
Introduction to R
Free and powerful

Radu Trı̂mbiţaş

1 How R works

How R works

• When R is running, variables, data, functions, results, etc, are stored in
the active memory of the computer in the form of objects which have a
name.

• The user can do actions on these objects with operators (arithmetic, logical,
comparison, . . .) and functions (which are themselves objects). The use
of operators is relatively intuitive. An R function may be sketched as
follows:

• The arguments can be objects (”data”, formulae, expressions, . . .), some
of which could be defined by default in the function; these default values
may be modified by the user by specifying options.

• An R function may require no argument: either all arguments are defined
by default (and their values can be modified with the options), or no
argument has been defined in the function.

How R works - continued

• All the actions of R are done on objects stored in the active memory of the
computer: no temporary files are used (Figure 1). The readings and writ-
ings of files are used for input and output of data and results (graphics, .
. .).

1

• The user executes the functions via some commands. The results are dis-
played directly on the screen, stored in an object, or written on the disk
(particularly for graphics). Since the results are themselves objects, they
can be considered as data and analysed as such.

• Data files can be read from the local disk or from a remote server through
internet.

• The functions available to the user are stored in a library localised on
the disk in a directory called R HOME/library (R HOME is the directory
where R is installed).

• This directory contains packages of functions, which are themselves struc-
tured in directories. The package named base is in a way the core of R
and contains the basic functions of the language, particularly, for reading
and manipulating data. Each package has a directory called R with a file
named like the package (for instance, for the package base, this is the file
R HOME/library/base/R/base). This file contains all the functions of
the package.

Figure 1: A schematic view of how R works.

2 R language essentials

2.1 Expressions, objects and functions

Expressions and objects

• The basic interaction mode in R is one of expression evaluation. The user
enters an expression; the system evaluates it and prints the result. Some
expressions are evaluated not for their result but for side effects such as
putting up a graphics window or writing to a file.

2

• All R expressions return a value (possibly NULL), but sometimes it is
“invisible” and not printed.

• Expressions typically involve variable references, operators such as +,
and function calls, as well as some other items that have not been intro-
duced yet.

• Expressions work on objects. This is an abstract term for anything that
can be assigned to a variable. R contains several different types of objects.
So far, we have almost exclusively seen numeric vectors, but several other
types are introduced.

Functions and arguments

• Many things in R are done using function calls, commands that look like
an application of a mathematical function of one or several variables; for
example, log(x) or plot(height, weight).

• The format is that a function name is followed by a set of parentheses con-
taining one or more arguments. For instance, in plot(height,weight)

the function name is plot and the arguments are height and weight.

• These are the actual arguments, which apply only to the current call. A
function also has formal arguments, which get connected to actual argu-
ments in the call.

• When you write plot(height, weight), R assumes that the first argu-
ment corresponds to the x-variable and the second one to the y-variable.
This is known as positional matching.

• The plot function is in fact an example of a function that has a large
selection of arguments in order to be able to modify symbols, line widths,
titles, axis type, and so forth. We used the alternative form of specifying
arguments when setting the plot symbol to triangles with plot(height,

weight, pch=2).

• The pch=2 form is known as a named actual argument, whose name can be
matched against the formal arguments of the function and thereby allow
keyword matching of arguments. The keyword pch was used to say that
the argument is a specification of the plotting character.

• This type of function argument can be specified in arbitrary order. Thus,
you can write plot(y=weight,x=height) and get the same plot as with
plot(x=height,y=weight).

• The two kinds of argument specification — positional and named — can
be mixed in the same call.

• The formal arguments of a function are part of the function definition.
The set of formal arguments to a function may be seen with args.

3

Examples

>args(plot)

function (x, y, ...)

NULL

> args(plot.default)

function (x, y = NULL, type = "p", xlim = NULL,

ylim = NULL, log = "", main = NULL, sub = NULL,

xlab = NULL, ylab = NULL, ann = par("ann"),

axes = TRUE, frame.plot = axes, panel.first = NULL,

panel.last = NULL, asp = NA, ...)

