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1 Introduction

Introduction

• The term nonparametric statistics has no standard definition that is agreed
on by all statisticians.

• Parametric methods – those that apply to problems where the distribu-
tion(s) from which the sample(s) is (are) taken is (are) specified except
for the values of a finite number of parameters.

• Nonparametric methods apply in all other instances.

– The one-sample t test applies when the population is normally dis-
tributed with unknown mean and variance. Because the distribu-
tion from which the sample is taken is specified except for the values
of two parameters, µ and σ2, the t test is a parametric procedure.

– Suppose that independent samples are taken from two populations
and we wish to test the hypothesis that the two population distri-
butions are identical but of unspecified form. In this case, the dis-
tribution is unspecified, and the hypothesis must be tested by using
nonparametric methods.

• Valid employment of some of the parametric methods presented in pre-
ceding lectures requires that certain distributional assumptions are at
least approximately met. Even if all assumptions are met, research has
shown that nonparametric statistical tests are almost as capable of detect-
ing differences among populations as the applicable parametric methods.
They may be, and often are, more powerful in detecting population dif-
ferences when the assumptions are not satisfied.
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2 A General Two-Sample Shift Model

A General Two-Sample Shift Model

• Test wether two populations have the same distribution

• Independent random samples X1, X2, . . . , Xn1 ∼ N(µX , σ2) and Y1, Y2,
. . . , Yn2 ∼ N(µY, σ2); the experimenter may wish to test H0 : µX − µY = 0
versus Ha : µX − µY < 0. If H0 is true, the population distributions are
identical. If Ha is true, then µY > µX and the distributions of X1 and
Y1 are the same, except that the location parameter (µY) for Y1 is larger
than the location parameter (µX) for X1. Hence, the distribution of Y1 is
shifted to the right of the distribution of X1 (see Figure 1).

• This is an example of a two-sample parametric shift (or location) model.
The model is parametric because the distributions are specified (normal)
except for the values of the parameters µX , µY, and σ2. The amount that
the distribution of Y1 is shifted to the right of the distribution of X1 is
µY − µX (see Figure 1).

• We define a shift model that applies for any distribution, normal or oth-
erwise.

• Let X1, X2, . . . , Xn1 be a random sample from a population with distri-
bution function F(x) and let Y1, Y2, . . . , Yn2 be a random sample from a
population with distribution function G(y). If we wish to test whether
the two populations have the same distribution—that is, H0 : F(z) =
G(z) versus Ha : F(z) 6= G(z), with the actual form of F(z) and G(z)
unspecified—a nonparametric method is required.

• Notice that Ha is a very broad hypothesis.

• we assume that X1, X2, . . . , Xn1 constitute a random sample from distri-
bution function F(x) and that Y1, Y2, . . . , Yn2 constitute a random sample
from distribution function G(y) = F(y − θ) for some unknown value
θ. For the two-sample shift model, H0 : F(z) = G(z) is equivalent to
H0 : θ = 0. If θ is greater (less) than 0, then the distribution of the Y -
values is located to the right (left) of the distribution of the X-values. (see
Figure 2)

3 Sign Test (Median Test)

Sign Test (Median Test)

• Is a nonparametric alternative to t-test for one sample

• Simple and versatile
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Figure 1: Two normal distributions with same variances and different means

Figure 2: Two probability densities, one shifted with θ with resppect to the
other
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• Hypotheses H0 : m = m0 (median) with respect to usual alternatives

• The data are converted to and signs according to whether each data value
is more or less than m0. A plus sign will be assigned to each larger than
m0, a minus sign to each smaller than m0, and a zero to those equal to m0.
The sign test uses only the plus and minus signs; the zeros are discarded.

• Test statistics M = min(n(+), n(−)), where n(+) is the number of +
signs. Distribution of M ∼ b(n, 1/2).

• Normal approximation

Z =
M− n/2
√

n
2

.

Example 1. The following data give temperature (in ◦C) for 20 days: 22 18 17 16
13 20 19 21 20 16 14 17 21 21 17 17 17 22 22 21. Test if the median is m = 19.

Solution. See nonpar/ex15_0.pdf

4 The Sign Test for a Matched-Pairs Experiment

The Sign Test for a Matched-Pairs Experiment

• n pairs of observations of the form (Xi, Yi); H0 : X and Y have the same
continuous distributions; Ha : the distributions differ in location.

• Let Di = Xi −Yi. H0 is true =⇒ P(Di > 0) = P(Di < 0) = 1/2

• Let M denote the total number of positive (or negative) differences. Then
if the variables Xi and Yi have the same distribution, M has a binomial
distribution with p = 1/2, and the rejection region for a test based on M
can be obtained by using the binomial probability distribution.

• Problem that may arise: observations associated with one or more pairs
may be equal and therefore may result in ties. When this situation occurs,
delete the tied pairs and reduce n, the total number of pairs.

Sign Test Summary
The Sign Test for a Matched-Pairs Experiment
Let p = P(X > Y).

Null hypothesis: H0 : p = 1/2.

Alternative hypothesis: Ha : p > 1/2 or (p < 1/2 or p 6= 1/2).

Test statistic: M = card{Di = Xi −Yi > 0 : i = 1, . . . , n}.

Rejection region: • For Ha : p > 1/2, reject H0 for the largest values of M;
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Day A B
1 172 201
2 165 179
3 206 159
4 184 192
5 174 177
6 142 170
7 190 182
8 169 179
9 161 169

10 200 210

Table 1: Data for Example 2

• for Ha : p < 1/2, reject H0 for the smallest values of M;

• for Ha : p = 1/2, reject H0 for very large or very small values of M.

Assumptions: The pairs (Xi, Yi) are randomly and independently selected.

Example

Example 2. The number of defective electrical fuses produced by each of two
production lines, A and B,was recorded daily for a period of 10 days, with
the results shown in Table 1. Assume that both production lines produced the
same daily output. Compare the number of defectives produced by A and
B each day and let M equal the number of days when A exceeded B. Do the
data present sufficient evidence to indicate that either production line produces
more defectives than the other? State the null hypothesis to be tested and use
M as a test statistic.

