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1 Analysis of Variance for a One-Way Layout

1.1 One-way ANOVA

Analysis of Variance for a One-Way Layout

• procedure for one-way layout

• Suppose k samples from normal populations with mean µ1, µ2, . . . , µk,
and common variance σ2. Sample sizes ni for population i, for i = 1, 2, . . . , k,
could be different. The total number of observations in the experiment is
n = n1 + n2 + · · ·+ nk.

• Yij the response for the jth experimental unit in the ith sample and let Yi•
and Yi• be the total and the average for the ni responses in the ith sample.
The dot in the second position in the subscript of Yi• means summation
over all values of missing subscript — j, in this case. Similarly, subscripts
of Yi• indicate the mean for the ith sample. Hence, for i = 1, 2, . . . , k,

Yi• =
ni

∑
j=1

Yij şi Yi• =
1
ni

ni

∑
j=1

Yij =
1
ni

Yi·.

These notations will simplify the description of SSs.

• We have
TotalSS = SST + SSE

(proof later), where

TotalSS =
k

∑
i=1

ni

∑
j=1

(
Yij −Y

)2
=

k

∑
i=1

ni

∑
j=1

Y2
ij − CM

CM =
1
n

(
k

∑
i=1

nj

∑
j=1

Yij

)2

= nY2,
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(CM denotes correction for the mean),

SST =
k

∑
i=1

ni
(
Yi• −Y

)2
=

k

∑
i=1

Y2
i•

ni
− CM,

SSE = TotalSS− SST.

• Although SSE coul be computed by subtraction, it is interesting to see
that SSE is the pooled sum of squares for all k samples and is

SSE =
k

∑
i=1

ni

∑
j=1

(
Yij −Yi•

)2
=

=
k

∑
i=1

(ni − 1) S2
i ,

where

S2
i =

1
ni − 1

ni

∑
j=1

(
Yij −Yi•

)2 .

• SSE depends only on sample variances S2
i , for i = 1, 2, . . . , k. Since S2

i are
unbiased estimators for σ2

i = σ2 with ni − 1 dfs, an unbiased estimator
for σ2 with n1 + n2 + · · ·+ nk − k = n− k dfs is given by

S2 = MSE =
SSE

(n1 − 1) + (n2 − 1) + · · ·+ (nk − 1)
=

SSE
n− k

. (1)

• Since

Y =
1
n

k

∑
i=1

ni

∑
j=1

Yij =
1
n

k

∑
i=1

niYi·,

it follows SST is a function of only sample means Yi·, for i = 1, 2, . . . , k.
MST has (k− 1) dfs—i.e. #means minus 1 and

MST =
SST
k− 1

. (2)

• To test the null hypothesis,

H0 : µ1 = µ2 = · · · = µk,

against the alternative that at least one of the equalities does not hold, we
compare MST with MSE, using the F statistic based on ν1 = k − 1 and
ν2 = n− k numerator and denominator dfs, respectively.
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• The null hypothesis will be rejected if

F =
MST
MSE

> Fν1,ν2,α,

where Fν1,ν2,α is the critical value for F test at level α. Under H0 : µ1 =
µ2 = · · · = µk, F posesses a F distribution with k − 1 dfs at numerator
and n− k dfs at denominator, respectively.

Assumptions underlying ANOVA F test

• The assumptions underlying the ANOVA F tests deserve particular at-
tention.

• Independent random samples are assumed to have been selected from
the k populations.

• The k populations are assumed to be normally distributed with variances
σ2

1 = σ2
2 = · · · = σ2

k = σ2 and means µ1, µ2, . . . , µk.

• Moderate departures from these assumptions will not seriously affect the
properties of the test. This is particularly true of the normality assump-
tion.

• The assumption of equal population variances is less critical if the sizes
of the samples from the respective populations are all equale (n1 = n2 =
· · · = nk).

• A one-way layout with equal numbers of observations per treatment is
said to be balanced.

Example

Example 1. Four groups of students were subjected to different teaching tech-
niques and tested at the end of a specified period of time. As a result of
dropouts from the experimental groups (due to sickness, transfer, etc.), the
number of students varied from group to group. Do the data shown in Ta-
ble 1 present sufficient evidence to indicate a difference in mean achievement
for the four teaching techniques?

