdf

Example 2.4: Let us consider the following:

f:(0,00) x (0,00) - R a differentiable function
g:(0,00) x (0,2) — (0,00) x (0, 00),

g(p,0) = (pcosb, psinb)

F:(0,00)x (0,3) =R F=(foy)

Determine the partial derivatives of F' in terms of the partial
derivatives of f. - Homework

14
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