Solution. H0 : identical distribution =⇒ p = P(A > B) = 0.5 (given that there
are no ties) =⇒ H0 ⇐⇒binomial parameter p = .5.

Very large or very small values of M are most contradictory to the null hy-
pothesis. Therefore, the rejection region for the test will be located by including
the most extreme values of M that at the same time provide a value of α that is
suitable for the test.

We see that P(M ≤ 1 ∧M ≥ 9) = 0.0215 and P(M ≤ 2 ∧M ≥ 8) = 0.1094.
For α = 0.05, RR = {0, 1, 9, 10}, and for α = 0.11, RR = {0, 1, 2, 8, 9, 10}.
Compute p-value (see nonpar/ ex15_ 1. pdf ). We code a function for sign test
in R and call it: nonpar/ ex15_ 1b. pdf

Large Samples

• Sign Test for Large Samples: n > 25

Null hypothesis: H0 : p = .5 (neither treatment is preferred to the other).
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Alternative hypothesis: Ha : p = .5 for a two-tailed test (Note: We use the
two-tailed test for an example. Many analyses require a one-tailed test.)

Test statistic:
Z =

M− n/2
1
2
√

n
.

Rejection region: Reject H0 if z ≥ zα/2 or if z ≤ −zα/2, where zα/2 is the
quantile of order α/2 for standard normal distribution.

Example
The data in the file chickenembrios.txt are a subset of the data obtained

by Oppenheim (1968) in an experiment investigating light responsivity in chick
embryos. The subjects were white leghorn chick embryos, and the behavioral
response measured in the investigation was beak-clapping (i.e., the rapid open-
ing and closing of the beak that occurs during the latter one-third of incubation
in chick embryos). (Gottlieb (1965) had previously shown that changes in the
rate of beak-clapping constituted a sensitive indicator of auditory responsive-
ness in chick embryos.)

The embryos were placed in a dark chamber 30 min before the initiation of
testing. Then ten 1-min readings were taken in the dark, and at the end of this
10-min period, a single reading was obtained for a 1-min period of illumina-
tion.

File chickenembrios.txt gives the average number of claps per minute
during the dark period (XD) and the corresponding rate during the period of
illumination (YL) for 25 chick embryos. nonpar/ chikenEmbriosls. pdf

Comments

• Suppose that the paired differences are normally distributed with a com-
mon variance σ2. Will the sign test detect a shift in location of the two
populations as effectively as the Student’s t test?

• Intuitively: no. This is correct because the Student’s t test uses more
information: sign +magnitude of differences for more accurate means
and variances.

• Thus, we might say that the sign test is not as “efficient” as the Student’s
t test; but this statement is meaningful only if the differences in paired
observations are normally distributed with a common variance σ2

D.

• The sign test might be more efficient when these assumptions are not
satisfied.
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5 The Wilcoxon Signed-Rank Test for a Matched-
Pairs Experiment

The Wilcoxon Signed-Rank Test for a Matched-Pairs Experiment

• We have n paired observations (Xi, Yi) and Di = Xi −Yi.

• H0: the X’s and the Y’s have the same distribution versus the alternative
that the distributions differ in location. Under the null hypothesis of no
difference in the distributions of the X’s and Y’s, you would expect (on
the average) half of the differences in pairs to be negative and half to be
positive.

• That is, the expected number of negative differences between pairs is n/2
(where n is the number of pairs). Further, it would follow that positive
and negative differences of equal absolute magnitude should occur with
equal probability.

• If we were to order the differences according to their absolute values and
rank them from smallest to largest, the expected rank sums for the nega-
tive and positive differences would be equal.

• Sizable differences in the sums of the ranks assigned to the positive and
negative differences would provide evidence to indicate a shift in loca-
tion for the two distributions.

• To carry out the Wilcoxon test:

1. We calculate the differences (Di) for each of the n pairs. Differences
equal to zero are eliminated, and the number of pairs, n, is reduced
accordingly.

2. We rank the absolute values of the differences, assigning a 1 to the
smallest, a 2 to the second smallest, and so on. Ties: If two or more
absolute differences are tied for the same rank, then the average of
the ranks that would have been assigned to these differences is as-
signed to each member of the tied group. For example, if two ab-
solute differences are tied for ranks 3 and 4, then each receives rank
3.5, and the next highest absolute difference is assigned rank 5.

3. Then we calculate the sum of the ranks (rank sum) for the nega-
tive differences and also calculate the rank sum for the positive dif-
ferences. For a two-tailed test, we use T, the smaller of these two
quantities, as a test statistic to test the null hypothesis that the two
population relative frequency histograms are identical. The smaller
the value of T is, the greater will be the weight of evidence favor-
ing rejection of the null hypothesis. Hence, we will reject the null
hypothesis if T is less than or equal to some value, say, T0.
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4. To detect the one-sided alternative, that the distribution of the X’s
is shifted to the right of that of the Y’s, we use the rank sum T− of
the negative differences, and we reject the null hypothesis for small
values of T−, say, T− ≤ T0. If we wish to detect a shift of the distri-
bution of the Y’s to the right of the X’s,we use the rank sum T+ of
the positive differences as a test statistic, and we reject small values
of T+, say, T+ ≤ T0.

• The probability that T is less than or equal to some value T0 has been
calculated for a combination of sample sizes and values of T0. These
probabilities are tabulated and can be used to find the rejection region for
the test based on T.

• The R functions dsignrank, psignrank, qsignrank, rsignrank are den-
sity, distribution function, quantile function and random generation, re-
spectively, for the distribution of the Wilcoxon Signed Rank statistic ob-
tained from a sample with size n.

Summary
Wilcoxon Signed-Rank Test for a Matched-Pairs Experiment

H0 : The population distributions for the X’s and Y’s are identical.

Ha : (1) The two population distributions differ in location (two-tailed), or (2)
the population relative frequency distribution for the X’s is shifted to the
right of that for the Y ’s (one-tailed).

Test statistic 1. For a two-tailed test, use T = min(T+, T−), where T+ =
sum of the ranks of the positive differences and T− = sum of the
ranks of the negative differences.

