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April 5, 2016

1 Linear Models

Linear Statistical Models

Definition 1. A linear statistical model relating a random response Y to a set of
independent variables x1, x2, . . . , xk is of the form

Y = β0 + β1x1 + β2x2 + · · ·+ βkxk + ε

where β0, β1, . . . , βk are unknown parameters, ε is a random variable, and the
variables x1, x2, . . . , xk assume known values. We will assume that E(ε) = 0
and hence

M(Y) = β0 + β1x1 + β2x2 + · · ·+ βkxk.

If k = 1 we call the model simple.

Physical interpretation: Y is equal to an expected value, β0 + β1x1 + β2x2 +
· · ·+ βkxk (a function of the independent variables x1, x2, . . . , xk), plus a ran-
dom error ε. From a practical point of view, ε acknowledges our inability to
provide an exact model for nature. In repeated experimentation, Y varies about
E(Y) in a random manner because we have failed to include in our model all of
the many variables that may affect Y. Fortunately, many times the net effect of
these unmeasured, and most often unknown, variables is to cause Y to vary in
a manner that may be adequately approximated by an assumption of random
behavior.

2 The Method of Least Squares

The Method of Least Squares

• simple regression
Y = β0 + β1x + ε

ε is a RV such that E(ε) = 0.
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Figure 1: A linear statistical model

• if β̂0, β̂1 estimators for β0 and β1 then Ŷ = β̂0 + β̂1x estimator for M(Y).

• Prediction for Y when x = xi

ŷi = β̂0 + β̂1xi

• The deviation of the observed value of yi from ŷi = β̂0 + β̂1xi called error

error = yi − ŷ;

• We’ll find βs which minimize sum of squares for error

SSE =
n

∑
i=1

(yi − ŷ)2 =
n

∑
i=1

[yi − (β̂0 + β̂1xi)]
2.

• Solve
∂SSE
∂β̂0

= 0 and
∂SSE
∂β̂1

= 0;
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• Normal equations

∂SSE
∂β̂0

= −
n

∑
i=1

2[yi − (β̂0 + β̂1xi]

= −2
(
∑ yi − nβ0 + β̂1 ∑ xi

)
= 0

∂SSE
∂β̂1

= −∑ 2[yi − (β̂0 + β1xi)]xi

= −2

(
n

∑
i=1

xiyi − β̂0

n

∑
i=1

xi − β̂1

n

∑
i=1

x2
i

)
= 0

• Solutions

β1 =
∑n

i=1(xi − x)(yi − y)
∑n

i=1(xi − x)2 =
∑n

i=1 xiyi − 1
n ∑n

i=1 xi ∑n
i=1 yi

∑n
i=1 x2

i −
1
n (∑n

i=1 xi)
2

β0 = y− β̂1x.

The Hessian matrix is positive definite

• Introducing

Sxy =
n

∑
i=1

(xi − x)(yi − y) and Sxx =
n

∑
i=1

(xi − x)2

the solution is

β̂1 =
Sxy

Sxx
, β̂0 = y− β̂1x.

Example
Example 2. Use the method of least squares to fit a straight line to the n = 5 data
points given below

x −2 −1 0 1 2
y 0 0 1 1 3

Find the value for x = 3.
See the file ex11_1WMS.pdf.

3 Properties of the Least-Squares Estimators

Properties of the Least-Squares Estimators

• Model
Y = β0 + β1x + ε,

• Assumptions ε is a RV such that E(ε) = 0, V(ε) = σ2 (independent of x).
Notice that V(Y) = V(ε) = σ2.
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Properties of the Least-Squares Estimators

Theorem 3. 1. β̂0 and β̂1 unbiased estimators i.e.

E(β̂i) = βi, i = 0, 1.

2. V(β̂0) = c00σ2 where c00 =
∑ x2

i
nSxx

.

3. V(β̂1) = c11σ2, where c11 =
1

Sxx
.

4. Cov(β̂0, β̂1) = c01σ2, where c01 =
−x
Sxx

.