NULL

> args(ls)

function(name, pos=-1L, envir = as.environment(pos),

all.names = FALSE, pattern, sorted = TRUE)

NULL

2.2 Vectors

Vectors
Functions for vector creation: c, seq, rep.
c - “concatenate”

> c(42,57,12,39,1,3,4)

[1] 42 57 12 39 1 3 4

> x <- c("Huey", "Dewey", "Louie"); x

[1] "Huey" "Dewey" "Louie"

You can also concatenate vectors of more than one element as in

> x <- c(1, 2, 3)

> y <- c(10, 20)

> c(x, y, 5)

[1] 1 2 3 10 20 5

It is also possible to assign names to the elements. This modifies the way the
vector is printed and is often used for display purposes.

> x <- c(red="Huey", blue="Dewey", green="Louie")

> x

red blue green

"Huey" "Dewey" "Louie"

The names can be extracted or set using names:

> names(x)

[1] "red" "blue" "green"

4

All elements of a vector have the same type. If you concatenate vectors of
different types, they will be converted to the least restrictive type:

> c(FALSE, 3)

[1] 0 3

> c(pi, "abc")

[1] "3.14159265358979" "abc"

> c(FALSE, "abc")

[1] "FALSE" "abc"

> c(1.2, 2, TRUE, "gaga")

[1] "1.2" "2" "TRUE" "gaga"

Vectors - sequences
The function seq (sequence), is used for equidistant series of numbers.

> seq(4,9)

[1] 4 5 6 7 8 9

> 4:9

[1] 4 5 6 7 8 9

If you want a sequence with a step, write

> seq(4,16,2)

[1] 4 6 8 10 12 14 16

Equivalent seq(from=4, to=16, by=2).
The third function, rep (replicate), is used to generate repeated values. It is

used in two variants, depending on whether the second argument is a vector
or a single number:

> oops <- c(7,9,13)

> rep(oops,3)

[1] 7 9 13 7 9 13 7 9 13

> rep(oops,1:3)

[1] 7 9 9 13 13 13

The rep function is often used for things such as group codes: If it is known
that the first 10 observations are men and the last 15 are women, you can use

> rep(1:2,c(10,15))

[1] 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

The special case where there are equally many replications of each value can
be obtained using the each argument. E.g., rep(1:2,each=10) is the same as
rep(1:2,c(10,10)).

5

Quoting and escaping sequences. Missing values
R allows vectors to contain a special NA value. This value is carried through

in computations so that operations on NA yield NA as the result. is.na

> cat(c("Huey","Dewey","Louie"))

Huey Dewey Louie>

To get the system prompt onto the next line, you must include a newline char-
acter

> cat("Huey","Dewey","Louie", "\n")

Huey Dewey Louie

> cat("What is \"R\"?\n")

What is "R"?

Here, \n is an example of an escape sequence. It actually represents a single
character, the linefeed (LF), but is represented as two. The backslash \is known
as the escape character.

2.3 Matrices and arrays

Matrices and arrays
In R, the matrix notion is extended to elements of any type, so you could

have, for instance, a matrix of character strings. Matrices and arrays are repre-
sented as vectors with dimensions:

> x <- 1:12

> dim(x) <- c(3,4)

> x

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

The dim assignment function sets or changes the dimension attribute of x, caus-
ing R to treat the vector of 12 numbers as a 3× 4 matrix. Notice that the storage
is column-major; that is, the elements of the first column are followed by those
of the second, etc.

A convenient way to create matrices is to use the matrix function:

> matrix(1:12,nrow=3,byrow=T)

[,1] [,2] [,3] [,4]

[1,] 1 2 3 4

[2,] 5 6 7 8

[3,] 9 10 11 12

Notice how the byrow=T switch causes the matrix to be filled in a rowwise
fashion rather than columnwise.

6

Useful functions that operate on matrices include rownames, colnames, and
the transposition function t (notice the lowercase t as opposed to uppercase T

for TRUE), which turns rows into columns and vice versa:

> x <- matrix(1:12,nrow=3,byrow=T)

> rownames(x) <- LETTERS[1:3]

> x

[,1] [,2] [,3] [,4]

A 1 2 3 4

B 5 6 7 8

C 9 10 11 12

> t(x)

A B C

[1,] 1 5 9

[2,] 2 6 10

[3,] 3 7 11

[4,] 4 8 12

You can glue vectors together, columnwise or rowwise, using the cbind and
rbind functions.

