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1 Introduction

The Elements Affecting the Information in a Sample

• Generally, the design of experiments (DOE) is a very broad subject con-
cerned with methods of sampling to reduce the variation in an experi-
ment and thereby to acquire a specified quantity of information at mini-
mum cost.

• The width of a CI for mean

Y± zα/2
σ√
n

.

σ and n affect this

• If we wish to compare two populations, based on a total of n observa-
tions, how many observations should be taken from each population?

• If we have decided to fit a simple linear regression model and wish to
maximize the information in the resulting data, how should we choose
the values of the independent variable?

• Example: how to find the sample size if we know the maximum error E,
α and the proportion?

E = |zα/2|
√

pq
n

=⇒ n =
|zα/2|2 pq

E2

2 Designing Experiments to Increase Accuracy

Designing Experiments to Increase Accuracy

• For the same total number of observations, some methods of data collec-
tion (designs) provide more information concerning specific population
parameters than others.
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• Consider the problem of estimating the difference between a pair of pop-
ulation means, µ1 − µ2, based on independent random samples.

• How many observations should she select from populations 1 and 2—
say, n1 and n2 (n1 + n2 = n), respectively—to maximize the information
in the data pertinent to µ1 − µ2?

Example 1. If n observations are to be used to estimate µ1 − µ2,, based on inde-
pendent random samples from the two populations of interest, find n1 and n2
so that V

(
Y1 −Y2

)
is minimized (assume that n1 + n2 = n).

Let b denote the fraction of the n observations assigned to the sample from
population 1; that is, n1 = bn şi n2 = (1− b)n. Then,

V
(
Y1 −Y2

)
=

σ2
1

bn
+

σ2
2

(1− b)n
.

To find b that minimizes the variance, we set the derivative with respect to b to
zero. this yields

1
b2n

σ2
1 −

1
n

σ2
2

(b− 1)2 = 0

Solving for b, we obtain

b =
σ1

σ1 + σ2
, 1− b =

σ2

σ1 + σ2
.

Thus, V
(
Y1 −Y2

)
is minimized for

n1 =
σ1

σ1 + σ2
n, n2 =

σ2

σ1 + σ2
n,

i.e., when sample sizes are proportional to the standard deviations. Note that,
if σ1 = σ2, then n1 = n2 = n/2.

Simple Linear Regression

• Suppose that we are primarily interested in the slope β1 of the line in the
linear model

Y = β0 + β1X + ε.

• If we have the option of selecting the n-values of x for which y will be
observed, which values of x will maximize the quantity of information
on β1?

• The best design for estimating the slope β1 can be determined by consid-
ering the standard deviation of β̂1:

σ
β̂1

=
σ√
Sxx

=
σ√

∑n
i=1(xi − x)2
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• The larger Sxx, the sum of squares of deviations of x1, x2, . . . , xn about
their mean, the smaller the standard deviation of β̂1 will be. That is, we
obtain a better estimator for the slope if the values of x are spread farther
apart. In some cases, the experimenter has some experimental region—
say, x1 < x < x2 — over which he or she wishes to observe Y, and this
range is frequently selected prior to experimentation.

• The smallest value for σ
β̂1

occurs when the n data points are equally di-
vided, with half located at x1 and half at x2. (Proof, homework.)An ex-
perimenter who wished to fit a line by using n = 10 data points in the
interval 2 ≤ x ≤ 6 would select five data points at x = 2 and five at
x = 6.

• Before concluding the discussion of this example, you should notice that
observing all values of Y at only two values of x will not provide in-
formation on curvature of the response curve in case the assumption of
linearity in the relation of E(Y) and x is incorrect. It is frequently safer
to select a few points (as few as one or two) somewhere near the middle
of the experimental region to detect curvature if it should be present (see
Figure 3).

• A further comment is in order. One of the assumptions that we have
made regarding the simple linear regression model is that the variance of
the error term ε does not depend on the value of the independent variable
x. If the x values are more spread out, the validity of this assumption may
become more questionable.
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3 The Matched-Pairs Experiment

The Matched-Pairs Experiment

• A commonly occurring situation – repeated observations are made on
the same sampling unit: weighing the same individual before and after
a weight-loss program; in a medical experiment, pair of individuals of
similar gender, weights and ages: one individual from each pair is ran-
domly selected to receive one of two competing medications to control
hypertension whereas the other individual from the same pair receives
the other medication.

• Comparing two populations on the basis of paired data can be a very
effective experimental design that can control for extraneous sources of
variability and result in decreasing the standard error of the estimator
Y1 −Y2 for the difference in the population means µ1 − µ2.