5. S2 = SSE/(n− 2), where SSE = Syy − β̂1Sxy and Syy = ∑(yi − y)2, is an
unbiased estimator for σ2.

Properties of the Least-Squares Estimators

Theorem 4. 6. Moreover, if individual errors εi are normally distributed then

a) β̂0 and β̂1 are normally distributed

b) the RV
(n− 2)S2

σ2 has a χ2 with n− 2 dfs.

c) Statistic S2 is independent of both β̂0 and β̂1.

Proof
Assume that n independent observations are to be made on this model so

that before sampling we have n independent random variables of the form

Yi = β0 + β1xi + εi.

But,

β̂1 =
Sxy

Sxx
=

∑(xi − x)(Yi −Y)
∑(xi − x)2

=
∑(xi − x)Yi −Y

0︷ ︸︸ ︷
∑(xi − x)

Sxx

=
∑(xi − x)Yi

Sxx
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and

E(β̂1) =
∑(xi − x)M(Yi)

Sxx
=

∑(xi − x)(β0 + β1xi)

Sxx

= β0

0︷ ︸︸ ︷
∑(xi − x)

Sxx
+ β1

∑(xi − x)x
Sxx

= β1
∑(xi − x)2

Sxx
= β1,

that is β̂1 is an unbiased estimator of β1. Variance of β̂1:

V(β̂1) =

[
1

Sxx

]2

∑ V[(xi − x)Yi]

=

[
1

Sxx

]2

∑(xi − x)V(Yi) =
σ2

Sxx

The expected value and variance of β̂0 = Y− β̂1x

V(β̂0) = V(Y) + x2V(β1)− 2xCov(Y, β1)

We need V(Y) and Cov(Y, β̂1) to obtain V(β̂0).Since Yi = β0 + β1xi + εi, we
see that

Y =
1
n ∑ Yi = β0 + β1x + ε

Thus,
E(Y) = β0 + β1x + M(ε) = β0 + β1x

and

V(Y) = V(ε) =
1
n

V(εi) =
σ2

n

To find Cov(Y, β̂1), rewrite the expression of β̂1 as

β̂1 = ∑ ciyi

where
ci =

xi − x
Sxx

.

(Notice that ∑ ci = 0.) Then,

Cov(Y, β̂1) = Cov
[
∑
(

1
n

)
Yi, ∑ ciYi

]

= ∑
( ci

n

)
V(Yi) + ∑

i<j
∑
( cj

n

)
Cov(Yi, Yj).
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Because Yi and Yj, where i 6= j, are independent, Cov(Yi, Yj) = 0. Also, V(Yi) =

σ2, and hence

Cov(Y, β1) =
σ2

n ∑ ci = 0.

Returning to our original task of finding the expected value and variance of

β̂0 = Y− β̂1x

from mean value properties

E(β̂0) = E(Y)− E(β̂1)x = β0 + β1x− β1x = β0.

Since V(Y), V(β̂1), and Cov(Y, β̂1) were already derived

V(β̂0) = V(Y) + x2V(β̂1)− 2xCov(Y, β1)

=
σ2

n
+ x2

[
σ2

Sxx

]
= σ2

[
1
n
+

x2

Sxx

]
=

σ2 ∑ x2
i

nSxx
.

Further

Cov(β̂0, β1) = Cov(Y− β̂1x, β1) = Cov(Y, β1)︸ ︷︷ ︸
0

−xCov(β1, β1)

= −xV(β1) =
−xσ2

Sxx

So, β̂0 and β̂1 are correlated (and therefore dependent), unless x = 0. The
variances of estimators depends on unknown quantity σ2 = V(ε). Will show
that

S2 =
1

n− 2

n

∑
i=1

(Yi − Ŷi)
2 =

1
n− 2

SSE

is an unbiased estimator of σ2. Notice that the 2 occurring in the denominator
of S2 corresponds to the number of β parameters estimated in the model.

