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1 Introduction

Introduction

• Introductory example: Suppose that we are interested in estimating the
proportion of responders to a new therapy for treating a disease that is
serious and difficult to cure (such a disease is said to be virulent).

– p – the probability that any single person with the disease responds
to the treatment

– Y – the number of responders in a sample of size n might reasonably
be assumed to have a binomial distribution with parameter p.

• In the classical (frequentist) approach p has a fixed but unknown value
and have discussed point estimators, interval estimators, and tests of hy-
potheses for this parameter

• Bayesian approach: suppose we know that p ≈ 0.25

• we model the conditional distribution of Y given p, Y|p, as binomial

p (Y|p) =
(

n
y

)
pyqn−y, y = 0, 1, 2, . . . , n.

• Uncertainty about the parameter p is handled by treating it as a random
variable and, before observing any data, assigning a prior distribution to
p.

• Because we know that 0 < p < 1 and the beta density function has the
interval (0, 1) as support, it is convenient to use a beta distribution as a
prior for p.

• If X ∼ beta(α, β), then µ = E(X) = α
α+β , a good candidate for p distribu-

tion is a beta with α = 1 and β = 3.
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• Thus, the density assigned to p is

g(p) =
1
3
(1− p)2, 0 < p < 1.

• Since we have specified the conditional distribution of Y|p and the distri-
bution of p, we have also specified the joint distribution of (Y, p) and can
determine the marginal distribution of Y and the conditional distribution
of p|Y.

• After observing Y = y, the posterior density of p given Y = y, g∗(p|y), can
be determined.

• In the next section, we derive a general result that, in our virulent-disease
example, implies that the posterior density of p given Y = y is

g∗(p|y) = Γ(n + 4)
Γ(y + 1)Γ(n− y + 3)

py(1− p)n−y+2, 0 < p < 1,

that is a beta(α, β) with α = y + 1 and β = n− y + 3.

• This posterior density is the “updated” (by the data) density of p and is
the basis for all Bayesian inferences regarding p.

• In the following sections, we describe the general Bayesian approach and
specify how to use the posterior density to obtain

– estimates

– credible intervals

– hypothesis tests for p and for parameters associated with other dis-
tributions.

2 Bayesian Priors and Posteriors

Bayesian Priors and Posteriors

• Y1, Y2, . . . , Yn RVs associated with a sample of size n, L(y1, y2, . . . , yn|θ)
the likelihood of the sample.

• In the Bayesian approach, the unknown parameter θ is viewed to be a
random variable with a probability distribution, called the prior distribu-
tion of θ.

• This prior distribution is specified before any data are collected and pro-
vides a theoretical description of information about θ that was available
before any data were obtained.

• We will assume that the parameter θ has a continuous distribution with
density g(θ)
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• Using the likelihood of the data and the prior on θ, it follows that the joint
likelihood of Y1, Y2, . . . , Yn, θ is

f (y1, y2, . . . , yn, θ) = L(y1, y2, . . . , yn|θ)g(θ)

and that the marginal density or mass function of Y1, Y2, . . . , Yn is

m (y1, y2, . . . , yn) =

∞∫
−∞

L(y1, y2, . . . , yn|θ)g(θ)d θ.

• The posterior density of θ|y1, y2, . . . , yn:

g∗ (θ|y1, y2, . . . , yn) =
L(y1, y2, . . . , yn|θ)g(θ)

∞∫
−∞

L(y1, y2, . . . , yn|θ)g(θ)d θ

. (1)

• The posterior density summarizes all of the pertinent information about
the parameter θ by making use of the information contained in the prior
for θ and the information in the data.

3 Examples

Examples
Example 1. Let Y1, Y2, . . . , Yn denote a random sample from a Bernoulli distri-
bution where P(Yi = 1) = p and P(Yi = 0) = 1− p and assume that the prior
distribution for p is beta(α, β). Find the posterior distribution for p.

Solution
Since the Bernoulli pmf could be written as

p(yi|p) = pyi (1− p)1−yi , yi = 0, 1,

the likelihood is L(y1, y2, . . . , yn|p) is

L(y1, y2, . . . , yn|p) = p(y1, y2, . . . , yn|p)
= py1(1− p)1−y1 py2(1− p)1−y2 · · · pyn(1− p)1−yn

= p∑ yn(1− p)n−∑ yi , yi = 0, 1, p ∈ (0, 1).

