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1 Multinomial Experiments

Multinomial Experiments
A multinomial experiment has the following characteristics

1. The experiment consist of n identical trials.

2. The outcome of each trial falls into one of k categories or cells.

3. The probability that the outcome of a single trial will fall in a particular
cell, say cell i, is pi, where i = 1, k and remains the same from trial to trial.
Notice that

p1 + p2 + p3 + · · ·+ pk = 1.

4. The trials are independent.

5. We are interested in n1, n2, . . . , nk, where ni for i = 1, k is equal to the
number of trials in which the outcome falls into cell i. Notice that n1 +
n2 + · · ·+ nk = n.

• Objective: inferences about the cell probabilities p1, p2, . . . , pk.

• Examples:

– Employees can be classified into one of five income brackets.

– Mice might react in one of three ways when subjected to a stimulus.

– Motor vehicles might fall into one of four vehicle types.

– Paintings could be classified into one of k categories according to
style and period.
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2 The Chi-Square Test

The Chi-Square Test

• The expected number of outcomes falling in the cell Ci may be calculated
using the formula

E(ni) = npi, i = 1, k.

• Now suppose that we hypothesize values for p1, p2, . . . , pk and calculate
the expected value for each cell. Certainly, if our hypothesis is true, the
cell counts ni should not deviate greatly from their expected values npi,
for i = 1, k.

• In 1900 Karl Pearson proposed the following test statistic

X2 =
k

∑
i=1

[Ni − E(ni)]
2

E(ni)
=

n

∑
i=1

(Ni − npi)
2

npi
. (1)

• Meaning:

X2 =
k

∑
i=1

(Oi − Ei)
2

Ei

where Oi - observed frequencies, Ei- expected frequencies.

• Q: Why this numerator and why this denominator? A: To distiguish 15-5
of 110-100

• This statistic is asymptotically standardized chi square with k− 1 degrees
of freedom distributed.

Distribution of the Chi-Square Statistics

Theorem 1. The statistic

X2 =
k

∑
i=1

(Ni − npi)
2

npi

has a standardized χ2 distribution with k− 1 degrees of freedom, when n→ ∞.

Proof
We start from Stirling formula n! ∼ nne−n

√
2πn. Since for a multinomial

distribution it holds

P(N1 = n1, N2 = n2, . . . , Nk = nk) =
n!

n1!n2! . . . nk!
pn1

1 pn2
2 . . . pnk

k ,

we have

P(N1 = n1, . . . , Nk = nk) ≈
nne−n

√
2πn

k

∏
i=1

(
√

2πnin
ni
i e−ni )

pn1
1 . . . pnk

k
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or

P(N1 = n1, . . . , Nk = nk) ≈ K
k

∏
i=1

(
npi
ni

)ni+
1
2

where K > 0 is a constant.
Taking the logarithm we get

ln P(N1 = n1, . . . , Nk = nk) ≈ ln K +
k

∑
i=1

(
ni +

1
2

)
ln

npi
ni

,

and setting

xi =
ni − npi√

npi
, i.e.

ni
npi

= 1 +
xi√
npi

,

it follows that

ln P(N1 = n1, . . . , Nk = nk) ≈ ln K−
k

∑
i=1

(
ni +

1
2

)
ln
(

1 +
xi√
npi

)
.

Now, using a Taylor expansion of natural logarithm truncated to two terms

ln
(

1 +
xi√
npi

)
≈ xi√

npi
−

x2
i

2npi

and taking into account that

k

∑
i=1

xi
√

npi =
k

∑
i=1

(ni − npi) = n− n = 0

we get successively

ln P(N1 = n1, N2 = n2, . . . , Nk = nk)

≈ ln K−
k

∑
i=1

(
ni +

1
2

)(
xi√
npi
−

x2
i

2npi

)

= ln K−
k

∑
i=1

(
npi + xi

√
npi +

1
2

)(
xi√
npi
−

x2
i

2npi

)

≈ ln K−
k

∑
i=1

(
xi
√

npi +
x2

i
2

)
= ln K− 1

2

k

∑
i=1

x2
i

or

P(N1 = n1, . . . , Nk = nk) ≈ Ke
− 1

2

k
∑

i=1
x2

i
.