E(SSE) = E
[
∑(Yi − Ŷi)

2
]
= E

[
∑(Yi − β̂0 − β̂1xi)

2
]

= E
[
∑(Yi −Y + β̂1x− β̂1xi)

2
]

= E
[
∑[(Yi −Y)− β̂1(xi − x)]2

]
= E

[
∑(Yi −Y)2 + β̂2

1 ∑(xi − x)− 2β̂1 ∑(xi − x)(Yi −Y)
]

Because ∑(xi− x)(Yi−Y) = ∑(xi− x)2 β̂1, the last two terms in the expectation
combine to give −β̂2

1 ∑(xi − x)2. Also,

∑(Yi −Y)2 = ∑ Y2
i − nY2,
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and therefore

E
[
∑(Yi − Ŷi)

2
]
= E

[
∑ Y2

i − nY2 − β̂2
1Sxx

]
= ∑ E(Y2

i )− nE(Y)2 − SxxE(β̂2
1).

Noting that, for any random variable U, E(U2) = V(U) + [E(U)]2, we see that

E
[
∑(Yi − Ŷi)

2
]
= ∑{V(Yi) + [E(Yi)]

2} −n{V(Y)+[E(Y)]2}

− Sxx{V(β̂1) + [E(β1)]
2}

= nσ2 + ∑(β0 + β1xi)
2 − n

[
σ2

n
+ (β0 + β1x)2

]
− Sxx

[
σ2

Sxx
+ β2

1

]
This expression simplifies to (n− 2)σ2. Thus, we find that an unbiased estima-
tor of σ2 is given by

S2 =

(
1

n− 2

)
∑(Yi − Ŷi)

2 =
1

n− 2
SSE

A simple way to compute SSE is given by

SSE = ∑(yi − y)2 − β̂1 ∑(xi − x)(yi − y) = Syy − β1Sxy,

where Syy =
n

∑
i=1

(yi − y)2. Thus far, the only assumptions that we have made

about the error term ε in the model Y = β0 + β1x + ε were E(ε) = 0 and V(ε) =
σ2 (independent of x). It is natural to assume ε ∈ N(0, σ2). It follows that
Yi is normally distributed with with mean β0 + β1x2 and variance σ2.Because
both β̂0 and β̂1 are linear functions of Y1, Y2, . . . , Yn, the estimators are normally
distributed , with means and variances as previously derived. Further, if the
assumption of normality is warranted, it follows that

(n− 2)S2

σ2 =
SSE
σ2

has a χ2 distribution with n− 2 dfs.

4 Inferences Concerning the Parameters βi

Inferences concerning the parameters βi
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• If ε is normally distributed β̂i, i = 0, 1 are normal and unbiased estimators
of βi, i = 0, 1.

V(β̂0) = c00σ2, where c00 =
∑ x2

i
nSxx

(1)

V(β̂1) = c11σ2, where c11 =
1

Sxx
(2)

• To test H0 : βi = βi0 (βi0 given) use

Z =
β̂i − βi0
σ
√

cii

with cii given by (1) and (2)

• σ or a good estimation (n ≥ 30) is not available, we estimate σ by

S =

√
SSE
n− 2

• The statistic

T =
β̂i − βi0
S
√

cii
(3)

has a Student distribution with n− 2 dfs.

• We can test hypotheses on β̂i or to derive CIs based on T given by (3)

• H0 : βi = βi0

• Ha : βi > βi0 upper-tail test
βi < βi0 lower-tail test
βi 6= βi0 two-tailed test

• Test statistic

T =
β̂i − βi0
S
√

cii

• Rejection region
t > tα

t < −tα

|t| > tα/2

• n− 2 dfs. 1− α CIs for βi

βi = β̂i ± tn−2, α
2
S
√

cii
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5 Inferences Concerning Linear Functions of the Model
Parameters: Simple Linear Regression

Inferences Concerning Linear Functions of the Model Parameters

• Consider
θ = a0β0 + a1β1, a0, a1 ∈ R

•
θ̂ = a0 β̂0 + a1 β̂1

is an unbiased estimator of θ.