2. For a one-tailed test (to detect the one-tailed alternative just given),
use the rank sum T− of the negative differences. To detect a shift of
the distribution of the Y’s to the right of the distribution of the X’s,
use the rank sum T+, the sum of the ranks of the positive differences,
and reject H0 if T+ ≤ T0.

Rejection region: 1. For a two-tailed test, reject H0 if T ≤ T0, where T0 is
the critical value for the two-sided test

2. For a one-tailed test (as described earlier), reject H0 if T− ≤ T0,
where T0 is the critical value for the one-sided test.

Example

Example 3. Due to oven-to-oven variation, a matched-pairs experiment was
used to test for differences in cakes prepared using mix A and mix B. Two
cakes, one prepared using each mix, were baked in each of six different ovens
(a total of 12 cakes). Test the hypothesis that there is no difference in population
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Difference Absolute Rank of
A B A− B Difference Absolute Difference

.135 .129 .006 .006 3

.102 .120 −.018 .018 5

.108 .112 −.004 .004 1.5

.141 .152 −.011 .011 4

.131 .135 −.004 .004 1.5

.144 .163 −.019 .019 6

Table 2: Paired data and their differences for Example 3

distributions of cake densities using the two mixes. What can be said about the
attained significance level? The original data and differences in densities (in
ounces per cubic inch) for the six pairs of cakes are shown in Table 2.

Solution. H0 : the two population frequency distributions of cake densities
are identical. Ha : the distributions differ in location =⇒ a two-tailed test
is required. Because the amount of data is small, we will conduct our test
by using α = .10. The critical value of T for a two-tailed test (from table),
α = .10, is T0 = 2. Hence, we will reject H0 if T ≤ 2. There is only one pos-
itive difference, and that difference has rank 3; therefore, T+ = 3. Because
T+ + T− = n(n + 1)/2 (why?), T− = 21− 3 = 18 and the observed value of
T is min(3, 18) = 3. Notice that 3 exceeds the critical value of T, implying that
there is insufficient evidence to indicate a difference in the two population fre-
quency distributions of cake densities. Because we cannot reject H0 for α = .10,
we can only say that p-value > .10. See nonpar/ ex15_ 3. pdf

Large Samples

• Although the tables for Wilcoxon SRT contains values for the number of
data pairs as large as n = 50, it is worth noting that T+ (or T−) will be
approximately normally distributed when the null hypothesis is true and
n is large (say, 25 or more).

• This enables us to construct a large-sample Z test, where if T = T+, see
[2, pages 47–49]

E
(
T+
)
=

n(n + 1)
4

, V
(
T+
)
=

n(n + 1)(2n + 1)
24

.

• Then the Z statistic

Z =
T+ − E (T+)√

V (T+)
=

T+ − n(n + 1)/4√
n(n + 1)(2n + 1)/24

can be used as a test statistic.
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Large Samples – Summary
A Large-Sample Wilcoxon Signed-Rank Test for a Matched-Pairs Experi-

ment: n > 25

Null hypothesis: H0 : The population relative frequency distributions for the
X’s and Y’s are identical.

Alternative hypothesis: 1. Ha : The two population relative frequency dis-
tributions differ in location (a two-tailed test),

2. or Ha : the population relative frequency distribution for the X’s is
shifted to the right (or left) of the relative frequency distribution of
the Ys (one-tailed tests).

Test statistic:

Z =
T+ − n(n + 1)/4√

n(n + 1)(2n + 1)/24

Rejection region: Reject H0 if z ≥ zα/2 or z ≤ −zα/2 for a two-tailed test. To
detect a shift in the distributions of the X’s to the right of the Y ’s, reject
H0 when z ≥ zα. To detect a shift in the opposite direction, reject H0 if
z ≤ −zα.

6 Using Ranks for Comparing Two Population Dis-
tributions: Independent Random Samples

Using Ranks for Independent Random Samples

• Wilcoxon 1947

• We assume that we are interested in testing whether the two populations
have the same distribution versus the shift (or location) alternative.

• Independent random samples of size n1 and n2, n1 + n2 = n.

• Combine observations, rank them in order of magnitude, from 1 (the
smallest) to n (the largest). Ties -> average of ranks is assigned to each
member of the tied group.

• If the observations were selected from identical populations, the rank
sums for the samples should be more or less proportional to the sample
sizes n1 and n2.

• For example, if n1 and n2 were equal, you would expect the rank sums
to be nearly equal. In contrast, if the observations in one population—
say, population I—tended to be larger than those in population II, the
observations in sample I would tend to receive the highest ranks and
sample I would have a larger than expected rank sum.
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I II
27 32
31 29
26 35
25 28

Table 3: Data for Example 4

I II
3 7
6 5
2 8
1 4

Rank sum: 12 24

Table 4: Ranks for Example 4

• Thus (sample sizes being equal), if one rank sum is very large (and, cor-
respondingly, the other is very small), it may indicate a statistically sig-
nificant difference between the locations of the two populations.

Example

Example 4. The bacteria counts per unit volume are shown in Table 3 for two
types of cultures, I and II. Four observations were made for each culture. Let
n1 and n2 represent the number of observations in samples I and II, respec-
tively. For the data given in Table 3, the corresponding ranks are as shown in
Table 4. Do these data present sufficient evidence to indicate a difference in the
locations of the population distributions for cultures I and II?

Finding Rejection Region

• Let W equal the rank sum for sample I (for this sample, W = 12).

• The minimum rank sum includes the ranks 1, 2, 3, 4, or W = 10. Similarly,
the maximum includes the ranks 5, 6, 7, 8, with W = 26. RR = {10, 26}

• The probability α: The total number of permutations of the eight ranks is
8! The number of different arrangements of the ranks 1, 2, 3, 4 in sample
I with the 5, 6, 7, 8 of sample II is 4! · 4!. Similarly, the number of arrange-
ments that place the maximum value of W in sample I (ranks 5, 6, 7, 8) is
4! · 4!. Then, the probability that W = 10 or W = 26 is

p(10) + p(26) =
2 · 4! · 4!