Now putting Xi =
Ni−npi√

npi
, one gets

P(X1 = x1, . . . , Xk = xk) ≈ Ke
− 1

2

k
∑

i=1
x2

i
,
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that is, the random vector

(Xi)i=1,k =

(
Ni − npi√

npi

)
i=1,k

has, for n→ ∞ a degenerated k-dimensional normal distribution, since each Xi
is a linear combination of the others. Since a sum of squares of normally dis-
tributed random variable has a chi-square distribution the proof is complete.

Remarks

• The approximation stated in Theorem 1 is good if all theoretical frequen-
cies Ei = npi ≥ 5 and k ≥ 5. For k < 4, Ei � 5.

• The appropriate number of degrees of freedom will equal the number of cells k
less 1 degree of freedom for each independent linear restriction placed upon the
observed cell counts. For example, one linear restriction is present because
the sum of the cell counts must equal n; that is

n1 + n2 + · · ·+ nk = n.

• Other restrictions will be introduced for some applications because of the
necessity for estimating unknown parameters required in the calculation
of the expected all frequencies or because of the method by which the
sample is collected.

• When unknown parameters must be estimated in order to compute X2,
a maximum likelihood estimator should be employed. The degrees of
freedom for the approximating chi-square distribution will be reduced
by 1 for each parameter estimated. These cases will arise as we consider
various practical examples.

3 A Test of a Hypothesis Concerning Specified Cell
Probabilities

A Test of a Hypothesis Concerning Specified Cell Probabilities

• The simplest hypothesis concerning the cell probabilities: H0 : p1 =

p(0)1 , . . . , pk = p(0)k , where p(0)i denotes a specified value for pi.

• The alternative is the general one that states that at least one of the equal-
ities does not hold: H1 : ∃j ∈ {1, . . . , k} such that pj 6= p(0)j .

• Because the only restriction on the observations is that ∑k
i=1 ni = n, the

X2 test statistic will have approximately a χ2 distribution with k− 1 de-
grees of freedom.
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Examples

Example 2. We want to check if a die is fair. This means that p = P (any one
number) = 1

6 . Suppose we decide to roll the die 60 times. If the die is fair, we
expect that each number 1, 2, . . . , 6 should appear approximately 1

6 of the time
(that is, 10 times). It is roled from a cup onto a smooth flat surface 60 times and
the frequency recorded in the table:

Number 1 2 3 4 5 6
Occurences 7 12 10 12 8 11

Solution. H0 : p1 = p2 = · · · = p6 = 1
6 ; H1 : ∃ i0 ∈ {1, . . . , 6} s.t. pi0 6=

1
6 .

Rejection region RR = (χ2
5,0.95, ∞) = (11.0705, ∞)

The value of test statistic is

χ2∗ =
(7− 10)2

10
+

(12− 10)2

10
+

(10− 10)2

10

+
(12− 10)2

10
+

(8− 10)2

10
+

(11− 10)2

10
= 2.2

Decision: Fail to reject H0 (χ∗2 is not in RR). See catego/ dice. pdf

Example 3. The Mendelian theory of inheritance claims that the frequencies of
round and yellow, wrinkled and yellow, round and green, and wrinkled and
green will occur in the ratio 9 : 3 : 3 : 1 when two specific varieties of peas
are crossed. In testing this theory, Mendel obtained frequencies of 315, 101, 108
and 32 respectively. Do these sample data provide sufficient evidence to reject
this theory, at the 0.05 level of significance?

Solution. H0: the ratio of inheritance is 9 : 3 : 3 : 1 or

H0 : p1 =
9

16
, p2 =

3
16

, p3 =
3
16

, p4 =
1
16

α = 0.05, k = 4, d f = 3, n = 556

Expected frequencies:

E = (npi) = [312.75, 104.25, 104.25, 34.75]
RR = (7.81, ∞)

Statistic:

χ2∗ = ∑
(ni − Ei)

2

Ei
= 0.47

Decision: Fail to reject H0. Conclusion: There is not sufficient evidence to
reject Mendel’s theory. See catego/ Mendel. pdf
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4 Contingency Tables

4.1 Testing independence

Testing Independence

• We wish to investigate a dependency (or contingency) between two classi-
fication criteria.