• Its variance is

V(θ̂) = a2
0V(β̂0) + a2

1V(β̂1) + 2a0a1Cov(β̂1, β̂1)

that using Theorem 3 yields

V(θ̂) =
a2

0
∑ x2

i
n

+ a2
1 − 2a0a1x

Sxx
σ2. (4)

• Since β̂0 and β̂1 are normally distributed, θ̂ is normally distributed and

Z =
θ̂ − θ

σθ̂

∼ N(0, 1)

• 1− α CI for θ: θ̂ ± zα/2σθ̂ .

• If σ2 is not available replace it by S2 −→ a T(n− 2) distribution

• Let θ0 = a0β0 + a1β1 be a specified value of θ

• Test for θ = a0β0 + a1β1

H0 : θ = θ0

Ha :

 θ > θ0
θ < θ0
θ 6= θ0

• Test statistic

T =
θ̂ − θ0

S

√√√√( a2
0

∑ x2
i

n +a2
1−2a0a1x

Sxx

) ∼ T(n− 2)
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• Rejection region  t > tn−2,1−α

t < tn−2,α
|t| > tα/2

• 1− α CI for θ = a0β0 + a1β1

θ̂ ± tn−2, α
2
S

√√√√√
 a2

0
∑ x2

i
n + a2

1 − 2a0a1x
Sxx


• To estimate E(Y) for a given value x = x∗, i. e.

E(Y) = β0 + β1x∗

we chose in a0β0 + a1β1 a0 = 1 and a1 = x∗.

• Using (4) for variance, we obtain

a2
0
∑ x2

i
n + a2

1 − 2a0a1x
Sxx

=
1
n
+

(x∗ − x)2

Sxx

• It results a (1− α)-CI for E(Y) when x = x∗

β̂0 + β̂1x± tn−2, α
2
S

√
1
n
+

(x∗ − x)2

Sxx

6 Predicting a Particular Value of Y by Using Sim-
ple Linear Regression

Predicting a Particular Value of Y by Using Simple Linear Regression

• We shall estimate Y∗ = β0 + β1x + ε for x = x∗ by Ŷ∗ = β̂0 + β̂1Y∗.

err = Y∗ − Ŷ∗

• Y∗, Ŷ∗ normally distributed, so err is normally distributed

E(err) = E(Y∗ − Ŷ∗) = E(Y∗)− E(Ŷ∗)
= β0 + β1x∗ + E(ε)− β0 − β1x∗ = 0

• Also

V(err) = V(Y∗ − Ŷ∗) = V(Y∗)−V(Ŷ∗)− 2Cov(Y∗, Ŷ∗)

10



• Since we predict a future value Y∗ not involved in computation of Ŷ∗, Y∗

and Ŷ∗ independent and Cov(Y∗, Ŷ∗) = 0. Then

V(err) = V(Y∗) + V(Ŷ∗) = σ2 + V(β̂0 + β̂1x∗)

= σ2 +

[
1
n
+

(x∗ − x)2

Sxx

]
σ2 = σ2

[
1 +

1
n
+

(x∗ − x)2

Sxx

]
• Statistic

Z =
Y∗ − Ŷ∗

σ
√

1 + 1
n + (x∗−x)2

Sxx

∼ N(0, 1)

• Estimating σ by S the statistic

T =
Y∗ − Ŷ∗

S
√

1 + 1
n + (x∗−x)2

Sxx

∼ T(n− 2)

• 1− α CI for Y∗.

P(tn−2, α
2
< T < tn−2,1− α

2
) = 1− α⇔

P

−tn−2,1− α
2
<

Y∗ − Ŷ∗

S
√

1 + 1
n + (x∗−x)2

Sxx

< tn−2,1− α
2

 = 1− α

Finally,

β̂0 + β̂1x∗ ± tn−2, α
2
S

√
1 +

1
n
+

(x∗ − x)2

Sxx

Example

Example 5. Suppose that the experiment that generated the data of Example 2
is to be run again with x = 2. Predict the particular value of Y with 1− α = .90.

See ex11_7WMS.pdf

7 Correlation

Correlation

• Let (X, Y) be a random vector. We wish to test if X and Y are indepen-
dent.