Thus,

f (y1, y2, . . . , yn, p) = L(y1, y2, . . . , yn|p)g(p)

= p∑ yi (1− p)n−∑ yi
pα−1(1− p)β−1

B(α, β)

=
p∑ yi+α−1(1− p)n−∑ yi+β−1

B(α, β)

3



and

m(y1, y2, . . . , yn) =
∫ 1

0

p∑ yi+α−1(1− p)n−∑ yi+β−1

B(α, β)
d p

=
B (∑ yi + α, n−∑ yi + β)

B(α, β)

Finally, the posterior density of p is obtained from 1)

g∗(p|y1, y2, . . . , yn) =

p∑ yi+α−1(1−p)n−∑ yi+β−1

B(α,β)
B(∑ yi+α,n−∑ yi+β)

B(α,β)

=
p∑ yi+α−1(1− p)n−∑ yi+β−1

B (∑ yi + α, n−∑ yi + β)
,

i.e. a beta distribution with parameters α∗ = ∑ yi + α şi β∗ = n−∑ yi + β.

Examples

Example 2. Consider the virulent-disease scenario and the results of Example
1. Compare the prior and posterior distributions of the Bernoulli parameter p
(the proportion of responders to the new therapy) if we chose the values for α
and β and observed the hypothetical data given below:

(a) α = 1, β = 3, n = 5, ∑ yi = 2.

(b) α = 1, β = 3, n = 25, ∑ yi = 10.

(c) α = 10, β = 30, n = 5, ∑ yi = 2.

(d) α = 10, β = 30, n = 25, ∑ yi = 10.

Solution
Notice that both beta priors have mean

µ =
α

α + β
=

1
1 + 3

=
10

10 + 30
= 0.25

and that both hypothetical samples result in the same value of the MLEs for p:

p̂ =
1
n ∑ yi =

2
5
=

10
25

= 0.4.

As derived in Example 1, if y1, y2, . . . , yn denote the values in a random sample
from a Bernoulli distribution, where P(Yi = 1) = p and P(Yi = 0) = 1− p,
and the prior distribution for p is beta(α, β), the posterior distribution for p is
a beta with α∗ = ∑ yi + α, β∗ = n−∑ yi + β. Therefore, for the choices in this
example,
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Parametrii
Distribuţia n ∑ yi distribuţiei beta Media Dispersia
a priori − − α = 1, β = 3 .2500 .0375
a posteriori 5 2 α∗ = 3, β∗ = 6 .3333 .0222
a posteriori 25 10 α∗ = 11, β∗ = 16 .4074 .0078
a priori − − α = 10, β = 30 .2500 .0046
a posteriori 5 2 α∗ = 12, β∗ = 33 .2667 .0043
a posteriori 25 10 α∗ = 20, β∗ = 45 .3077 .0032

Table 1: Beta a priori şi a posteriori pentru exemplul 2

(a) when the prior is β(1, 3), n = 5, ∑ yi = 2, the posterior is beta with
α∗ = ∑ yi + α = 2 + 1 = 3 and β∗ = n−∑ yi + β = 5− 2 + 3 = 6.

(b) when the prior is β(1, 3), n = 25, ∑ yi = 10, the posterior is beta with
α∗ = 10 + 1 = 11 and β∗ = 25− 10 + 3 = 18.

(c) when the prior is β(10, 30), n = 5, ∑ yi = 2, the posterior is beta with
α∗ = 2 + 10 = 12 and β∗ = 5− 2 + 30 = 33.

(d) when the prior is β(10, 30), n = 25, ∑ yi = 10, the posterior is beta with
α∗ = 20 and β∗ = 45.

Recall that the mean and variance of a beta(α, β) distributed random vari-
able are

µ =
α

α + β
, σ2 =

αβ

(α + β)2 (α + β + 1)
.

The parameters of the previous beta priors and posteriors, along with their
means and variances are summarized in Table 1. Figure 1 contains graphs
of the beta distributions (priors and posteriors) associated with the beta prior
with parameters α = 1, β = 3. Graphs of the beta distributions associated with
the beta(10, 30) prior are given in Figure 2.

In Examples 1 and 2, we obtained posterior densities that, like the prior, are
beta densities but with altered (by the data) parameter values.

4 Conjugate Priors and Estimators

Conjugate Priors and Estimators

Definition 3. Prior distributions that result in posterior distributions that are
of the same functional form as the prior but with altered parameter values are
called conjugate priors.

• Any beta distribution is a conjugate prior distribution for a Bernoulli (or
a binomial) distribution.
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Figure 1: Graficele distribuţiilor beta a priori şi a posteriori din exemplul 1 (a)

Figure 2: Graficele distribuţiilor beta a priori şi a posteriori din exemplul 2
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• For the distributions that we use in this lecture, there are conjugate pri-
ors associated with the relevant parameters. These families of conjugate
priors are often viewed to be broad enough to handle most practical sit-
uations. As a result, conjugate priors are often used in practice.

• Since the posterior is a bona fide probability density function, some sum-
mary characteristic of this density provides an estimate for θ.