• Examples

– we might classify a sample of people by gender and by opinion on
a political issue in order to test the hypothesis that opinions on this
issue are independent of gender.

– we might classify patients suffering from a certain disease according
to the type of medication and the rate of recovery in order to see if
recovery rate depends upon the type of medication

• The input data (counts) are presented in a contingency table
n11 n12 · · · n1c n1·
n21 n22 · · · n2c n2·
...

...
. . .

...
...

nr1 nr2 · · · n2c nr·
n·1 n·2 · · · n·c n··

• Let nij denote the observed frequency in row i and column of the con-
tingency table and let pij denote the probability of an observation falling
this cell.

• The null hypothesis: the two classification factors are independent

H0 : pij = pi·p·j, i = 1, . . . , r, j = 1, . . . , c.

• If observations are independently selected, then the cell frequencies have a
multinomial distribution, and the maximum-likelihood estimator for pij
is

p̂ij =
nij

n
, i = 1, r, j = 1, c.

• Viewing row i as a single cell, the probability for row i is given by pi and
hence

p̂i· =
ni·
n

• Analogously,

p̂·j =
n·j
n
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• Under the null hypothesis, the maximum-likelihood estimator to the ex-
pected value of nij is

E
(
n̂ij
)
= n( p̂i· p̂·j) = n

ni·
n

n·j
n

=
ni·n·j

n
.

This can be interpreted as distributing each row total according to the
proportions in each column (or vice versa) or as distributing the grand
total according to the products of the row and column proportions.

• The test statistic is

X2 =
r

∑
i=1

c

∑
j=1

[nij − E
(
n̂ij
)
]2

E
(
n̂ij
) =

r

∑
i=1

c

∑
j=1

(
nij −

ni·n·j
n

)2

ni·n·j
n

.

• The degrees of freedom associated with a contingency table possessing r
rows and c columns is given by

d f =

 r− 1, if c = 1
c− 1, if r = 1
(r− 1)(c− 1), if r 6= 1∧ c 6= 1

You will recall that the number of degrees of freedom associated with
the χ2 statistic will equal the number of cells (in this case, k = rc) less
1 degree of freedom for each independent linear restriction placed upon
the observed cell frequencies; 1 for ∑i ∑j nij = n and c− 1 and r − 1 for
columns and rows probabilities.

Example

Example 4. Suppose that we wish to classify defects found on furniture pro-
duced in a manufacturing plant according to (1) the type of defect and (2) pro-
duction shift. A total of n = 309 furniture defects was recorded and the defects
were classified as one of the four types A, B, C or D. At the same time each
piece of furniture was identified according to the production shift in which it
was manufactured. These counts are presented in Table 1 (Number in paran-
theses are the estimated expected cell frequencies). Our objective is to test the
null hypothesis that type of defect is independent of shift against the alterna-
tive that the two categorization schemes are dependent.

Solution

• The estimated expected cell frequencies for our example are shown in
parantheses in Table 1. For example

E(n̂11) =
n1·n·1

n
=

94 · 74
309

= 22.51.
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Type of Defect
Shift A B C D Total

1 15(22.51) 21(20.99) 45(38.94) 13(11.56) 94
2 26(22.99) 31(21.44) 34(39.77) 5(11.81) 96
3 33(28.50) 17(26.57) 49(49.29) 20(14.63) 119

Total 74 69 128 38 309

Table 1: A contingency table

• The value of the test statistic is

X2 =
3

∑
i=1

4

∑
j=1

(
nij −

ni·i·j
n

)2

ni·n·j
n

=
(15− 22.51)2

22.51
+ · · ·+ (20− 14.63)2

14.63
= 19.17.

• In our case d f = (4− 1)(3− 1) = 6.