> cbind(A=1:4,B=5:8,C=9:12)

A B C

[1,] 1 5 9

[2,] 2 6 10

[3,] 3 7 11

[4,] 4 8 12

> rbind(A=1:4,B=5:8,C=9:12)

[,1] [,2] [,3] [,4]

A 1 2 3 4

B 5 6 7 8

C 9 10 11 12

A more general way to store data is in an array. Arrays have multiple indices,
and are created using the array function:

> a <- array(1:24, c(3, 4, 2))

> a

, , 1

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

, , 2

[,1] [,2] [,3] [,4]

7

[1,] 13 16 19 22

[2,] 14 17 20 23

[3,] 15 18 21 24

Notice that the dimensions were specified in a vector c(3, 4, 2). When in-
serting data, the first index varies fastest; when it has run through its full range,
the second index changes, etc.

2.4 Factors

Factors

• It is common in statistical data to have categorical variables, indicating
some subdivision of data, such as social class, primary diagnosis, tumor
stage, etc. Typically, these are input using a numeric code.

• Such variables should be specified as factors in R. This is a data structure
that (among other things) makes it possible to assign meaningful names
to the categories.

• There are analyses where it is essential for R to be able to distinguish
between categorical codes and variables whose values have a direct nu-
merical meaning.

• The terminology is that a factor has a set of levels. Internally, a k-level
factor consists of two items: (a) a vector of integers between 1 and k and
(b) a character vector of length k containing strings describing what the k
levels are.

> pain <- c(0,3,2,2,1)

> fpain <- factor(pain,levels=0:3)

> levels(fpain) <- c("none","mild","medium","severe")

The first command creates a numeric vector pain, encoding the pain levels of
five patients. We wish to treat this as a categorical variable, so we create a factor
fpain from it using the function factor. This is called with one argument in
addition to pain, namely levels=0:3, which indicates that the input coding
uses the values 0− 3. The latter can in principle be left out since R by default
uses the values in pain, suitably sorted, but it is a good habit to retain it; see
below. The effect of the final line is that the level names are changed to the four
specified character strings.

> fpain

[1] none severe medium medium mild

Levels: none mild medium severe

> as.numeric(fpain)

[1] 1 4 3 3 2

> levels(fpain)

[1] "none" "mild" "medium" "severe"

8

The function as.numeric extracts the numerical coding as numbers 1:4 and
levels extracts the names of the levels.

R also allows you to create a special kind of factor in which the levels are
ordered. This is done using the ordered function, which works similarly to
factor.

2.5 Lists

Lists
Lists are objects consisting of an ordered collection of objects known as its

components (which coud be of different types). Here is a simple example:

> Lst<-list(name="Fred", wife="Mary", no.children=3,

+ child.ages=c(4,7,9))

Components are always numbered and may always be referred to as such.
Individual components of Lst may be individually referred to as Lst[[1]],
Lst[[2]], Lst[[3]] and Lst[[4]].

Components of lists may also be named, and in this case the component
may be referred to either by giving the component name as a character string
in place of the number in double square brackets, or, more conveniently, by
giving an expression of the form name$component_name for the same thing.
Examples:

> Lst[1]

$name

[1] "Fred"

> Lst[[1]]

[1] "Fred"

> Lst[[4]][1]

[1] 4

> Lst$wife

[1] "Mary"

> Lst["wife"]

$wife

[1] "Mary"

> Lst[["wife"]]

[1] "Mary"

The length of a list (number of components at outer level) with length(name).

2.6 Data frames

Data frames
A data frame corresponds to what other statistical packages call a data ma-

trix or a data set. It is a list of vectors and/or factors of the same length that

9

are related across such that data in the same position come from the same ex-
perimental unit (subject, animal, etc.). In addition, it has a unique set of row
names.