Solution. See anova/studentianova.pdf

1.2 ANOVA Table

ANOVA Table

• The calculations for an ANOVA are usually displayed in an ANOVA (or
AOV) table.
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1 2 3 4
65 75 59 94
87 69 78 89
73 83 67 80
79 81 62 88
81 72 83
69 79 76

90
yi· 454 549 425 351
ni 6 7 6 4
yi· 75.67 78.43 70.83 87.75

Table 1: Data for Example 1

Source df SS MS F
Treatments k− 1 SST MST = SST

k−1
MST
MSE

Error n− k SSE MSE = SSE
n−k

Total n− 1 ∑k
i=1 ∑ni

j=1

(
yij − y

)2

Table 2: A one-way ANOVA table

• The table for RBD design for comparing k treatment means is shown in
Table 2. The first column shows the source associated with each sum of
squares; the second column gives the respective degrees of freedom; the
third and fourth columns give the sums of squares and mean squares, re-
spectively. A calculated value of F, comparing MST and MSE, is usually
shown in the fifth column.

• Notice that SST + SSE = TotalSS and that the sum of the degrees of
freedom for treatments and error equals the total number of degrees of
freedom.

The ANOVA table for Example 1, shown in Table 3, gives a compact pre-
sentation of the appropriate computed quantities for the analysis of variance.

1.3 A Statistical Model for the One-Way Layout

A Statistical Model for the One-Way Layout

Source df SS MS F
Treatments 3 712.6 237.5 3.77
Error 19 1196.6 63.0
Total 22 1909.2

Table 3: ANOVA table for Example 1
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• Yij RVs with values yij, for i = 1, 2, . . . , k and j = 1, 2, ..., ni. Yij ∼
N
(
µi, σ2) independen, for i = 1, 2, . . . , k and j = 1, 2, ..., ni. Consider

a random sample from population i and write

Yij = µi + εij ⇐⇒ εij = Yij − µi, j = 1, 2, . . . , ni. (3)

where εij ∼ N(0, σ2), independent

• The error terms simply represent the difference between the observations
in each sample and the corresponding population means.

• Consider means µi, for i = 1, 2, . . . , k,

µi = µ + τi where τ1 + τ2 + · · ·+ τk = 0.

• Notice that ∑k
i=1 µi = kµ+∑k

i=1 τi = kµ, so µ = k−1 ∑k
i=1 µi is the average

of the k population means (the µi-values). For these reason µ is called
global mean.

• For i = 1, 2, . . . , k, τi = µi − µ quantifies the difference between the mean
for population i and the overall mean, τi effect of treatment (or population)
i.

• The model for one-way ANOVA

Yij = µ + τi + εij, i = 1, 2, . . . , k, j = 1, 2, ..., ni

where

Yij = the jth observation from population (treatment) i,

µ = the overall mean,

τi = the nonrandom effect of treatment i, where ∑k
i=1 τi = 0,

εij = random error terms such that εij ∼ N(0, σ2), independent

• H0 : µ1 = µ2 = · · · = µk can be restated as

H0 : τ1 = τ2 = · · · = τk = 0

and Ha : ∃(i, i′), i 6= i′, µi 6= µi′ ⇐⇒ Ha : ∃i, 1 ≤ i ≤ k, τi 6= 0.

• Test statistic
F =

MST
MSE

MST and MSE given by (2), (1)

• Rejection region
F > Fk−1,n−k,α
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1.4 Proof of Additivity of the Sums of Squares and E (MST)
for a One-Way Layout

Proof of Additivity of the Sums of Squares and E (MST) for a One-Way Lay-
out

• For one-way layout we have

TotalSS = SST + SSE

• Thus

TotalSS =
k

∑
i=1

ni

∑
j=1

(
Yij −Y

)2
=

k

∑
i=1

ni

∑
j=1

(
Yij −Yi• + Yi• −Y

)2

=
k

∑
i=1

ni

∑
j=1

[(
Yij −Yi•

)
+
(
Yi• −Y

)]2
=

k

∑
i=1

ni

∑
j=1

[(
Yij −Yi•

)2
+ 2

(
Yij −Yi•

) (
Yi• −Y

)
+
(
Yi• −Y

)2
]

• Summing first over j, we obtain

TotalSS =
k

∑
i=1

[
ni

∑
j=1

(
Yij −Yi•

)2
+ 2

(
Yi• −Y

) ni

∑
j=1

(
Yij −Yi•

)
+ni

(
Yi• −Y

)2
]

,

where
ni

∑
j=1

(
Yij −Yi•

)
= Yi• − niYi• = 0.