8!
=

1
35

= 0.029
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• If this value of α is too small, the rejection region can be enlarged to in-
clude the next smallest and next largest rank sums, W = 11 and W = 25.
The rank sum W = 11 includes the ranks 1, 2, 3, 5, and

p(11) =
4! · 4!

8!
=

1
70

Similarly,

p(25) =
1
70

.

Then,

α = p(10) + p(11) + p(25) + p(26) =
2

35
= 0.057.

• Expansion of the rejection region to include 12 and 24 substantially in-
creases the value of α. The set of sample points giving a rank of 12 in-
cludes all sample points associated with rankings of (1, 2, 3, 6) and (1, 2,
4, 5). Thus,

p(12) =
2 · 4! · 4!

8!
=

1
35

and

α = p(10) + p(11) + p(12) + p(24) + p(25) + p(26)

=
1

70
+

1
70

+
1
35

+
1

35
+

1
70

+
1

70
=

4
35

= 0.114

This value of α might be considered too large for practical purposes.
Hence, we are better satisfied with the rejection region W = 10, 11, 25,
and 26. The rank sum for the sample, W = 12, does not fall in this pre-
ferred rejection region, so we do not have sufficient evidence to reject the
hypothesis that the population distributions of bacteria counts for the
two cultures are identical.

7 The Mann–Whitney U Test

The Mann-Whitney U Test - Logic

• The Mann–Whitney statistic U is obtained by ordering all n1 + n2 ob-
servations according to their magnitude and counting the number of ob-
servations in sample I that precede each observation in sample II. The
statistic U is the sum of these counts.

• We denote the observations in sample I as x1, x2, . . . , xn1 and the obser-
vations in sample II as y1, y2, . . . , yn2 . For example, the eight ordered
observations of Example 4 are

25 26 27 28 29 31 32 35
x(1) x(2) x(3) y(1) y(2) x(4) y(3) y(4)
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• The smallest y observation is y(1) = 28, and u1 = 3 x’s precede it. Sim-
ilarly, u2 = 3 x’s precede y(2) = 29 and u3 = 4, and u4 = 4 x’s precede
y(3) = 32 and y(4) = 35, respectively. Then,

U = u1 + u2 + u3 + u4 = 3 + 3 + 4 + 4 = 14.

• Formula for the Mann–Whitney U Statistic

U = n1n2 +
n1(n1 + 1)

2
−W,

where

n1 = number of observations in sample I,
n2 = number of observations in sample II,
W = rank sum for sample I.

Properties
Some useful results about the distribution of U:

1. The possible values of U are 0, 1, 2, . . . , n1n2.

2. The distribution of U is symmetric about (n1n2)/2. That is, for any a > 0,
P[U ≤ (n1n2)/2− a] = P[U ≥ (n1n2)/2 + a].

3. The result in (2) implies that P(U ≤ U0) = P(U ≥ n1n2 −U0).

Summary
The Mann–Whitney U Test
Population I is the population from which the smaller sample was taken.

Null hypothesis: H0 : The distributions of populations I and II are identical.

Alternative hypothesis: Ha :

(1) The distributions of populations I and II have different locations (a
two-tailed test),

or (2) the distribution of population I is shifted to the right of the distribu-
tion of population II,

or (3) the distribution of population I is shifted to the left of the distribu-
tion of population II.

Test Statistic:
U = n1n2 + [n1(n1 + 1)]/2−W

Rejection region: (1) For the two-tailed test and a given value of α, reject H0
if U ≤ U0 or U ≥ n1n2 −U0, where P(U ≤ U0) = α/2.
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(2) To test that population I is shifted to the right of population II with
a given value of α, reject H0 if U ≤ U0, where P(U ≤ U0) = α.

(3) To test that population I is shifted to the left of population II with a
given value of α, reject H0 if U ≥ n1n2 −U0, where P(U ≤ U0) = α.

Assumptions: Samples have been randomly and independently selected from
their respective populations. Ties in the observations can be handled by
averaging the ranks that would have been assigned to the tied observa-
tions and assigning this average rank to each. Thus, if three observations
are tied and are due to receive ranks 3, 4, and 5, we assign rank 4 to all
three.

Examples

Example 5. Test the hypothesis that there is no difference in the locations of the
population distributions for the bacteria count data of Example 4.

Solution. From tables, for n1 = n2 = 4, we find P(U ≤ 1) = .0286. The
appropriate rejection region for the two-tailed test is U ≤ 1 or U ≥ n1n2 − 1 =
16 − 1 = 15, for which α = 2(.0286) = .0572 or, rounding to three decimal
places, α = .057 (the same value of α obtained for Example 4).

For the bacteria data, the rank sum is W = 12. Then, U = n1n2 + n1(n1 +
1)/2−W = (4)(4) + 4(4+ 1)/2− 12 = 14. The calculated value of U does not
fall in the rejection region.

Hence, there is not sufficient evidence to show a difference in the locations
of the population distributions of bacteria counts for cultures I and II. The p-
value is given by 2P(U ≥ 14) = 2P(U ≤ 2) = 2(.0571) = .1142. See nonpar/

ex15_ 4_ 5. pdf

Examples

Example 6. An experiment was conducted to compare the strengths of two
types of kraft papers, one a standard kraft paper of a specified weight and
the other the same standard kraft paper treated with a chemical substance. Ten
pieces of each type of paper, randomly selected from production, produced the
strength measurements shown in Table 5. Test the hypothesis of no difference
in the distributions of strengths for the two types of paper against the alterna-
tive hypothesis that the treated paper tends to be stronger.

Solution. We may choose any population. In Table 5, the ranks are shown in
parentheses, and the rank sum W is given below the first column. Because we
wish to detect a shift in the distribution of population I(standard) to the left of
the distribution of the population II (treated), we will reject the null hypothesis
of no difference in population strength distributions when W is excessively
small. Because this situation occurs when U is large, we will conduct a one-
tailed statistical test and reject the null hypothesis when U ≥ n1n2 −U0.