• If (X, Y) has a bivariate normal distribution, then independence⇐⇒ ρ =
0
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• Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be the selection vars. MLE for ρ is the
sample correlation coefficient

r = ∑n
i=1(Xi − X)(Yi −Y)√

∑n
i=1(Xi − X)2 ∑n

i=1(Yi −Y)2

• We can rewrite it as

r =
Sxy√
SxxSyy

= β1

√
Sxx

Syy

r and β̂1 have the same sign.

• If (X, Y) has a bivariate normal distribution, then

E(Y|X = x) = β0 + β1x where β1 =
σy

σx
ρ

• Testing H0 : ρ = 0 with respect to alternative H1 : ρ > 0⇐⇒ H0 : β1 = 0
w.r.t. H1 : β1 > 0 and analogous . We may use

T =
β̂1 − 0

S√
Sxx

˜T(n− 2)

• We rewrite T as

T =
r
√

n− 2√
1− r2

• The distribution of r is difficult to obtain, but

• 1
2

ln
1 + r
1− r

is approximately normally distributed with mean
1
2

ln
1 + ρ

1− ρ

and variance
1

n− 3
.

• To test H0 : ρ = ρ0 we may use a z-test with

Z =

1
2

ln
1 + r
1− r

− 1
2

ln
1 + ρ0

1− ρ0
1√

n− 3

• The statistic R2 is called the coefficient of determination and has an interest-
ing and useful interpretation.

R2 =

(
Sxy√
SxxSyy

)2

= 1− SSE
Syy

.

• Thus, R2 can be interpreted as the proportion of the total variation in the
yi’s that is explained by the variable x in a simple linear regression model.
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Example
Example 6. The data given below represent a sample of mathematics achieve-
ment test scores and calculus grades for ten independently selected college
freshmen. From this evidence, would you say that the achievement test scores
and calculus grades are independent? Use α = .05. Identify the corresponding
attained significance level.

Student 1 2 3 4 5 6 7 8 9 10
Math 39 43 21 64 57 47 28 75 34 52
Final 65 78 52 82 92 89 73 98 56 75

See ex11_8WMS.pdf

8 Fitting the Linear Model by Using Matrices

Fitting the Linear Model by Using Matrices

• Suppose that we have the linear model

Y = β0 + β1x1 + · · ·+ βkxk + ε

and we make n independent observations, y1, y2, . . . , yn, on Y. We can
write the observation yi as

yi = β0 + β1xi1 + β2xi2 + · · ·+ βnxik + εi

where xij is the setting of the jth independent variable for the ith obser-
vation, i = 1, 2, . . . , n.

• We define the matrices

Y =


y1
y2
...

yn

 , X =


1 x11 x12 . . . x1k
1 x21 x22 . . . x2k
...

...
...

...
1 xn1 xn2 . . . xnk

 ,

β =


β0
β1
...

βk

 , ε =


ε1
ε2
...

εk


• The n equations representing yi as a function of the x’s, β’s, and ε’s can

be simultaneously written as

Y = Xβ + ε

• Suppose ε1, ε2, . . . , εn IRV with E(εi) = 0 and V(εi) = σ2. Then the least-
squares estimators are given by

β̂ = (XTX)−1XTY

provided that (XTX)−1 exists.

13
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Example

Example 7. Fit a parabola to the data of Example 2, using the model

y = β0 + β1x + β2x2 + ε.

Solution. Y =


0
0
1
1
3

 , X =


1 −2 4
1 −1 1
1 0 0
1 1 1
1 2 4

 . β = (XTX)−1XTy =

 0.571 43
0.7

0.214 29


(
XTX

)−1
=

 0.485 71 0 −0.142 86
0 0.1 0

−0.142 86 0 7. 142 9× 10−2


A se vedea ex11_13aWMS.pdf

9 Properties of the Least-Squares Estimators: Mul-
tiple Linear Regression

Properties of the Least-Squares Estimators
This is a multivariate analogous of Theorem 3.