• Since P = 1− F6(19.17) < 0.05, exist a dependence between defect type
and manufacturing shift. See catego/ furniture. pdf

4.2 Tables with Fixed Row or Column Total

Tables with Fixed Row or Column Total

• There exists methods of collecting data that may not meet the require-
ment of a multinomial experiment. For example, due to chance one cate-
gory could be completely missing.

• We might decide beforehand to interview a specified number of people
in each column or row category, thereby fixing the column or row total
in advance. (We actually are testing the equivalence of several binomial
distributions).

• In such a case the null hypothesis is, say, for fixed column total

H0 : p1 = p2 = · · · = pc.

• It can be shown that the resulting X2 statistic will possess a probability
distribution in repeated sampling that is approximated by a χ2 distribu-
tion with (r− 1)(c− 1) d f s.
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Ward
Opinion 1 2 3 4 Total
Favor A 76(59) 53(59) 59(59) 48(59) 236
Do not favor A 124(141) 147(141) 141(141) 152(141) 564
Total 200 200 200 200 800

Table 2: Data tabulation for example 5

Example
Example 5. A survey of voter sentiment was conducted in four mid city political
wards to compare the fraction of voters favoring candidate A. Random sample
of 200 voters were polled in each of the four wards, with results as shown in
Table 2. Do the data present sufficient evidence to indicate that the fraction of
voters favoring candidate A differ in the four wards?

Solution
H0 : p1 = p2 = p3 = p4 that is the fraction p of voters favorizing A is the

same for all four wards.
The maximum likelihood estimate (combining the results from all four sam-

ples) for the common value of p is p̂ = 236/800 = r1·/n.
The expected number of individuals who favor candidate A in Ward 1 is

E(n11) = 200p which is estimated by

Ê(n11) = 200p̂ = 200 · 236/800 = n·1n1·/n.

The estimated call frequencies are given in parantheses in table 2.
We see that

X2 =
2

∑
i=1

4

∑
j=1

[nij − Ê(nij)]

Ê(nij)
= 10.72.

The critical value χ2 for α = 0.05 and (r − 1)(c − 1) = 3 degrees of freedom
is 7.81. Because X2∗ is in the rejection region we conclude that the fraction of
voters favoring candidate A is not the same for all four wards. The associated
p-value is p = P(X2 > 10.72) = 0.013.

See catego/ exforbin. pdf

5 Goodness of Fit Tests

5.1 The Chi-square test

The Chi-square goodness of fit test

• Let X be a characteristic having an unknown cdf F. We want to test the
null hypothesis H0 : F = F0 w.r.t the alternative Ha : F 6= F0. For the
parametrical variant of this test F0 depends on unknown parameters.
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• If X range is, say, (a, b) and the classes are determined by points a = a0 <
a1 < · · · < ak = b, we introduce notations

pi := P(ai−1 < X ≤ ai) = F(ai)− F(ai−1)

• Let Ei be the event that a randomly chosen individual from our popu-
lation be in [ai−1, ai). The null hypothesis, considered above becomes
H0 : pi = p(0)i , i = 1, k and the alternative is rewritten as: there exists i0
such that pi0 6= p(0)i0 , where

p(0)i = P(ai−1 < x ≤ ai|H0) = F0(ai)− F0(ai−1).

• Thus we reduced this test to a chi-square test for proportions.

• If F0 depends on s unknown parameters, θ1, θ2, . . . , θs i.e. F0 = F0(X; θ1, θ2, . . . , θs)

we replace these parameters by their MLE, say θ̂1, θ̂2, . . . , θ̂s. The differ-
ences are that

p(0)i = P(ai−1 < x ≤ ai|H0)

= F0(ai; θ̂1, θ̂2, . . . , θ̂s)− F0(ai−1, θ̂1, θ̂2, . . . , θ̂s)

for i = 1, k and chi-square distribution has k− s− 1 degrees of freedom.

5.2 The Kolmogorov’s Test

The Kolmogorov’s Test

• Let X be a continuous characteristic and F its theoretical cdf. We wish to
test the null hypothesis H0 : F = F0 versus one of the alternative

1. Ha : F 6= F0 (two-tailed test)

2. Ha : F > F0 (upper-tailed test)

3. Ha : F < F0 (lower-tailed test)

• The empirical cdf

Fn(x) =
card{X ≤ n}

n
.