14
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Standard, I Treated, II
1.21(2) 1.49(15)
1.43(12) 1.37(7.5)
1.35(6) 1.67(20)
1.51(17) 1.50(16)
1.39(9) 1.31(5)
1.17(1) 1.29(3.5)
1.48(14) 1.52(18)
1.42(11) 1.37(7.5)
1.29(3.5) 1.44(13)
1.40(10) 1.53(19)

Rank Sum W = 85.5

Table 5: Data for Example refex15.6

Solution, continued. From tables, for α ≈ .0526, and n2 = 10, we find U0 = 28.
Hence, we will reject if U ≥ (10)(10)− 28 = 72. Calculate U

U = n1n2 +
n1(n1 + 1)

2
−W = 10 · 10 +

10 · 11
2
− 85.5 = 69. 5

As you can see, U is not greater than 72. Therefore, we cannot reject the null
hypothesis.

At the α = .0526 level of significance, there is not sufficient evidence to
indicate that the treated kraft paper is stronger than the standard. The p-value
is given by P(U ≥ 69.5) = P(U ≤ 30.5) = .0716. See nonpar/ ex15_ 6. pdf

Large Samples

• A simplified large-sample test (n1 ≥ 10 and n2 ≥ 10) can be obtained by
using the familiar Z statistic.

• When the population distributions are identical, it can be shown that the
U statistic has the following expected value and variance:

E(U) =
n1n2

2
, V(U) =

n1n2 (n1 + n2 + 1)
12

.

• Also, when n1 and n2 are large,

Z =
U − E(U)

σU

has approximately a standard normal distribution.
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Comments

• The Mann–Whitney U test and the equivalent Wilcoxon rank-sum test are
not very efficient because they do not appear to use all the information in
the sample. Actually, theoretical studies have shown that this is not the
case.

• Under the normality assumption, the two-sample t test and the Mann–
Whitney U test test the same hypotheses: H0 : µ1 − µ2 = 0 versus Ha :
µ1 − µ2 > 0.

• For a given α and β, the total sample size required for the t test is approx-
imately .95 times the total sample size required for the Mann–Whitney
U.

• Thus, the nonparametric procedure is almost as good as the t test for the
situation in which the t test is optimal.

• For many nonnormal distributions, the nonparametric procedure requires
fewer observations than a corresponding parametric procedure would
require to produce the same values of α and β.

8 The Kruskal–Wallis Test for the One-Way Layout

The Kruskal–Wallis Test

• We assume that independent random samples have been drawn from k
populations that differ only in location, and we let ni, for i = 1, 2, . . . , k,
represent the size of the sample drawn from the ith population.

• Combine all the n1 + n2 + · · ·+ nk = n observations and rank them from
1 (the smallest) to n (the largest).

• Ties: if two or more observations are tied for the same rank, then the
average of the ranks that would have been assigned to these observations
is assigned to each member of the tied group.

• Let Ri denote the sum of the ranks of the observations from population i
and let Ri = Ri/ni denote the corresponding average of the ranks. If R
equals the overall average of all of the ranks, consider the rank analogue of
SST, which is computed by using the ranks rather than the actual values
of the measurements:

V =
k

∑
i=1

ni
(

Ri − R
)2 .
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• If the null hypothesis is true and the populations do not differ in loca-
tion, we would expect the Ri values to be approximately equal and the
resulting value of V to be relatively small. If the alternative hypothe-
sis is true, we would expect this to be exhibited in differences among
the values of the Ri values, leading to a large value for V. Notice that
R = (∑n

k=1 k)/n = [n(n + 1)/2]/n = (n + 1)/2 and thus that

V =
k

∑
i=1

ni

(
Ri −

n + 1
2

)2
. (1)

• Instead of focusing on V, Kruskal and Wallis (1952) [3] considered the
statistic

H =
12V

n(n + 1)
, (2)

which may be rewritten (homework)

H =
12

n (n + 1)

k

∑
i=1

R2
i

ni
− 3 (n + 1) . (3)

• As previously noted, the null hypothesis of equal locations is rejected in
favor of the alternative that the populations differ in location if the value
of H is large. Thus, the corresponding α-level test calls for rejection of the
null hypothesis in favor of the alternative if H > h(α), where h(α) is such
that, when H0 is true, P[H > h(α)] = α.

• If the underlying distributions are continuous and if there are no ties
among the n observations, the null distribution of H can (tediously) be
found by using the methods of Probability Theory. We can find the dis-
tribution of H for any values of k and n1, n2, . . . , nk by calculating the
value of H for each of the n! equally likely permutations of the ranks of
the n observations. These calculations have been performed and tables
developed for some relatively small values of k and for n1, n2, . . . , nk [2,
Table A.12].

Summary
Kruskal–Wallis Test Based on H for Comparing k Population Distribu-

tions

Null hypothesis: H0: The k population distributions are identical.

Alternative hypothesis: Ha: At least two of the population distributions differ
in location.

Test statistic:

H =
12

n (n + 1)

k

∑
i=1

R2
i

ni
− 3 (n + 1) .
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Line 1 Line 2 Line 3
Def R Def R Def R
6 5 34 25 13 9.5

38 27 28 19 35 26
3 2 42 30 19 15

17 13 13 9.5 4 3
11 8 40 29 29 20
30 21 31 22 0 1
15 11 9 7 7 6
16 12 32 23 33 24
25 17 39 28 18 14
5 4 27 18 24 16

R1 = 120 R2 = 210.5 R3 = 134.5

Table 6: Data for Example 7

where
ni = number of measurements in the sample from population i,
Ri = rank sum for sample i, where the rank of each measurement is com-
puted according to its relative size in the overall set of n = n1 + n2 +
· · ·+ nk observations formed by combining the data from all k samples.

Rejection region: Reject H0 if H > χ2
α,k−1 (χ2-quantile of order α with k − 1

df).

Assumptions: The k samples are randomly and independently drawn. There
are five or more measurements in each sample.

Example

Example 7. A quality control engineer has selected independent samples from
the output of three assembly lines in an electronics plant. For each line, the
output of ten randomly selected hours of production was examined for defects.
Do the data in Table 6 provide evidence that the probability distributions of the
number of defects per hour of output differ in location for at least two of the
lines? Use α = .05. Also give the p-value associated with the test.