Theorem 8. 1. E(β̂i) = βi, i = 0, k

2. D2(βi) = ciiσ
2, where cij are elements of (XTX)−1. (numbering starts from 0)

3. Cov(β̂i, β̂ j) = cijσ
2.

4. An unbiased estimator of σ2 is S2 = SSE/[n− (k + 1)], where SSE = YTY−
β̂TXTY.
If εi, i = 1, n are normally distributed

5. β̂i, i = 0, k is normally distributed.

6. The RV
[n− (k + 1)]S2

σ2

has a χ2 distribution with n− (k + 1) dfs.

7. Statistics S2 and β̂i, i = 1, k are independent.
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10 Inferences Concerning Linear Functions of the
Model Parameters: Multiple Linear Regression

Inferences Concerning Linear Functions of the Model Parameters

• Suppose we wish to make inferences on linear function

a0β0 + a1β1 + a2β2 + · · ·+ akβk (5)

where a0, a1, . . . , ak are real constants.

• If a = [a0 a1 . . . ak]
T we can rewrite (5) as

aT β = a0β0 + · · ·+ akβk.

• aT β̂ is an unbiased estimator of aT β since

E(aT β̂) = E(a0 β̂0 + · · ·+ ak β̂k)

= a0β0 + · · ·+ akβk = aT β.

• For its variance we obtain

V(aT β̂) = V(a0 β̂0 + · · ·+ ak β̂k) = a2
0V(β̂0) + . . .

+ a2
kV(β̂k) + 2a0a1Cov(β̂0, β̂1) + . . .

+ 2a1a2Cov(β̂1, β̂2) + · · ·+ 2ak−1akCov(β̂k−1, β̂k)

where V(β̂i) = ciiσ
2 şi Cov(β̂i, β̂ j) = cijσ

2. It is easy to check that

V(aT β̂) = [aT(XTX)−1a]σ2.

• Since β̂0, β̂1, . . . , β̂k are normally distributed, aT β̂ is normal with mean
aT β and V(aT β̂) = [aT(XTX)−1a]σ2, and we conclude

Z =
aT β̂− aT β√

D2(aT β)
=

aT β̂− aT β

σ
√

aT(XTX)−1a
∼ N(0, 1).

• We could use it to test
H0 : aT β = (aT β)0

where (aT β)0 is a given value. The 1− α CI for aT β is

aT β± zα/2σ
√

aT(XTX)−1a.

• If we estimate σ by S, RV

T =
aT β̂− aT β

S
√

aT(XTX)−1a
∼ T[n− (k + 1)]

15



• Test
H0 : aT β = (aT β)0

H1 :


aT β > (aT β)0
aT β < (aT β)0
aT β 6= (aT β)0

Test statistic

T =
aT β̂− (aT β)

S
√

aT(XTX)−1a

Rejection region 
t > tn−(k+1),α
t < −tn−(k+1),α
|t| > tn−(k+1), α

2

• (1− α) CI for aT β is given by

αT β̂± tn−(k+1), α
2
S
√

aT(XTX)−1a.

• For inferences on individual parameters β̂i we choose a with components

aj =

{
1, dacă j = i
0, dacă j 6= i

11 Predicting a Particular Value of Y by Using Mul-
tiple Regression

Predicting a Particular Value of Y by Using Multiple Regression

• Consider the linear model

Y = β0 + β1x1 + β2x2 + · · ·+ βkxk + ε

we wish to predict the value of Y∗ for x = x∗1 , x2 = x∗2 , . . . , xk = x∗; we
use formula

Ŷ∗ = β̂0 + β̂1x∗1 + · · ·+ β̂kx∗k = aT β̂

• The error is
error = Y∗ − Ŷ∗

It is normally distributed (Y∗ and Ŷ∗ are normal) with

E(error) = 0 and V(error) = σ2[1 + aT(xTX)−1a]

• RV

Z =
Y∗ − Ŷ∗

σ
√

1 + aT(XTX)−1a
∼ N(0, 1)

16



• If σ is estimated by S

T =
Y∗ − Ŷ∗

S
√

1 + aT(XTX)−1a
∼ T [n− (k + 1)]

• 1− α CI for Y
aT β̂± tn−(k+1), α

2
S
√

1 + aT(XTX)−1a

where x1 = x∗1 , x2 = x∗2 , . . . , xk = x∗k and aT = [1, x∗1 , x∗2 , . . . , x∗k ].