• Test statistics
Dn = sup

x∈R

{|Fn(x)− F0(x)|}

D+
n = sup

x∈R

{Fn(x)− F0(x)}

D−n = sup
x∈R

{F0(x)− Fn(x)}
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Theorem 6 (Valery Ivanovich Glivenko and Francesco Paolo Cantelli).

P

(
lim

n→∞
sup
x∈R

∣∣Fn(x)− F(x)
∣∣ = 0

)
= 1.

Theorem 7 (Kolmogorov). If F is continuous the

lim
n→∞

P
(√

nDn ≤ x
)
=

{
K(x), if x ≥ 0,

0, if x < 0,

where

K(x) =
+∞

∑
k=−∞

(−1)ke−2k2x2
.

• Also,

lim
n→∞

P(
√

nD+
n ≤ x) = lim

n→∞
(
√

nD−n ≤ x)

= K±(x) = 1− e−2x2
, x > 0.

K± is called χ-law (not χ2) with 2 degrees of freedom.

• So, for α ∈ (0, 1) fixed we compute the quantiles k1−α and k±1−α of K and
K±, respectively,such that

P(
√

nDn ≤ k1−α) = 1− α, i.e. K(k1−α) = 1− α,

for a two-tailed test, and

P(
√

nD+
n ≤ k±1−α) = 1− α and P(

√
nD−n ≤ k±1−α) = 1− α

for a one-tailed test.

• As a conclusion, H0 should be rejected when
√

ndn ≥ k1−α for Ha : F = F0√
nd+n ≥ k±1−α for Ha : F > F0
√

nd−n ≥ k±1−α for Ha : F < F0

• For a practical implementation we follow a probability based approach.

• It is a good practice to sort the sample values in ascending order: x1 <
x2 < · · · < xn. In this case, for the value of test statistics one gets

d+n = max
k=1,n
{Fn(xk)− F0(xk)} = max

k=1,n

{
k
n
− F0(xk)

}
d−n = max

k=1,n
{F0(xk)− Fn(xk − 0)} = max

k=1,n

{
F0(xk)−

k− 1
n

}
dn = max

k=1,n
{|Fn(xk)− F0(xk)|} = max{d+n , d−n }

For grouped data we can employ the test using class limits.
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Geometric Interpretation

Figure 1: llustration of the Kolmogorov–Smirnov statistic. Red line is CDF,
blue line is an ECDF, and the black arrow is the K–S statistic.

5.3 The Kolmogorov-Smirnov Test for Two Samples

The Kolmogorov-Smirnov Test for Two Samples

• X, Y continuous, independent with cdfs FX , FY

• Null hypothesis
H0 : FX = FY

• Alternative hypotheses

Ha :FX 6= FY

FX > FY

FX < FY

• Test statistics
√

n1n2
n1+n2

Dn1,n2 ,
√

n1n2
n1+n2

D+
n1,n2

,
√

n1n2
n1+n2

D−n1,n2
where

Dn1,n2 = sup
x∈R

{|FX(x)− FY(x)|}

D+
n1,n2

= sup
x∈R

{FX(x)− FY(x)}

D−n1,n2
= sup

x∈R

{FY(x)− FX(x)}
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• Asymptotic behavior: Kolmogorov’s distribution

lim
n1,n2→∞

P
(√

n1n2

n1 + n2
Dn1,n2 ≤ x

)
=

∞

∑
k=−∞

(−1)ke−2k2x2

lim
n1,n2→∞

P
(√

n1n2

n1 + n2
D+

n1,n2
≤ x

)
= 1− e−2x2

lim
n1,n2→∞

P
(√

n1n2

n1 + n2
D+

n1,n2
≤ x

)
= 1− e−2x2

for x > 0.

Andrey Nikolaevich Kolmogorov (1903-1987)

Vladimir Ivanovich Smirnov (1887-1974)
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