Solution. In this case, n1 = n2 = n3 = 10 and n = 30. Thus,

H =
12

30 · 31

(
1202

10
+

210.52

10
+

134.52

10

)
− 3 · 31 = 6. 097 4

Because all the ni ≥ 5, we may use the approximation for the null distribution
of H and reject the null hypothesis of equal locations if H > χ2

0.05,2 = 5.99147.
Thus, we reject the null hypothesis at the α = .05 level and conclude that at
least one of the three lines tends to produce a greater number of defects than
the others. See nonpar/ ex15_ 7. pdf .

18

nonpar/ex15_7.pdf


Remarks

• It can be shown that, if we wish to compare only k = 2 populations, the
Kruskal–Wallis test is equivalent to the Wilcoxon rank-sum two-sided
test. If data are obtained from a one-way layout involving k > 2 pop-
ulations but we wish to compare a particular pair of populations, the
Wilcoxon rank-sum test (or the equivalent Mann–Whitney U test) can be
used for this purpose.

• Notice that the analysis based on the Kruskal–Wallis H statistic does not
require knowledge of the actual values of the observations. We need only
know the ranks of the observations to complete the analysis.

9 The Friedman Test for Randomized Block Designs

The Friedman Test for Randomized Block Designs

• Milton Friedman - winner of Nobel Prize for Economy, 1937

• After the data from a randomized block design are obtained, within each
block the observed values of the responses to each of the k treatments are
ranked from 1 (the smallest in the block) to k (the largest in the block).

• If two or more observations in the same block are tied for the same rank,
then the average of the ranks that would have been assigned to these
observations is assigned to each member of the tied group. However, ties
need to be dealt with in this manner only if they occur within the same
block.

• Ri denote the sum of the ranks of the observations corresponding to treat-
ment i and let Ri = Ri/b denote the corresponding average of the ranks
(recall that in a randomized block design, each treatment is applied ex-
actly once in each block, resulting in a total of b observations per treat-
ment and hence in a total of bk total observations). Because ranks of 1 to
k are assigned within each block, the sum of the ranks assigned in each
block is 1 + 2 + · · ·+ k = k(k + 1)/2. Thus, the sum of all the ranks as-
signed in the analysis is bk(k + 1)/2. If R denotes the overall average of
the ranks of all the bk observations, it follows that R = (k + 1)/2. Con-
sider the rank analog of SST for a randomized block design given by

W = b
k

∑
i=1

(
Ri − R

)2 .

• If the null hypothesis is true and the probability distributions of the treat-
ment responses do not differ in location, we expect the Ri -values to be
approximately equal and the resulting value for W to be small. If the

19



alternative hypothesis were true, we would expect this to lead to differ-
ences among the Ri-values and corresponding large values of W. Instead
of W, Friedman considered the statistic Fr = 12W/[k(k + 1)], which may
be rewritten as

Fr =
12

bk(k + 1)

k

∑
i=1

R2
i − 3b(k + 1).

• The null hypothesis of equal locations is rejected in favor of the alterna-
tive that the treatment distributions differ in location if the value of Fr is
large. That is, the corresponding α-level test rejects the null hypothesis in
favor of the alternative if Fr > fr(α), where fr(α) is such that, when H0 is
true, P[Fr > fr(α)] = α.

• If there are no ties among the observations within the blocks, the null
distribution of Fr can (tediously) be found by using the methods of Prob-
ability Theory. For any values of b and k, the distribution of Fr is found as
follows. If the null hypothesis is true, then each of the k! permutations of
the ranks 1, 2, . . . , k within each block is equally likely. Further, because
we assume that the observations in different blocks are mutually inde-
pendent, it follows that each of the (k!)b possible combinations of the b
sets of permutations for the within-block ranks are equally likely when
H0 is true. Consequently, we can evaluate the value of Fr for each possi-
ble case and thereby give the null distribution of Fr. Selected values for
fr(α) for various choices of k and b are given in Hollander and Wolfe [2,
Table A.22].

• For k = 2, the Friedman analysis is equivalent to a two-tailed sign test.

Summary
Friedman Test Based on Fr for a Randomized Block Design

Null hypothesis: H0: The probability distributions for the k treatments are
identical.

Alternative hypothesis: Ha: At least two of the distributions differ in location.

Test statistic

Fr =
12

bk(k + 1)

k

∑
i=1

R2
i − 3b(k + 1),

where
b = number of blocks,
k = number of treatments,
Ri = sum of the ranks for the ith treatment, where the rank of each mea-
surement is computed relative to its size within its own block.

Rejection region: Fr > χ2
α,k−1.
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Techn Task A Rank Task B Rank Task C Rank
1 1.21 1 1.56 3 1.48 2
2 1.63 1.5 2.01 3 1.63 1.5
3 1.42 1 1.70 2 2.06 3
4 1.16 1 1.27 2.5 1.27 2.5
5 2.43 2 2.64 3 1.98 1
6 1.94 1 2.81 3 2.44 2
Rank sum 7.5 16.5 12

Table 7: Completion times for three tasks

Assumptions: The treatments are randomly assigned to experimental units
within blocks. Either the number of blocks (b) or the number of treat-
ments (k) exceeds 5.

Example

Example 8. An experiment to compare completion times for three technical
tasks was performed in the following manner. Because completion times may
vary considerably from person to person, each of the six technicians was asked
to perform all three tasks. The tasks were presented to each technician in a
random order with suitable time lags between the tasks. Do the data in Table
7 present sufficient evidence to indicate that the distributions of completion
times for the three tasks differ in location? Use α = .05. Give bounds for the
associated p-value.

Solution. RB design with k = 3 treatments and b = 6 blocks; technicians −→
blocks. Because b > 5, we may use the Friedman test and compare the value
of Fr to χ2

α,k−1 , based on k− 1 = 2 df. The quantile is χ2
0.05,2 = 5.99147. For the

data given in Table 7,

Fr =
12

6 · 3 · 4

(
7.52 + 16.52 + 122

)
− 3 · 6 · 4 = 6. 75.