Example
A response Y is a function of three independent variables x1, x2, and x3 that

are related as follows:

Y = β0 + β1x1 + β2x2 + β3x3 + ε.

(a) Fit this model to the n = 7 data points shown in the accompanying table.
y 1 0 0 1 2 3 3
x1 −3 −2 −1 0 1 2 3
x2 5 0 −3 −4 −3 0 5
x3 −1 1 1 0 −1 −1 1

(b) Predict Y when x1 = 1, x2 = −3, x3 = −1. Compare with the observed
response in the original data. Why are these two not equal?

(c) Do the data present sufficient evidence to indicate that x3 contributes in-
formation for the prediction of Y ? (Test the hypothesis H0 : β3 = 0, using
α = .05.)

(d) Find a 95% confidence interval for the expected value of Y, given x1 = 1,
x2 = −3, and x3 = −1.

(e) Find a 95% prediction interval for Y, given x1 = 1, x2 = −3, and x3 = −1.

See prob3lab.pdf.

Coefficient of determination

• It is also useful in multiple regression

• Formula

R2 = 1− ∑(yi − ŷi)
2

∑(yi − y)2

• The coefficient of determination is influenced by the number of regres-
sors. For a given sample size n, the R2 value will increase by adding
more regressors into the linear model. The value of R2 may therefore be
high even if possibly irrelevant regressors are included.
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• An adjusted coefficient of determination for p regressors and a constant
intercept (p + 1 parameters) is

R2
adj = R2 −

p
(
1− R2)

n− p + 1
.

12 Testing hypothesis H0 : βg+1 = βg+2 = · · · =
βk = 0

Model comparison

• Suppose,we wish to compare a reduced model of the form

model R : Y = β0 + β1x1 + β2x2 + · · ·+ βgxg + ε

to the linear model with all candidate independent variables present (the
complete model):

model C : Y = β0 + β1x1 + β2x2 + · · ·+ βgxg+

βg+1xg+1 + · · ·+ βkxk + ε

• SSEC < SSER (why?)

• null hypothesis

H0 : βg+1 = βg+2 = · · · = βk = 0. (6)

• SSER − SSEC is called the sum of squares associated with the variables xg+1,
xg+2, . . . , xk, adjusted for the variables x1, x2, . . . , xg.

• Notice that
SSER = SSEC + (SSER − SSEC).

In other words, we have partitioned SSER into two parts: SSEC and the
difference (SSER − SSEC).

• If H0 is true, then (proof left to the reader)

χ2
3 =

SSER

σ2 ∼ χ2(n− [g + 1])

χ2
2 =

SSEC

σ2 ∼ χ2(n− [k + 1])

χ2
1 =

SSER − SSEC
σ2 ∼ (k− g).

• Further, it can be shown that χ2
2 and χ2

1 are statistically independent.
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• Consider the ratio

F =

χ2
1

k− g
χ2

2
n− (k + 1)

=

SSER − SSEC
k− g
SSEC

n− (k + 1)

.

If H0 : βg+1 = βg+2 = · · · = βk = 0 is true, then F possesses an F
distribution with ν1 = k − g numerator degrees of freedom and ν2 =
n− (k + 1) denominator degrees of freedom.

• Large values of F favor rejection of H0; rejection region

F > Fν1,ν2,α

Examples

Example 9. Do the data of Example 7 provide sufficient evidence to indicate
that the second order model

Y = β0 + β1x + β2x2 + ε

contributes information for the prediction of Y? That is, test the hypothesis
H0 : β1 = β2 = 0 against the alternative hypothesis Ha : at least one of the
parameters β1, β2, differs from 0. Use α = .05. Give bounds for the attained
significance level.

Solution. See ex11 18.R and ex11_18.pdf.