• Then, summing over i, one obtains

TotalSS =
k

∑
i=1

ni

∑
j=1

(
Yij −Yi•

)2
+

k

∑
i=1

ni
(
Yi• −Y

)2

= SSE + SST.

Proof of the additivity of the ANOVA sums of squares for other experi-
mental designs can be obtained in a similar manner although the proce-
dure is often tedious.

• We now proceed with the derivation of the expected value of MST for a
one-way layout (including a completely randomized design). Using the
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statistical model for the one-way layout presented in Section 3, it follows
that

Yi• =
1
ni

ni

∑
j=1

Yij =
1
ni

ni

∑
j=1

(
µ + τi + εij

)
= µ + τi + εi,

where εi =
1
ni

∑ni
j=1 εij.

• Since εij are independent RVs with E(εij) = 0 and V(εij) = σ2, we have
E(εi) = 0 and V(εi) = σ2/ni.

• Analogously, Y is given by

Y =
1
n

k

∑
i=1

ni

∑
j=1

Yij =
1
n

k

∑
i=1

ni

∑
j=1

(
µ + τi + εij

)
= µ + τ + ε

where

τ =
1
n

k

∑
i=1

niτi and ε =
1
n

k

∑
i=1

ni

∑
j=1

εij.

• τi constants, for i = 1, 2, . . . , k =⇒ τ constant =⇒ E(ε) = 0 and V(ε) =
σ2/n.

MST =
1

k− 1

k

∑
i=1

ni
(
Yi• −Y

)2

=
1

k− 1

k

∑
i=1

ni (τi + εi − τ − ε)2

=
1

k− 1

k

∑
i=1

ni (τi − τ)2 +
1

k− 1

k

∑
i=1

2ni (τi − τ) (εi − ε)

+
1

k− 1

k

∑
i=1

ni (εi − ε)2 .

Again, τi constants, for i = 1, 2, . . . , k =⇒ τ constant =⇒ E(εij) = E(εi) =
E(ε) = 0; it results

E(MST) =
1

k− 1

k

∑
i=1

ni (τi − τ)2 +
1

k− 1
E

[
k

∑
i=1

ni (εi − ε)2

]
.

• Notice that

k

∑
i=1

ni (εi − ε)2 =
k

∑
i=1

(
niε

2
i − 2niεiε + niε

2
)

=
k

∑
i=1

niε
2
i − 2nε2 + nε2 =

k

∑
i=1

niε
2
i − nε2
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• Since E(εi) = 0 and V(εi) = σ2/ni, it follows E(ε2
i ) = σ2/ni, for i =

1, 2, . . . , k. Similarly, E(ε2) = σ2/n, and hence,

E

[
k

∑
i=1

ni (εi − ε)2

]
=

k

∑
i=1

niE
(

ε2
i

)
− nE

(
ε2
)
= kσ2 − σ2

= (k− 1)σ2.

Summarizing, we obtain

E(MST) = σ2 +
1

k− 1

k

∑
i=1

ni (τi − τ)2 , where τ =
1
n

k

∑
i=1

τi.

• Under hypothesis H0 : τ1 = τ2 = · · · = τk = 0, it follows that τ = 0, and
hence, E(MST) = σ2. Thus, when H0 is true, MST/MSE is the ratio of
two unbiased estimators for σ2. If there exists an i, 1 ≤ i ≤ k, such that
Ha : τi 6= 0 is true, the quantity

1
k− 1

k

∑
i=1

ni(τi − τ)2

is strictly positive and MST is a positively biased estimator for σ2.

1.5 Estimation in the One-Way Layout

Estimation in the One-Way Layout

• Confidence intervals for a single treatment mean and for the difference
between a pair of treatment means based on data obtained in a one-way
layout are analogous to classical estimations, with the difference that one-
way ANOVA estimations uses MSE for σ2.