Because Fr = 6.75 > 5.99147, we conclude at the α = .05 level that the com-
pletion times of at least two of the three tasks possess probability distribu-
tions that differ in location. The p-value is P(χ2 > 6.75) = 0.03421812. See
nonpar/ ex15_ 8. pdf or nonpar/ ex15_ 8b. pdf

10 The Runs Test: A Test for Randomness

The Runs Test: A Test for Randomness

• Wald and Wolfowitz, 1940

• Why do we test randomness?
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• The runs test is used to study a sequence of events with one of two out-
comes, success (S) or failure (F). If we think of the sequence of items
emerging from a manufacturing process as defective (F) or nondefective
(S), the observation of twenty items might yield

S S S S S F F S S S
F F F S S S S S S S

• We notice the groupings of defectives and nondefectives and ask whether
this grouping implies nonrandomness and, consequently, lack of process
control.

Definition 9. A run is a maximal subsequence of like elements.

• The 20 elements are arranged in five runs, the first containing five S’s, the
second containing two F’s, and so on.

• A very small or very large number of runs in a sequence indicates non-
randomness.

• Therefore, let R (the number of runs in a sequence) be the test statistic
and let the rejection region be R ≤ k1 and R ≥ k2, as indicated in Figure
3.

• We must then find the probability distribution for R, P(R = r), to calcu-
late α and to locate a suitable rejection region for the test.

Figure 3: The rejection region for the runs test

Finding the Probabilities

• Input: sequence contains n1 S elements and n2 F elements, Y1 runs of S’s,
Y2 runs of F’s, where (Y1 + Y2) = R.

• For a given Y1, Y2 can equal Y1, (Y1 − 1), or (Y1 + 1).

• Let m denote the maximum possible number of runs. Notice that m = 2n1
if n1 = n2, and that m = (2n1 + 1) if n1 < n2.
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• We will suppose that every distinguishable arrangement of the (n1 + n2)
elements in the sequence constitutes a simple event for the experiment
and that the sample points are equiprobable. It then remains for us to
count the number of sample points that imply R runs.

• The total number of distinguishable arrangements of n1 S elements and
n2 F elements is (

n1 + n2
n1

)
,

and therefore the probability per sample point is

1(
n1 + n2

n1

) .

• The number of ways of achieving y1 S runs is equal to the number of iden-
tifiable arrangements of n1 indistinguishable elements in y1 cells, none of
which is empty, as represented in Figure 4. This is equal to the number
of ways of distributing the (y1 − 1) inner bars in the (n1 − 1) spaces be-
tween the S elements (the outer two bars remain fixed). Consequently, it
is equal to the number of ways of selecting (y1 − 1) spaces (for the bars)
out of the (n1 − 1) spaces available, or(

n1 − 1
y1 − 1

)
.

• The number of ways of observing y1 S runs and y2 F runs, obtained by
applying the mn rule, is(

n1 − 1
y1 − 1

)(
n2 − 1
y2 − 1

)
.

• This gives the number of sample points in the event “y1 runs of S’s and
y2 runs of F’s.” The probability of exactly y1 runs of S’s and y2 runs of
F’s:

p (y1, y2) =

(
n1 − 1
y1 − 1

)(
n2 − 1
y2 − 1

)
(

n1 + n2
n1

)
Then, P(R = r) equals the sum of p(y1, y2) over all values of y1 and y2
such that (y1 + y2) = r.

• Examples: R = 4 could occur when y1 = 2 and y2 = 2 with either the S
or F elements commencing the sequences. Consequently,

P(R = 4) = 2P(Y1 = 2, Y2 = 2).
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Figure 4: The distribution of n1 S elements in y1

On the other hand, R = 5 could occur when y1 = 2 and y2 = 3 or when
y1 = 3 and y2 = 2, and these occurrences are mutually exclusive. Then,

P(R = 5) = P(Y1 = 3, Y2 = 2) + P(Y1 = 2, Y2 = 3).

Normal Approximations

• The probability distribution for R tends toward normality as n1 and n2
become large (n1 > 10, n2 > 10).

• Consequently, we may use the Z statistic, where

Z =
R− E(R)√

V(R)

E(R) =
2n1n2

n1 + n2
+ 1

V(R) =
2n1n2 (2n1n2 − n1 − n2)

(n1 + n2)
2 (n1 + n2 − 1)

are the expected value and variance of R, respectively.

• If α is the desired probability of a type I error, then the rejection region
for a two-tailed test, is |z| ≥ z1−α/2. For an upper-tail test, we reject the
null hypothesis if z > z1−α (for a lower-tail test, we reject H0 if z < zα).

Examples

Example 10. A true–false examination was constructed with the answers run-
ning in the following sequence:

T F F T F T F T T F T F F T F T F T T F.
Does this sequence indicate a departure from randomness in the arrange-

ment of T and F answers?

Solution. The sequence contains n1 = 10 T and n2 = 10 F answers, with y = 16
runs. Nonrandomness can be indicated by either an unusually small or an
unusually large number of runs; consequently, we will be using a two-tailed
test.

Suppose that we wish to use α approximately equal to .05 with .025 or less
in each tail of the rejection region. Then, from Table, with n1 = n2 = 10, we see
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that P(R ≤ 6) = .019 and P(R ≤ 15) = .981. Then, P(R ≥ 16) = 1− P(R ≤
15) = .019, and we would reject the hypothesis of randomness at the α = .038
significance level if R ≤ 6 or R ≥ 16. Because R = 16 for the observed data,
we conclude that evidence exists to indicate nonrandomness in the professor’s
arrangement of answers. The attempt to mix the answers was overdone. See
nonpar/ ex15_ 10. pdf

Examples–cont.

• A second application – time series

• Departures from randomness in a series, caused either by trends or peri-
odicities, can be detected by examining the deviations of the time series
measurements from their average.

• Negative and positive deviations could be denoted by S and F, respec-
tively, and we could then test this time sequence of deviations for non-
randomness.

