
Seminar 11

1. Find the volume bounded by the cone z =
√
x2 + y2 and by the sphere

x2 + y2 + z2 = 1.

2. Find the volume bounded below by the paraboloid z = x2 + y2 and
above by the plane x+ y + z = 1

2
.

3. Find the mass of a square plate of side 2a, if the density varies as the
distance from the center of the plate.

4. Find the mass of a ball of radius a, if its density varies directly propor-
tional to the distance from a fixed point O, lying on the boundary of
the ball.

5. Let A be the set bounded by the planes z = 0 and z = 4, lying inside
the cone z2 = x2 + y2 and inside the cylinder x2 + y2 = 1. Find the
moment of inertia with respect to the Oz axis of a homogeneous solid
body of density 1, occupying the region A.
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Solutions

1. Let A := {(x, y, z) ∈ R3 | z ≥
√
x2 + y2, x2 + y2 + z2 ≤ 1} and let V

denote the volume of A. We have V =

∫∫∫
A

dxdydz. To evaluate the triple

integral, we use the spherical coordinates

x = ρ sinϕ cos θ, y = ρ sinϕ sin θ, z = ρ cosϕ,

where (see figure 1)

Figure 1:

ρ ∈ [0, 1], ϕ ∈
[
0,
π

4

]
, θ ∈ [0, 2π].

We obtain

V =

∫ 1

0

∫ π
4

0

∫ 2π

0

ρ2 sinϕ dρdϕdθ

=

(∫ 1

0

ρ2 dρ

)(∫ π
4

0

sinϕ dϕ

)(∫ 2π

0

dθ

)
=

2π

3

(
1−
√

2

2

)
.

2. Let A := {(x, y, z) ∈ R3 | x2 + y2 ≤ z ≤ 1
2
− x− y} be the solid whose

volume is required to be evaluated and let C be the curve of intersection of
the paraboloid with the plane (see figure 2).
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Figure 2:

If P (x, y, z) is an arbitrary point of C, then we have

z = x2 + y2 =
1

2
− x− y,

hence P belongs to the cylinder

x2 + y2 =
1

2
− x− y ⇔

(
x+

1

2

)2

+

(
y +

1

2

)2

= 1.

Therefore, the projection of A onto the plane Oxy is the disk

A0 :=

{
(x, y) ∈ R2

∣∣∣ (x+
1

2

)2

+

(
y +

1

2

)2

≤ 1

}
.

The volume of A is given by

V =

∫∫∫
A

dxdydz =

∫∫
A0

(
1

2
− x− y − x2 − y2

)
dxdy.

To evaluate the double integral, we use the polar coordinates:

x = −1

2
+ ρ cos θ, ρ ∈ [0, 1],

y = −1

2
+ ρ sin θ, θ ∈ [0, 2π].
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We get

V =

∫ 1

0

∫ 2π

0

(
ρ− ρ3

)
dρdθ =

(∫ 1

0

(
ρ− ρ3

)
dρ

)(∫ 2π

0

dθ

)
=
π

2
.

3. Choose a Cartesian system with the origin at the center of the plate such
that the coordinate axes are parallel to the plate sides. The plate is divided
into four squares A1, A2, A3, A4, each having side a (see figure 3).

Figure 3:

Let A := [−a, a]× [−a, a], let ρ̄(x, y) := c
√
x2 + y2 be the superficial density

of the plate at an arbitrary point (x, y) ∈ A, and let m denote the mass of
the plate. We have

m =

∫∫
A

ρ̄(x, y) dxdy = c

∫∫
A

√
x2 + y2 dxdy = c

4∑
j=1

∫∫
Aj

√
x2 + y2 dxdy.

Due to symmetry reasons, the above four double integrals are all equal.
Indeed, the change of variables x = −u, y = v leads to∫∫

A1

√
x2 + y2 dxdy =

∫∫
A2

√
u2 + v2 dudv
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etc. Therefore, we have

m = 4c

∫∫
A1

√
x2 + y2 dxdy

= 4c

(∫∫
B1

√
x2 + y2 dxdy +

∫∫
B2

√
x2 + y2 dxdy

)
.