• CIs for for the mean of treatment i or the difference between the means
for treatments i and i′ are, respectively:

Yi• ± tα/2,n−k
S√
ni

and (
Yi• −Yi′•

)
± tα/2,n−kS

1√
1
ni
+ 1

ni′

where

S =
√

S2 =
√

MSE =

√
SSE

n1 + n2 + · · ·+ nk − k
.
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• The confidence intervals just stated are appropriate for a single treatment
mean or a comparison of a pair of means selected prior to observation
of the data. These intervals are likely to be shorter than the correspond-
ing classical intervals, because the values of tα/2 are based on n − k dfs
instead of ni − 1 or ni + ni′ − 2, respectively. The stated confidence co-
efficients are appropriate for a single mean or difference in two means
identified prior to observing the actual data. If we were to look at the
data and always compare the populations that produced the largest and
smallest sample means, we would expect the difference between these
sample means to be larger than for a pair of means specified to be of in-
terest before observing the data.

Examples

Examples 2. Find a 95% CI for the mean score for teaching technique 1, Example
1. Find a 95% confidence interval for the difference in mean score for teaching
techniques 1 and 4, Example 1.

Solution. The 95% CI for technique 1 is

Y1• ± t0.025,19
S√
ni

where t0.025,19 is the t-quantile for α = 0.025 and n− k = 19 dfs;

75.67± (2.093)

√
63
6

= 75.67± 6.7821

The 95% CI for (µ1 − µ4) is

(Y1• −Y4•)± (2.093)(7.94)
√

1/6 + 1/4 = −12.08± 10.727,

that is (−22.81,−1.35). At a confidence level of 95% we concludes that µ4 > µ1.
See anova/ anovaex13_ 3. pdf

2 ANOVA for the Randomized Block Design

2.1 A Statistical Model for the Randomized Block Design

A Statistical Model for the Randomized Block Design

• The randomized block design is a design for comparing k treatments us-
ing b blocks.

• The blocks are selected so that, hopefully, the experimental units within
each block are essentially homogeneous. The treatments are randomly
assigned to the experimental units in each block in such a way that each
treatment appears exactly once in each of the b blocks.
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• Thus, the total number of observations obtained in a randomized block
design is n = bk.

• Implicit in the consideration of a randomized block design is the presence
of two qualitative independent variables, “blocks” and “treatments.”

• Statistical Model for a Randomized Block Design

Yij = µ + τi + β j + εij, i = 1, 2, . . . , k, j = 1, 2, . . . , b

• where

Yij = the observation on treatment i in block j,

µ = the overall mean,

τi = the nonrandom effect of treatment i, where ∑k
i=1 τi = 0,

β j = the nonrandom effect of block j, where ∑b
j=1 β j = 0,

εij = random error terms such that εij are independent normally distributed
random variables with E(εij) = 0 and V(εij) = σ2.

• Notice that µ, τ1, τ2, . . . , τk and β1, β2, . . . , βb are unknown constants.

• fixed block effects model (there exists random block effects models, we don’t
consider them here)

• For observation Yij in treatment i, block j, E(Yij) = µ+ τi + β j and V(Yij) =

σ2 for i = 1, 2, . . . , k and j = 1, 2, . . . , b.

• Two observations which received treatment i have means that differ only
by the difference of the block effects. If j 6= j′,

E(Yij)− E(Yij′) = µ + τi + β j − (µ + τi + β j′) = β j − β j′ .

• Similarly, two observations that are taken from the same block have means
that differ only by the difference of the treatment effects. If i 6= i′,

E(Yij)− E(Yi′ j) = µ + τi + β j − (µ + τi′ + β j) = τi − τi′ .

• Observations that are taken on different treatments and in different blocks
have means that differ by the difference in the treatment effects plus the
difference in the block effects because, if i 6= i′ and j 6= j′,

E(Yij)− E(Yi′ j′) = µ + τi + β j − (µ + τi′ + β j′)

= (τi − τi′) + (β j − β j′).
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The Analysis of Variance for a Randomized Block Design

• For a randomized block design involving b blocks and k treatments, we
have the following sums of squares:

TotalSS =
k

∑
i=1

b

∑
j=1

(
Yij −Y

)2
=

k

∑
i=1

b

∑
j=1

Y2
ij − CM

= SSB + SST + SSE,

where

SSB = k
b

∑
j=1

(
Y•j −Y

)2
=

b

∑
j=1

Y2
•j

k
− CM

SST = b
k

∑
i=1

(
Yi• −Y

)2
=

k

∑
i=1

Y2
i•
b
− CM

SSE = TotalSS− SSB− SST.