> intake.pre <- c(5260,5470,5640,6180,6390,

+ 6515,6805,7515,7515,8230,8770)

> intake.post <- c(3910,4220,3885,5160,5645,

+ 4680,5265,5975,6790,6900,7335)

> d <- data.frame(intake.pre,intake.post)

> d

intake.pre intake.post

1 5260 3910

2 5470 4220

3 5640 3885

4 6180 5160

5 6390 5645

6 6515 4680

7 6805 5265

8 7515 5975

9 7515 6790

10 8230 6900

11 8770 7335

As with lists, components (i.e., individual variables) can be accessed using the
$ notation:

> d$intake.pre

[1] 5260 5470 5640 6180 6390 6515 6805 7515

[9] 7515 8230 8770

2.7 Indexing and selection

Indexing and selection
Indexing. Indexing an element of a vector

> intake.pre[5]

[1] 6390

Selection of a subvector of more elements, for instance elements 3, 5, 7

> intake.pre[c(3,5,7)]

[1] 5640 6390 6805

> v <- c(3,5,7)

> intake.pre[v]

[1] 5640 6390 6805

> intake.pre[1:5]

[1] 5260 5470 5640 6180 6390

10

A neat feature of R is the possibility of negative indexing. You can get all ob-
servations except nos. 3, 5, and 7 by writing

> intake.pre[-c(3,5,7)]

[1] 5260 5470 6180 6515 7515 7515 8230 8770

It is not possible to mix positive and negative indices. That would be highly
ambiguous.

Conditional selection. In practice, you often need to extract data that sat-
isfy certain criteria. This can be done simply by inserting a relational expres-
sion instead of the index.

> intake.post[intake.pre > 7000]

[1] 5975 6790 6900 7335

> intake.post[intake.pre > 7000 & intake.pre <= 8000]

[1] 5975 6790

The result of the logical expression is a logical vector

> intake.pre > 7000 & intake.pre <= 8000

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

[9] TRUE FALSE FALSE

Indexing with a logical vector implies that you pick out the values where the
logical vector is TRUE, so in the preceding example we got the 8th and 9th
values in intake.post.

If missing values (NA) appear in an indexing vector, then R will create the
corresponding elements in the result but set the values to NA.

In addition to the relational and logical operators, there are a series of func-
tions that return a logical value. A particularly important one is is.na(x),
which is used to find out which elements of x are recorded as missing (NA). No-
tice that there is a real need for is.na because you cannot make comparisons
of the form x==NA. That simply gives NA as the result for any value of x. The
result of a comparison with an unknown value is unknown!

Indexing and grouping in data frames
It is possible to extract variables from a data frame by typing, for example,

d$intake.post. However, it is also possible to use a notation that uses the
matrix-like structure directly:

> d <- data.frame(intake.pre,intake.post)

> d[5,1]

[1] 6390

> d[5,]

intake.pre intake.post

5 6390 5645

d[2] is equivalent to d[,2].
Other indexing techniques also apply, e.g. selection

11

> d[d$intake.pre>7000,]

intake.pre intake.post

8 7515 5975

9 7515 6790

10 8230 6900

11 8770 7335

> #explain why

> sel <- d$intake.pre>7000

> sel

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

[9] TRUE TRUE TRUE

> d[sel,]

intake.pre intake.post

8 7515 5975

9 7515 6790

10 8230 6900

11 8770 7335

It is often convenient to look at the first few cases in a data set. This can be done
with indexing. This is such a frequent occurrence that a convenience function
called head exists. By default, it shows the first six lines. Similarly, tail shows
the last part.

> #indexing

> d[1:2,]

intake.pre intake.post

1 5260 3910

2 5470 4220

> #head

> head(d)

intake.pre intake.post

1 5260 3910

2 5470 4220

3 5640 3885

4 6180 5160

5 6390 5645

6 6515 4680

> #tail

> tail(d)

intake.pre intake.post

6 6515 4680

7 6805 5265

8 7515 5975

9 7515 6790

10 8230 6900

11 8770 7335

12

The natural way of storing grouped data in a data frame is to have the data
themselves in one vector and parallel to that have a factor telling which data
are from which group. Consider, for instance, the following data set on energy
expenditure for lean and obese women.

> energy

expend stature

1 9.21 obese

2 7.53 lean

3 7.48 lean

4 8.08 lean

5 8.09 lean

6 10.15 lean

7 8.40 lean

8 10.88 lean

9 6.13 lean

10 7.90 lean

11 11.51 obese

12 12.79 obese

13 7.05 lean

14 11.85 obese

15 9.97 obese

16 7.48 lean

17 8.79 obese

18 9.69 obese

19 9.68 obese

20 7.58 lean

21 9.19 obese

22 8.11 lean

This is a convenient format since it generalizes easily to data classified by mul-
tiple criteria. However, sometimes it is desirable to have data in a separate
vector for each group. Fortunately, it is easy to extract these from the data
frame:

> exp.lean <- energy$expend[energy$stature=="lean"]

> exp.obese <- energy$expend[energy$stature=="obese"]

Alternatively, you can use the split function, which generates a list of vectors
according to a grouping.