Examples
It is desired to relate abrasion resistance of rubber (Y) to the amount of

silica filler x′1 and the amount of coupling agent x′2. Fine-particle silica fibers
are added to rubber to increase strength and resistance to abrasion. The cou-
pling agent chemically bonds the filler to the rubber polymer chains and thus
increases the efficiency of the filler. The unit of measurement for x′1 and x′2 is
parts per 100 parts of rubber, which is denoted phr. For computational sim-
plicity, the actual amounts of silica filler and coupling agent are rescaled by the
equations

x1 =
x′1 − 50

6.7
, x2 =

x′2 − 4
2

.

The data1 are given in Table 1. Notice that five levels of both x1 and x2 are used,
with the (x1 = 0, x2 = 0) point repeated three times. Let us fit the second-order
model

Y = β0 + β1x1 + β2x2 + β3x2
1 + β4x2

2 + β5x1x2 + ε

1Source: Ronald Suich and G. C. Derringer, Technometrics 19(2) (1977): 214.
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y x1 x2
83 1 −1

113 1 1
92 −1 1
82 −1 −1

100 0 0
96 0 0
98 0 0
95 0 1.5
80 0 −1.5

100 1.5 0
92 −1.5 0

Table 1: Data for Example 11.19

to these data. This model represents a conic surface over the (x1, x2) plane.
Fit the second-order model and test H0 : β3 = β4 = β5 = 0. (We are testing
that the surface is actually a plane versus the alternative that it is a conic sur-
face.) Give bounds for the attained significance level and indicate the proper
conclusion if we choose α = .05.

Solution. See file ex11 19WMS.R and ex11_19WMS.pdf

13 Statistical Models in R

Statistical Models in R

• The operaror ˜ is used to define a model formula in R.

• The form of an ordinary linear model is response~op 1 term1 op2 term2 op 3 term 3

response vector or matrix or expresion evaluated to vector or matrix
defining the response variable(s)

op i operator, either + or -, implying the inclusion or exclusion of a term
in the model (the first is optional)

term i is either

– a vector or matrix, or 1,
– a factor, or
– a formula expression consisting of factors, vectors or matrices

connected by formula operators

20
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• In all cases each term define a collection of columns to be added or re-
moved from the model matrix. A 1 stands for an intercept column and it
is by default included in the model matrix unless explicitely removed.

• The formula operators are similar in effects to the Wilkinson and Rogers
notation [4], with . changed to :, since . is a valid name character in R.

• The notation is sumarized below [5]

– Y~M Y is modeled as M

– M 1+M 2 Include M 1 and M 2

– M 1-M 2 Include M 1 and exclude M 2

– M 1:M 2 Tensor product of M 1 and M 2

– M 1 %in% M 2 Similar to M 1:M 2, but with different coding

– M 1*M 2 or M 1+M 2+M 1:M 2 or M 1/M 2 or M 1+M 2%in%M 1 these are
equivalent, include M 1 and M 2 and product of M 1 and M 2

– M^n all terms in M together with interactions up to order n

– I(M) identity, insulate M.

• to fit a linear model
fitted.model<-lm(formula, data=data.frame)

• Generic functions for extracting model information

– anova(ob 1,obj 2 ) compare a submodel with an outer model and
produce an ANOVA table

– coef(obj )extract the regression coefficient (matrix)

– deviance(obj ) residual sum of squares, weighted if appropriate

– formula(obj )

– plot(obj ) produce four plots, showing residuals, fitted values and
some diagnostics

– predict(obj,newdata=data.frame )The data frame supplid must
have variables specified with the same labels as the original. The
value is a vector or matrix of predicted values corresponding to the
determining variable values in data.frame.

– print(obj ) print a concise version of object

– residuals(obj ) extract the residuals, weighted as appropriate

– step(obj ) select a suitable model by adding or droping terms and
preserving hierarchies. The model with the smallest AIC (Akaike’s
An Information Criterion) discovered in the stepwise search is re-
turned

– summary(obj )print a comprehensive summary of the regression anal-
ysis
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