• In the preceding formulas,

Y = (average of all n = bk observations) =
1
bk

k

∑
i=1

b

∑
j=1

Yij

and

CM =
(total of all observations)2

n
=

1
bk

(
k

∑
i=1

b

∑
j=1

Yij

)2

.

• Table 4 is an ANOVA table for the randomized block design.

• To test the null hypothesis that there is no difference in treatment means,
we use the F statistic

F =
MST
MSE

and reject the null hypothesis if F > Fα,ν1,ν2 , where Fα,ν1,ν2 is the α-quantile
of an F distribution with ν1 = (k− 1) dfs at numerator and ν2 = (n− b−
k + 1) dfs at denominator, respectively.

• Blocking can be used to control for an extraneous source of variation (the
variation between blocks). In addition, with blocking, we have the op-
portunity to see whether evidence exists to indicate a difference in the
mean response for blocks.

• Under the null hypothesis that there is no difference in mean response
for blocks (that is, β j = 0, for j = 1, 2, . . . , b), the mean square for blocks
(MSB) provides an unbiased estimator for σ2 based on (b− 1) dfs.

11



Source df SS MS
Blocks b− 1 SSB SSB

b−1
Treatments k− 1 SST SST

k−1
Error n− b− k + 1 SSE MSE
Total n− 1 TotalSS

Table 4: ANOVA table for the randomized block design

• Where real differences exist among block means, MSB will tend to be
inflated in comparison with MSE, and

F =
MSB
MSE

provides a test statistic. As in the test for treatments, the rejection region
for the test is

F > Fα,ν1,ν2 ,

where Fα,ν1,ν2 is the α-quantile of an F distribution with ν1 = b − 1 and
ν2 = n− b− k + 1 numerator and denominator degrees of freedom, re-
spectively.

Example
Example 3. A stimulus–response experiment involving three treatments was
laid out in a randomized block design using four subjects. The response was
the length of time until reaction, measured in seconds. The data, arranged in
blocks, are shown in Figure 1. The treatment number is circled and shown
above each observation. Do the data present sufficient evidence to indicate
a difference in the mean responses for stimuli (treatments)? Subjects? Use
α = .05 for each test and give the associated p-values.

Solution

CM =
total2

n
=

21.22

12
= 37.45

TotalSS =
4

∑
j=1

3

∑
i=1

(
yij − y

)2
=

4

∑
j=1

3

∑
i=1

y2
ij − CM = 46.86− 37.45 = 9.41,

SSB =
4

∑
j=1

Y2
•j

3
−−CM = 40.93− 37.45 = 3.48,

SST =
3

∑
i=1

Y2
i•
4
− CM = 42.93− 37.45 = 5.48,

SSE = TotalSS− SSB− SST = 9.41− 3.48− 5.48 = .45.

See anova/ exanovardb. pdf
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Figure 1: Randomized block design for Example 3

2.2 Estimation in the Randomized Block Design

Estimation in the Randomized Block Design

• The confidence interval for the difference between a pair of treatment
means in a randomized block design is completely analogous to that as-
sociated with the completely randomized design.

• The 100(1− α)% CI for τi − τ′i is

(Yi• −Yi′•)± tα/2,νS

√
2
b

,

where ni = ni′ = b and S =
√

MSE. The difference consists of #dfs,
which is ν = n− b− k + 1 = (b− 1)(k− 1) and S is from ANOVA table
for RBD.

Example

Example 4. Construct a 95% confidence interval for the difference between the
mean responses for treatments 1 and 2, Example 3.

Solution. The confidence interval for the difference in mean responses for a pair
of treatments is

(Yi• −Yi′•)± tα/2,νS

√
2
b

,
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where tα/2,ν is the quantile of a T distribution for α = 0.05 and ν = 6 dfs. For
treatments 1 and 2, we have

(.98− 2.63)± (2.447)(.27)

√
2
b
= −1.65± .47

= (−2.12,−1.18).