The change of variables x = v, y = u shows that∫∫
B1

√
x2 + y2 dxdy =

∫∫
B2

√
v2 + u2 dudv =

∫∫
B2

√
x2 + y2 dxdy,

hence m = 8c

∫∫
B1

√
x2 + y2 dxdy. To compute the double integral, we pass

to polar coordinates. We obtain

m = 8c

∫ θ=π/4

θ=0

(∫ ρ= a
cos θ

ρ=0

ρ2 dρ

)
dθ = 8c

∫ π/4

0

a3

3 cos3 θ
dθ

=
8a3c

3

∫ π/4

0

cos θ dθ

(1− sin2 θ)2
=

8a3c

3

∫ 1/
√
2

0

dx

(1− x2)2
=

=
4a3c

3

(√
2 + ln(1 +

√
2)
)
.

4. Choose a Cartesian system with origin at O, such that the plane Oxy is
tangent to the ball at O and the center of the ball is located on the Oz axis
(at the point (0, 0, a)). Denoting by m the mass of the ball, we have

m =

∫∫∫
A

c
√
x2 + y2 + z2 dxdydz,

where

A := {(x, y, z) | x2 + y2 + (z− a)2 ≤ a2} = {(x, y, z) | x2 + y2 + z2 ≤ 2az}.

Method 1. We use the change of variables

x = ρ sinϕ cos θ, ρ ∈ [0, a],

y = ρ sinϕ sin θ, ϕ ∈ [0, π],

z = a+ ρ cosϕ, θ ∈ [0, 2π].
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We obtain

m = c

∫ a

0

∫ π

0

∫ 2π

0

√
ρ2 + a2 + 2aρ cosϕ · ρ2 sinϕ dρdϕdθ

= c

(∫ a

0

∫ π

0

√
ρ2 + a2 + 2aρ cosϕ · ρ2 sinϕ dρdϕ

)(∫ 2π

0

dθ

)
= 2πc

∫ ρ=a

ρ=0

(∫ ϕ=π

ϕ=0

√
ρ2 + a2 + 2aρ cosϕ · ρ2 sinϕ dϕ

)
dρ.

Substituting
√
ρ2 + a2 + 2aρ cosϕ = t, we get ρ sinϕ dϕ = − t

a
dt, whence

m = 2πc

∫ ρ=a

ρ=0

(∫ t=a−ρ

t=a+ρ

tρ

(
− t
a

)
dt

)
dρ =

2πc

a

∫ ρ=a

ρ=0

ρt3

3

∣∣∣t=a+ρ
t=a−ρ

dρ

=
2πc

3a

∫ a

0

2ρ(3aρ2 + ρ3) dρ =
8π

5
a4c.

Method 2. We use the change of variables

x = ρ sinϕ cos θ, ϕ ∈
[
0,
π

2

]
,

y = ρ sinϕ sin θ, θ ∈ [0, 2π],

z = ρ cosϕ, ρ ∈ [0, 2a cosϕ].

We find

m = c

∫ θ=2π

θ=0

∫ ϕ=π/2

ϕ=0

(∫ ρ=2a cosϕ

ρ=0

ρ · ρ2 sinϕ dρ

)
dθdϕ

= c

∫ 2π

0

∫ π/2

0

4a4 cos4 ϕ sinϕ dθdϕ

= 4a4c

(∫ 2π

0

dθ

)(∫ π/2

0

cos4 ϕ sinϕ dϕ

)
=

8π

5
a4c.

5. Let I denote the required moment of inertia. We have

I =

∫∫∫
A

(x2 + y2) dxdydz.
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To evaluate the triple integral, we pass to cylindrical coordinates

x = ρ cos θ, y = ρ sin θ, z = z,

where θ ∈ [0, 2π], z ∈ [0, 4] s, i (see figure 4)

ρ ∈ [0, z] if z ∈ [0, 1],
ρ ∈ [0, 1] if z ∈ [1, 4].

Figure 4:

We get

I =

∫ θ=2π

θ=0

∫ z=1

z=0

(∫ ρ=z

ρ=0

ρ3 dρ

)
dθdz +

∫ θ=2π

θ=0

∫ z=4

z=1

∫ ρ=1

ρ=0

ρ3 dθdzdρ

=

∫ 2π

0

∫ 1

0

z4

4
dθdz +

(∫ 2π

0

dθ

)(∫ 4

1

dz

)(∫ 1

0

ρ3 dρ

)
=

8π

5
.
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