• (Y1i, Y2i), i = 1, 2, . . . , n, denote a random sample of paired observations.
Assume that

E(Y1i) = µ1, V(Y1i) = σ2
1 , Cov(Y1i, Y2i) = ρσ1σ2,

E(Y2i) = µ2, V(Y2i) = σ2
2 ,

ρ is the common correlation coefficient of the variables within each pair

• Define Di = Y1i −Y2i, for i = 1, 2, . . . , n, Dis are IID and

µD = E(Di) = E(Y1i)− E(Y2i) = µ1 − µ2

σ2
D = V(Di) = V(Y1i) + V(Y2i)− 2Cov(Y1i, Y2i)

= σ2
1 + σ2

2 − 2ρσ1σ2.

• A natural estimator for µ1 − µ2 is the average of the differences D =
Y1 −Y2, and

E(D) = µD = µ1 − µ2

σ2
D = V(D) =

σ2
D
n

=
1
n

[
σ2

1 + σ2
2 − 2ρσ1σ2

]
.

• If the data had been obtained from an independent samples experiment
and n1 = n2 = n,

E(D) = µ1 − µ2

σ2
Y1−Y2

=
1
n

[
σ2

1 + σ2
2

]
• If ρ > 0, then σ2

D
< σ2

Y1−Y2
(for example when the values of Y1i and Y2i

will tend to increase or decrease together)
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Sample Method 1 Method 2 di
1 38.25 38.27 −.02
2 31.68 31.71 −.03
3 26.24 26.22 +.02
4 41.29 41.33 −.04
5 44.81 44.80 +.01
6 46.37 46.39 −.02
7 35.42 35.46 −.04
8 38.41 38.39 +.02
9 42.68 42.72 −.04

10 46.71 46.76 −.05
11 29.20 29.18 +.02
12 30.76 30.79 −.03

d = −0.0167

Table 1: Data for the matched-pairs experiment in Example 2

• Assumptions: the differences Di must be normally distributed. This does
not mean the two populations are normally distributed

• Counterexample: Suppose matched pairs and the i-th measurement (i =
1, 2), in the j-th pair , j = 1, 2, . . . , n, is

Yij = µi + Uj + εij,

where µi = mean value of population i, i = 1, 2, Uj = RV distributed
U[−1,+1], εij = error for measurement i pair j. Suppose εij are normally
distr. indep. RVs with E(εij) = 0 and V(εij) = σ2 and Uj and εij are
indepandent. Then Yij are not normal but differences Dj = Y1j − Y2j are
independent, normally distributed RVs.

Example

Example 2. We wish to compare two methods for determining the percentage
of iron ore in ore samples. Because inherent differences in the ore samples
would be likely to contribute unwanted variability in the measurements that
we observe, a matched pairs experiment was created by splitting each of 12 ore
samples into two parts. One-half of each sample was randomly selected and
subjected to method 1; the other half was subjected to method 2. The results are
presented in Table 12.1. Do the data provide sufficient evidence that method 2
yields a higher average percentage than method 1? Test using α = .05.

Solution. See ex12_ 2. pdf
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4 Some Elementary Experimental Designs

4.1 Basic notions

Example

• Suppose that we wish to compare five teaching techniques, A, B, C, D,
and E, and that we use 125 students in the study.

• The objective is to compare the mean scores on a standardized test for
students taught by each of the five methods.

• Sources of variability:

– gender

– differences in the native abilities of the students in the group

– different students may come from families that place different em-
phases on education, and this could have an impact on the scores on
the standardized test.

• We decide that it might be wise to randomly assign 25 students to each of
five groups. Each group will be taught using one of the techniques under
study.

• Objectives of the random division of the students into the five groups

1. we eliminate the possible biasing effect of individual characteristics
of the students

2. it provides a probabilistic basis for the selection of the sample that
permits the statistician to calculate probabilities associated with the
observations in the sample and to use these probabilities in making
inferences.

Basic notions

Definition 3. Experimental units are the objects upon which measurements are
taken.

The experimental units in this study are the individual students.

Definition 4. Factors are variables completely controlled by the experimenter.
The intensity level (distinct subcategory) of a factor is called its level.

This experiment involves a single factor—namely, method of teaching. In
this experiment, the factor has five levels: A, B, C, D, and E.

Definition 5. A treatment is a specific combination of factor levels.
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• In a single-factor experiment like the preceding one, each level of the sin-
gle factor represents a treatment. Thus, in our education example, there
are five treatments, one corresponding to each of the teaching methods.

• As another example, consider an experiment conducted to investigate
the effect of various amounts of nitrogen and phosphate on the yield of a
variety of corn.

– An experimental unit would be a specified surface—say, 1 ha—of
corn.

– A treatment would be a fixed number of kgs of nitrogen x1 and of
phosphate x2 applied to a given ha of corn. For example, one treat-
ment might be to use x1 = 100 kgs of nitrogen per ha and x2 = 200
kgs of phosphate. A second treatment might correspond to x1 = 150
and x2 = 100.