2.3 Sample Size

Selecting the Sample Size

• The method for selecting the sample size for the one-way layout (includ-
ing the completely randomized) or the randomized block design is an
extension of the procedures for two samples.

• restrict to n1 = n2 = · · · = nk, for the treatments of the one-way lay-
out. The number of observations per treatment is equal to the number of
blocks b for the randomized block design.

• The problem is to determine n1 or b

• The determination of sample sizes follows a similar procedure for both
designs; we outline a general method.

• First, the experimenter must decide on the parameter (or parameters)
of major interest. Usually, this involves comparing a pair of treatment
means.

• Second, the experimenter must specify a bound on the error of estimation
that can be tolerated.

• Once this has been determined, the next task is to select ni (the size of
the sample from population or treatment i) or, correspondingly, b (the
number of blocks for a randomized block design) that will reduce the
half-width of the confidence interval for the parameter so that, at a pre-
scribed confidence level, it is less than or equal to the specified bound on
the error of estimation.

• It should be emphasized that the sample size solution always will be an
approximation because σ is unknown and an estimate for σ is unknown
until the sample is acquired.

• The best available estimate for σ will be used to produce an approximate
solution.
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Example for One-way Layout

Example 5. A completely randomized design is to be conducted to compare
five teaching techniques in classes of equal size. Estimation of the differences
in mean response on an achievement test is desired correct to within 30 test-
score points, with probability equal to .95. It is expected that the test scores
for a given teaching technique will possess a range approximately equal to
240. Find the approximate number of observations required for each sample in
order to acquire the specified information.

Solution
The confidence interval for the difference between a pair of treatment means

is

(Yi• −Yi′•)± tα/2,νS

√
1
ni

+
1

ni′

Therefore, we wish to select ni and ni′ so that

tα/2,νS

√
1
ni

+
1

ni′
≤ 30

The value of σ is unknown, S is a RV. However, an approximate solution
for ni = ni′ can be obtained by conjecturing that the observed value of s will be
roughly equal to one-fourth of the range. Thus, s ≈ 240/4 = 60. The value of
tα/2,ν will be based on (n1 + n2 + · · ·+ n5 − 5) dfs and, and for even moderate
values of ni, t.025,ν will be approximately equal 2.

Then,

tα/2,νS

√
1
ni

+
1

ni′
≈ 2 · 60 ·

√
2
ni

= 30,

or
ni = 32, i = 1, . . . , 5.

Example for Randomized Block Design

Example 6. An experiment is to be conducted to compare the toxic effects of
three chemicals on the skin of rats. The resistance to the chemicals was ex-
pected to vary substantially from rat to rat. Therefore, all three chemicals were
to be tested on each rat, thereby blocking out rat-to-rat differences. The stan-
dard deviation of the experimental error was unknown, but prior experimen-
tation involving several applications of a similar chemical on the same type of
rat suggested a range of response measurements equal to 5 units. Find a value
for b such that the error of estimating the difference between a pair of treatment
means is less than 1 unit, with probability equal to .95.
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Solution
A very approximate value for s is one-fourth of the range, or s ≈ 1.25. Then,

we wish to select b so that

t.025,νS

√
1
b
+

1
b
≤ t.025,νS

√
2
b
≤ 1.

Since t.025,ν will depend on the degrees of freedom associated with s2, which
will be (n− b− k + 1), we will use the approximation t.025,ν ≈ 2. Then,

2 · 1.25

√
2
b
≤ 1 =⇒ b ≈ 13.

Approximately thirteen rats will be required to obtain the desired information.
Since we will make three observations (k = 3) per rat, our experiment will
require that a total of n = bk = 13(3) = 39 measurements be made. The
degrees of freedom associated with the resulting estimate s2, will be (n− b−
k + 1) = 39− 13− 3 + 1 = 24, based on this solution. Therefore, the guessed
value of t would seem to be adequate for this approximate solution.

Comments

• The sample size solutions for Examples 5 and 6 are very approximate
and are intended to provide only a rough estimate of sample size and
consequent costs of the experiment.