> l <- split(energy$expend, energy$stature)

> l

$lean

[1] 7.53 7.48 8.08 8.09 10.15 8.40 10.88 6.13 7.90

[10] 7.05 7.48 7.58 8.11

$obese

[1] 9.21 11.51 12.79 11.85 9.97 8.79 9.69 9.68 9.19

13

2.8 Implicit loops

Implicit loops
A common application of loops is to apply a function to each element of a

set of values or vectors and collect the results in a single structure. In R this is
abstracted by the functions lapply and sapply. The former always returns a
list (hence the l), whereas the latter tries to simplify (hence the s) the result to a
vector or a matrix if possible.

> head(thuesen)

blood.glucose short.velocity

1 15.3 1.76

2 10.8 1.34

3 8.1 1.27

4 19.5 1.47

5 7.2 1.27

6 5.3 1.49

> lapply(thuesen, mean, na.rm=T)

$blood.glucose

[1] 10.3

$short.velocity

[1] 1.325652

> sapply(thuesen, mean, na.rm=T)

blood.glucose short.velocity

10.300000 1.325652

Sometimes you just want to repeat something a number of times but still col-
lect the results as a vector. Obviously, this makes sense only when the repeated
computations actually give different results, the common case being simula-
tion studies. This can be done using sapply, but there is a simplified version
called replicate, in which you just have to give a count and the expression to
evaluate:

> replicate(10,mean(rexp(20)))

[1] 1.0280245 1.3731307 0.8057787 1.2005030 0.8069861

[6] 0.8026956 0.8648251 0.8730785 0.7314418 1.2089620

A similar function, apply, allows you to apply a function to the rows or columns
of a matrix (or over indices of a multidimensional array in general) as in

> m <- matrix(rnorm(12),4)

> m

[,1] [,2] [,3]

[1,] 0.27791413 -0.008309014 1.7635520

[2,] -0.82308112 0.128855402 0.7625865

[3,] -0.06884093 -0.145875628 1.1114311

14

[4,] -1.16766233 -0.163910957 -0.9232070

> apply(m, 2, min)

[1] -1.167662 -0.163911 -0.923207

Also, the function tapply allows you to create tables (hence the t) of the value
of a function on subgroups defined by its second argument, which can be a
factor or a list of factors. In the latter case a cross-classified table is generated.
(The grouping can also be defined by ordinary vectors. They will be converted
to factors internally.)

> tapply(energy$expend, energy$stature, median)

lean obese

7.90 9.69

2.9 Sorting

Sorting
Command sort is trivial

> intake.post

[1] 3910 4220 3885 5160 5645 4680 5265 5975 6790 6900

[11] 7335

> sort(intake.post)

[1] 3885 3910 4220 4680 5160 5265 5645 5975 6790 6900

[11] 7335

However, sorting a single vector is not always what is required. Often you
need to sort a series of variables according to the values of some other variables
blood pressures sorted by sex and age, for instance. For this purpose, you must
first compute an ordering of a variable.

> order(intake$post)

[1] 3 1 2 6 4 7 5 8 9 10 11

The point is that, by indexing with this vector, other variables can be sorted by
the same criterion.

> order(intake$post)->o

> intake$post[o]

[1] 3885 3910 4220 4680 5160 5265 5645 5975 6790 6900

[11] 7335

> intake$pre[o]

[1] 5640 5260 5470 6515 6180 6805 6390 7515 7515 8230

[11] 8770

It is of course also possible to sort the entire data frame intake

> intake.sorted <- intake[o,]

> intake.sorted

15

pre post

3 5640 3885

1 5260 3910

2 5470 4220

6 6515 4680

4 6180 5160

7 6805 5265

5 6390 5645

8 7515 5975

9 7515 6790

10 8230 6900

11 8770 7335

Sorting by several criteria is done simply by having several arguments to order;
for instance, order(sex,age) will give a main division into men and women,
and within each sex an ordering by age. The second variable is used when the
order cannot be decided from the first variable. Sorting in reverse order can be
handled by, for example, changing the sign of the variable.