Example 11. Paper is produced in a continuous process. Suppose that a bright-
ness measurement Y is made on the paper once every hour and that the results
appear as shown in Figure 5. The average y for the 15 sample measurements
appears as shown. Notice the deviations about y. Do these data indicate a
lack of randomness and thereby suggest periodicity and lack of control in the
process?

Figure 5: Paper brightness versus time

Solution. The sequence of negative (S) and positive (F) deviations as indicated
in Figure 5 is
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S S S S F F S F F S F S S S
Then, n1 = 10, n2 = 5, and R = 7. Consulting Table, we find P(R ≤ 7) =

.455. This value of R is not improbable, assuming the hypothesis of random-
ness to be true. Consequently, there is not sufficient evidence to indicate non-
randomness in the sequence of brightness measurements. See nonpar/ ex15_

11. pdf

11 Rank Correlation Coefficient

Rank Correlation Coefficient

• Let (X1, Y1), . . . , (Xn, Yn) be a random sample from a continuous bivari-
ate population with joint distribution function FX,Y and marginal distri-
bution functions FX and FY. That is, the (X, Y) pairs are mutually inde-
pendent and identically distributed according to some continuous bivari-
ate population.

• The null hypothesis: X and Y are independent:

H0 : [FX,Y(x, y) ≡ FX(x)FY(y), for all (x, y) pairs]. (4)

• To compute the Spearman rank correlation coefficient rs, we first order
the n X observations from least to greatest and let Ri denote the rank
of Xi, i = 1, . . . , n, in this ordering. Similarly, we separately order the
n Y observations from least to greatest and let Si denote the rank of Yi,
i = 1, . . . , n, in this ordering. The Spearman (1904) rank correlation co-
efficient is defined as the Pearson product moment sample correlation of
the Ri and the Si.

• Recall that the sample correlation coefficient for observations (X1, Y1), . . . , (Xn, Yn)
is given by

rP =
Sxy√
SxxSyy

=
∑n

i=1(Xi − X)(Yi −Y)[
∑n

i=1(Xi − X)2 ∑n
i=1(Yi −Y)2

]1/2 .

• When no ties within a sample are present, this is equivalent to two com-
putationally efficient formulae:

rS =

12
n

∑
i=1

(
Ri − n+1

2

) (
Si − n+1

2

)
n (n2 − 1)

(5)

= 1−
6 ∑n

i=1 D2
i

n (n2 − 1)
, (6)

where Di = Ri − Si, i = 1, . . . , n.
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• Rejection region

(a) Upper-tailed test: Ha : X and Y are positively associated. Reject H0 if rS ≥
rS,α, where the constant rS,α is chosen to make the type I error probability
equal to α. Values of rS,α are found with the command qSpearman.

(b) Lower-tailed test: Ha : X and Y are negatively associated. Reject H0 if
rS ≤ −rS,α

(c) Two-tailed test: Ha : X and Y are not associated (not independent). Reject
H0 if |rS| ≥ rS,α/2.

The critical values are tabulated.

Normal Approximation

• The large-sample approximation is based on the asymptotic normality of
rS, suitably standardized. For this standardization, we need to know the
expected value and variance of rS when the null hypothesis of indepen-
dence is true. Under H0, the expected value and variance of rS are

E(rS) = 0 (7)

V(rS) =
1

n− 1
. (8)

• The standardized version of rS is

r∗S =
rS − E(rS)√

V(rS)
=
√

n− 1rS. (9)

• When H0 is true, r∗S has, as n tends to infinity, an asymptotic N(0, 1) dis-
tribution.

Ties

• If there are ties among the n X observations and/or separately among the
n Y observations, assign each of the observations in a tied (either X or Y)
group the average of the integer ranks that are associated with the tied
group.

• If there are tied X’s and/or tied Y’s, Spearman’s rank correlation coeffi-
cient calculated with Pearson’s correlation does not require modification.

• If using the computationally efficient version of rS at (6), some changes
to the statistic are necessary. The statistic rS in this case becomes

rS =
n(n2 − 1)− 6 ∑n

s=1 D2
s − 1

2 [T1 + T2]

{[n(n2 − 1)− T1] [n(n2 − 1)]− T2}1/2 (10)
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Teacher Judge’s Rank Examination Score
1 7 44(1)
2 4 72(5)
3 2 69(3)
4 6 70(4)
5 1 93(8)
6 3 82(7)
7 8 67(2)
8 5 80(6)

Table 8: Data for science teachers

T1 =
g

∑
i=1

ti(t2
i − 1), T2 =

h

∑
j=1

uj(u2
j − 1) (11)

where in (10) and (11) g denotes the number of tied X groups, ti is the
size of tied X group i, h is the number of tied Y groups, and uj is the size
of tied Y group j.

• We note that an untied X(Y) observation is considered to be a tied X(Y)
group of size 1. In particular, if neither the collection of X nor the col-
lection of Y observations contains tied values, we have g = h = n,
tj = uj = 1, i = 1, . . . , n, and j = 1, . . . , n. In this case of no tied X’s
and no tied Y’s, each term involving either (t2

i − 1) or (u2
j − 1) reduces to

zero and the “ties” expression for rS in (10) reduces to the “no-ties” form
for rS, as given in (6).

• As a consequence of this effect that ties have on the null distribution of
rS, in order to use the large-sample approximation when there are tied X
observations and/or tied Y observations, we first compute r∗S (9) using
average ranks and the ties-corrected version of rS (10).

Example
Example 12. Suppose that eight elementary-science teachers have been ranked
by a judge according to their teaching ability, and all have taken a national
teachers’ examination. The data are given in Table 8. Do the data suggest
agreement between the judge’s ranking and the examination score? Alterna-
tively, we might express this question by asking whether a correlation exists
between the judge’s ranking and the ranks of examination scores. Calculate
rS for the judge’s ranking and examination score data from Table 8. Test the
hypothesis of no association between populations.

Solution. The computed value for rS is rS = −0.7142857. The critical value is
rS,0.025 = −0.6904762. We reject the null hypothesis for α = 0.05, left-tailed,
and accept it for two-tailed. See nonpar/ ex15_ 12. pdf
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