• The actual lengths of the resulting confidence intervals will depend on
the data actually observed. These intervals may not have the exact lengths
specified by the experimenter but will have the required confidence coef-
ficient.

• If the resulting intervals are still too long, the experimenter can obtain
information on σ as the data are being collected and can recalculate a
better approximation to the number of observations per treatment (ni or
b) as the experiment proceeds.

3 Simultaneous Confidence Intervals for More Than
One Parameter

Simultaneous Confidence Intervals for More Than One Parameter

• The methods devoted to estimations in one-way layout can be used to
construct 100(1− α)% confidence intervals for a single treatment mean
or for the difference between a pair of treatment means.
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• Suppose that in the course of an analysis we wish to construct several
of these confidence intervals. Although it is true that each interval will
enclose the estimated parameter with probability 1− α, what is the prob-
ability that all the intervals will enclose their respective parameters?

• We will present a procedure for forming sets of confidence intervals so
that the simultaneous confidence coefficient is no smaller than 1− α for
any specified value of α.

• Suppose that we want to find confidence intervals I1, I2, . . . , Im for pa-
rameters θ1, θ2, . . . , θm so that

P(θj ∈ Ij ∀ j = 1, 2, ..., m) ≥ 1− α.

• This goal can be achieved by using a simple probability inequality, known
as the Bonferroni (or Boole) inequality. For any events A1, A2, . . . , Am, we
have

P(A1 ∩ A2 ∩ · · · ∩ Am) ≥ 1−
m

∑
j=1

P
(

Aj
)

.

Suppose that P(θj ∈ Ij) = 1− αj and let Aj denote the event {θj ∈ Ij}.
Then,

P(θ1 ∈ I1, . . . , θm ∈ Im) ≥ 1−
m

∑
j=1

P
(
θj /∈ Ij

)
= 1−

m

∑
j=1

αj.

• If all αj’s, for j = 1, 2, . . . , m, are chosen equal to α, we can see that the
simultaneous confidence coefficient of the intervals Ij, for j = 1, 2, . . . , m,
could be as small as (1−mα), which is smaller than (1− α) if m > 1.

• A simultaneous confidence coefficient of at least (1− α) can be ensured
by choosing the confidence intervals Ij, for j = 1, 2, . . . , m, so that ∑m

j=1 αj =

α. One way to achieve this objective is if each interval is constructed to
have confidence coefficient 1 − (α/m). We apply this technique in the
following example.

Example 7. For the four treatments given in Example 1, construct confidence
intervals for all comparisons of the form µi− µi′ , with simultaneous confidence
coefficient no smaller than .95.

Solution
The appropriate 100(1− α)% confidence interval for a single comparison

(say, µ1 − µ2) is

(Y1• −Y2•)± tα/2,νS

√
1
n1

+
1
n2

.
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Because there are six such differences to consider, each interval should have
confidence coefficient 1− (α/6). Thus, the corresponding t-value is tα/2(6) =
tα/12. Because we want simultaneous confidence coefficient at least .95, the
appropriate t-value is t.05/12 = t.00417. The MSE for the data in Example 1 is
based on 19 df, so t-value is 2.9435.

Because s =
√

MSE =
√

63 = 7.937, the interval for µ1 − µ2 among the six
with simultaneous confidence coefficient at least .95 is

µ1 − µ2 : (75.67− 78.43)± 2.9435(7.937)

√
1
6
+

1
7

= −2. 76± 12. 996 = (−15. 756, 10. 236).

Analogously, the entire set of six realized intervals are
µ1 − µ2 : −2. 76± 12. 996 = (−15. 756, 10. 236)
µ1 − µ3 : 4.84± 13.11 = ( −8. 27, 17. 95)
µ1 − µ4 : −12.08± 14.66 = (−26. 74, 2. 58)
µ2 − µ3 : 7.60± 12.63 = (−5. 03, 20. 23)
µ2 − µ4 : −9.32± 14.23 = (−23. 55, 4. 91)
µ3 − µ4 : −16.92± 14.66. = (−31. 58,−2. 26).
See anova/ studentianovasimCI. pdf

We emphasize that the technique presented in this section guarantees si-
multaneous coverage probabilities of at least 1− α. The actual simultaneous
coverage probability can be much larger than the nominal value 1− α. Other
methods for constructing simultaneous confidence intervals can be found in
the books listed in the bibliography.