– Notice that the experimenter could use different amounts (x1, x2) of
nitrogen and phosphate and that each combination would represent
a different treatment.

Definition 6. A one-way layout to compare k populations is an arrangement in
which independent random samples are obtained from each of the populations
of interest.

4.2 Completely randomized design

Completely randomized design

Definition 7. A completely randomized design to compare k treatments is one in
which a group of n relatively homogeneous experimental units are randomly
divided into k subgroups of sizes n1, n2, . . . , nk (where n1 + n2 + · · ·+ nk = n).
All experimental units in each subgroup receive the same treatment, with each
treatment applied to exactly one subgroup.

• The preceding experiment for comparing teaching methods A, B, C, D,
and E entailed randomly dividing the 125 students into five groups, each
of size 25. Each group received exactly one of the treatments. This is an
example of a completely randomized design.

• The observations obtained from a completely randomized design are typ-
ically viewed as being independent random samples taken from the popula-
tions corresponding to each of the treatments.

• Suppose that we wish to compare five brands of aspirin, A, B, C, D, and
E, regarding the mean amount of active ingredient per tablet for each of
the brands.
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• We decide to select 100 tablets randomly from the production of each
manufacturer and use the results to implement the comparison. In this
case, we physically sampled five distinct populations.

• Regardless of whether we have implemented a completely randomized
design or taken independent samples from each of several existing popu-
lations, a one-to-one correspondence is established between the popula-
tions and the treatments. Both of these scenarios, in which independent
samples are taken from each of k populations, are examples of a one-way
layout.

Definition 8. A one-way layout to compare k populations is an arrangement in
which independent random samples are obtained from each of the populations
of interest.

4.3 Randomized block design

Randomized block design

Definition 9. A randomized block design containing b blocks and k treatments
consists of b blocks of k experimental units each. The treatments are randomly
assigned to the units in each block, with each treatment appearing exactly once
in every block.

• It is an extension of matched-pairs design

• Suppose that we wanted to compare three different medications for con-
trolling hypertension.

• We could form several groups, each containing three members matched
on sex, weight, and age.

• Within each group of three, we would randomly select one individual
to receive treatment 1 and another to receive treatment 2, and then we
would administer treatment 3 to the remaining member of each group.

• The objective of this design is identical to that of the matchedpairs design—
namely, to eliminate unwanted sources of variability that might creep
into the observations in our experiment.

Differences between CRD and RBD

• Experiment designed to compare subject reaction to a set of four stimuli
(treatments) in a stimulus–response psychological experiment. We will
denote the treatments as T1, T2, T3, and T4.

• Suppose that eight subjects are to be randomly assigned to each of the
four treatments.
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• Random assignment of subjects to treatments (or vice versa) randomly
distributes errors due to person-to-person variability in response to the
four treatments and yields four samples that, for all practical purposes,
are random and independent.

• This is a completely randomized experimental design.

• The experimental error associated with a completely randomized design
has a number of components. Some of these are due to the differences be-
tween subjects, to the failure of repeated measurements within a subject
to be identical (due to the variations in physical and psychological con-
ditions), to the failure of the experimenter to administer a given stimulus
with exactly the same intensity in repeated measurements, and to errors
of measurement.

• Reduction of any of these causes of error will increase the information in
the experiment.

• The subject-to-subject variation in the foregoing experiment can be elim-
inated by using subjects as blocks.

• Each subject would receive each of the four treatments assigned in a ran-
dom sequence.

• The resulting randomized block design would appear as in Figure 1.
Now only eight subjects are needed to obtain eight response measure-
ments per treatment.

• Notice that each treatment occurs exactly once in each block.

• The word randomized in the name of the design implies that the treat-
ments are randomly assigned within a block.

• The purpose of the randomization (that is, position in the block) is to
eliminate bias caused by fatigue or learning.

• Blocks may represent time, location, or experimental material.

• Other examples

– A comparison of the sale of competitive products in supermarkets
should be made within supermarkets, thus using the supermarkets
as blocks and removing store-to-store variability.

– Animal experiments in agriculture and medicine often use animal
litters as blocks, applying all the treatments, one each, to animals
within a litter. Because of heredity, animals within a litter are more
homogeneous than those between litters. This type of blocking re-
moves litter-to-litter variation.
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Figure 1: A randomized block design

Latin square design

• Blocking in two directions can be accomplished by using a Latin square
design.

• Suppose that the subjects of the preceding example became fatigued as
the stimuli were applied, so the last stimulus always produced a lower
response than the first.

• Each stimulus is applied once to each subject and occurs exactly once in
each position of the order of presentation. All four stimuli occur in each
row and in each column of the 4× 4 configuration. The resulting design
is a 4× 4 Latin square.

• A Latin square design for three treatments requires a 3× 3 configuration;
in general, p treatments require a p× p array of experimental units.
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Figure 2: A Latin square design
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