3 Operators, Matrices and Linear Algebra

3.1 Operators

Operators
Operators

Arithmetic Comparison Logical
+ addition < !x not
- subtraction > x&y and
* multiplication <= x&&y and f.
/ division >= x|y or
ˆ power == x||y or f.
%% modulo != xor(x,y) exclusive or
%/% integer division

The following characters are also operators for R: $, @, [, [[, :, ?, <-, <<-,
=, ::. A table of operators describing precedence rules can be found with
?Syntax.

3.2 Matrix facilities

Outer Product
If a and b are two numeric arrays, their outer product is an array whose di-

mension vector is obtained by concatenating their two dimension vectors (or-
der is important), and whose data vector is got by forming all possible products
of elements of the data vector of a with those of b. The outer product is formed
by the special operator %o%:

16

> a<-1:3

> b<-4:6

> ab<-a%o%b

> ab

[,1] [,2] [,3]

[1,] 4 5 6

[2,] 8 10 12

[3,] 12 15 18

An alternative is ab<-outer(a,b,"*"). The multiplication function can be re-
placed by an arbitrary function of two variables. For example if we wished to
evaluate the function f (x, y) = cos(y)/(1 + x2) over a regular grid of values
with x- and y-coordinates defined by the R vectors x and y respectively, we
could proceed as follows:

> f <- function(x, y) cos(y)/(1 + x^2)

> z <- outer(x, y, f)

3.3 Matrix facilities

Matrix facilities
t(X) - transpose of X
nrow(A)

ncol(A)

%*% - matrix multiplication
If x is a vector, then x %*% A %*% x is a quadratic form.
The function crossprod() forms crossproducts, meaning that crossprod(X,y)

is the same as t(X) %*% y but the operation is more efficient. If the second ar-
gument to crossprod() is omitted it is taken to be the same as the first.

The meaning of diag() depends on its argument. diag(v), where v is a
vector, gives a diagonal matrix with elements of the vector as the diagonal
entries. On the other hand diag(M), where M is a matrix, gives the vector of
main diagonal entries of M. This is the same convention as that used for diag()
in MATLAB. Also, somewhat confusingly, if k is a single numeric value then
diag(k) is the k by k identity matrix!

To solve the system Ax = b use solve(A,b). This is mathematically equiv-
alent to x = A−1b. The inverse of A−1 of A can be computed by solve(A).
The function eig computes eigenvalues and eigenvectors of a matrix, det the
determinant and svd the singular eigenvalue decomposition. Examples:

> A<-matrix(1:4,2,2)

> A

[,1] [,2]

[1,] 1 3

[2,] 2 4

> b<-c(4,6)

> x<-solve(A,b); x

17

[1] 1 1

> X<-solve(A)

> A%*%X

[,1] [,2]

[1,] 1 0

[2,] 0 1

> X%*%A

[,1] [,2]

[1,] 1 0

[2,] 0 1

> ev<-eigen(A)

> ev

$values

[1] 5.3722813 -0.3722813

$vectors

[,1] [,2]

[1,] -0.5657675 -0.9093767

[2,] -0.8245648 0.4159736

> det(A)

[1] -2

> sd<-svd(A); sd

$d

[1] 5.4649857 0.3659662

$u

[,1] [,2]

[1,] -0.5760484 -0.8174156

[2,] -0.8174156 0.5760484

$v

[,1] [,2]

[1,] -0.4045536 0.9145143

[2,] -0.9145143 -0.4045536

> sd$u%*%diag(sd$d)%*%t(sd$v)

[,1] [,2]

[1,] 1 3

[2,] 2 4

Bibliography

18

References

[1] W. N. Venables, D. M. Smith and the R Development Core Team, An Intro-
duction to R, 2015

[2] Peter Dalgaard, Introductory Statistics with R, 2nd ed., Springer Verlag, 2008.

[3] Norman Matloff, THE ART OF R PROGRAMMING. A Tour of Statistical Soft-
ware Design, No Starch Press, San Francisco, 2011

19

	How R works
	R language essentials
	Expressions, objects and functions
	Vectors
	Matrices and arrays
	Factors
	Lists
	Data frames
	Indexing and selection
	Implicit loops
	Sorting

	Operators, Matrices and Linear Algebra
	Operators
	Matrix facilities
	Matrix facilities