4 ANOVA Using Linear Models

ANOVA Using Linear Models

• Linear models can be adapted for use in the ANOVA.

• We illustrate the method by formulating a linear model for data obtained
through a completely randomized design involving k = 2 treatments.

• Let Yij denote the random variable to be observed on the jth observation
from treatment i, for i = 1, 2. Let us define a dummy, or indicator, variable
x as follows:

x =

{
1, if the observation is from population 1,
0, otherwise.

• Although such dummy variables can be defined in many ways, this defi-
nition is consistent with the coding used in SAS and other statistical anal-
ysis computer programs.

18
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Treatments
Bolt of material A B C D
I 10.1 11.4 9.9 12.1
II 12.2 12.9 12.3 13.4
III 11.9 12.7 11.4 12.9

Table 5: Data for Example 8

• If we use x as an independent variable in a linear model, we can model
Yij as

Yij = β0 + β1x + εij,

where the error εij ∼ N(0, σ2). In this model,

µ1 = E(Y1j) = β0 + β1 · 1 = β0 + β1,

şi
µ2 = E(Y2j) = β0 + β1 · 0 = β0.

• Thus, it follows that β1 = µ1− µ2 and a test of the hypothesis µ1− µ2 = 0
is equivalent to the test that β1 = 0.

• The intuition suggests β̂0 = Y2· and β̂1 = Y1· − Y2· are good estimators
for β0 and β1; indeed, it can be shown (proof - homework) that these
are the least-squares estimators obtained by fitting the preceding linear
model.

Example

Example 8. An experiment was conducted to compare the effects of four chem-
icals A, B, C, and D on water resistance in textiles. Three different bolts of
material I, II, and III were used, with each chemical treatment being applied
to one piece of material cut from each of the bolts. The data are given in Table
13.7. Write a linear model for this experiment and test the hypothesis that there
are no differences among mean water resistances for the four chemicals. Use
α = .05.

Solution
In formulating the model, we define β0 as the mean response for treatment

D on material from bolt III, and then we introduce a distinct indicator variable
for each treatment and for each bolt of material (block). The model is

Y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + ε,

where

x1 =

{
1, if material from bolt I is used,
0, otherwise
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x2 =

{
1, if material from bolt II is used,
0, otherwise

x3 =

{
1, if treatment A is used,
0, otherwise

x4 =

{
1, if treatment B is used,
0, otherwise

x5 =

{
1, if treatment C is used,
0, otherwise

We want to test the hypothesis that there are no differences among treatment
means, which is equivalent to H0 : β3 = β4 = β5 = 0. Thus, we must fit a
complete and a reduced model.

For the complete model, we have

Y =



10.1
12.2
11.9
11.4
12.9
12.7
9.9

12.3
11.4
12.1
13.4
12.9



, X =



1 1 0 1 0 0
1 0 1 1 0 0
1 0 0 1 0 0
1 1 0 0 1 0
1 0 1 0 1 0
1 0 0 0 1 0
1 1 0 0 0 1
1 0 1 0 0 1
1 0 0 0 0 1
1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 0 0 0


A little matrix algebra yields, for this complete model,

SSEC = YTY− β̂′XTY = 0.530

The relevant reduced model is

Y = β0 + β1x1 + β2x2 + ε,

and the corresponding X matrix consists of only the first three columns of the
X matrix given for the complete model. We then obtain

β̂ = (XTX)−1XTY =

 12.2250
−1.3500

0.4750


and

SSER = YTY− β̂XTY = 5.7350

It follows that the F ratio appropriate to compare these complete and reduced
models is

F∗ =
(SSER − SSEC)/(k− g)

SSEC/ [n− (k + 1)]
=

(5.7350− 0.530) /(5− 2)
0.530/(12− (5 + 1))

= 19. 642.
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We have ν1 = 3 numerator dfs and ν2 = 6 denominator dfs, respectively. The
associated p-value is p = P(F3,6 > F∗) = 0.02, hence for α = 0.05 we reject
the null hypothesis and conclude that the data present sufficient evidence to
indicate that differences exist among the treatment means.

See anova/ anovaexlm. pdf
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