Definition 4. Let Y1, Y2, . . . , Yn be a random sample with likelihood function
L(y1, y2, . . . , yn|θ) and let θ have prior density g(θ). The posterior Bayes estimator
for t(θ) is given by

t̂(θ)B = E(t(θ)|Y1, Y2, . . . , Yn).

Example
Example 5. In Example 1, we found the posterior distribution of the Bernoulli
parameter p based on a beta prior with parameters (α, β). Find the Bayes esti-
mators for p and p(1− p). [Recall that p(1− p) is the variance of a Bernoulli
random variable with parameter p].

Solutions
In Example 1, we found the posterior density of p to be a beta density with

parameters α∗ = ∑ yi + α and β∗ = n−∑ yi + β:

g∗(p|y1, y2, . . . , yn) =
1

B (α∗, β∗)
pα∗−1 (1− p)β∗−1 , 0 < p < 1.

The estimate for p is the posterior mean of p. From our previous study of the
beta distribution, we know that

p̂B = E(p|y1, y2, . . . , yn) =
α∗

α∗ + β∗

=
∑ yi + α

∑ yi + α + n−∑ yi + β
=

∑ yi + α

n + α + β

Similarly,

̂[p(1− p)]B = E(p(1− p)|y1, y2, . . . , yn)

=
∫ 1

0
p(1− p)

1
B (α∗, β∗)

pα∗−1 (1− p)β∗−1 d p

=
B (α∗ + 1, β∗ + 1)

B (α∗, β∗)

=
Γ (α∗ + β∗)

Γ(α∗)Γ(β∗)
· Γ(α∗ + 1)Γ(β∗ + 1)

Γ (α∗ + β∗ + 2)

=
Γ (α∗ + β∗)

Γ(α∗)Γ(β∗)
· α∗β∗Γ(α∗)Γ(β∗)

(α∗ + β∗ + 1) (α∗ + β∗) Γ (α∗ + β∗)
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̂[p(1− p)]B =
α∗β∗

(α∗ + β∗) (α∗ + β∗)

=
(∑ yi + α) (n−∑ yi + β)

(n + α + β) (n + α + β + 1)

So, the Bayes estimators for p and p(1− p) are

p̂B =
∑ yi + α

n + α + β
, ̂[p(1− p)]B =

(∑ yi + α) (n−∑ yi + β)

(n + α + β + 1) (n + α + β)
.

Bayes Estimators and Sufficient Statistics

• We write p̂B in Example 5 as

p̂B =
∑ yi + α

n + α + β

=
n

n + α + β

∑ yi
n

+
α + β

n + α + β
· α

α + β

=
n

n + α + β
Y +

α + β

n + α + β

(
α

α + β

)
,

that is, it is the weighted mean of Y (MLE for p) and the prior distribution
associated to p.

• For larger sample size the weight of p decreases while the weight of sam-
ple mean increases. Since E(Y) 6= p, the Bayes estimator for p is biased.
Bayes estimators are biased in general.

• Estimators obtained in Example 5 are both functions of the sufficient
statistic ∑ Yi. This is no coincidence since a Bayes estimator is always
a function of a sufficient statistic, a result that follows from the factoriza-
tion criterion.

• If U is a sufficient statistic for θ based on a random sample Y1, Y2, . . . ,
Yn, then

L(y1, y2, . . . , yn|θ) = k(u, θ)h(y1, y2, . . . , yn),

where k(u, θ) is a function only of u and θ, and h(y1, y2, . . . , yn) does not
depend on θ.

• In addition [6], the function k(u, θ) can (but need not) be chosen to be
the probability mass or density function of the statistic U. In accord with
the notations in this chapter, we write the conditional density of U|θ as
k(u|θ).
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• Then, because h(y1, y2, . . . , yn) is not a function of θ,

g∗(θ|y1, y2, . . . , yn) =
L(y1, y2, . . . , yn|θ)g(θ)

∞∫
−∞

L(y1, y2, . . . , yn|θ)g(θ)d θ

=
k(u|θ)h(y1, y2, . . . , yn)g(θ)

∞∫
−∞

k(u|θ)h(y1, y2, . . . , yn)g(θ)d θ

=
k(u|θ)g(θ)

∞∫
−∞

k(u|θ)g(θ)d θ

.

• Therefore, in cases where the distribution of a sufficient statistic U is
known, the posterior can be determined by using the conditional den-
sity of U|θ.

Example
Example 6. Let Y1, Y2, . . . , Yn denote a random sample from a normal pop-
ulation with unknown mean µ and known variance σ2

o . The conjugate prior
distribution for µ is normal with known meand η and known variance δ2. Find
the posterior distribution and the Bayes estimator for µ.

Solution
Since U = ∑ Yi is a sufficient statistics for µ şi and is N(nµ, nσ2

o ) distributed,

L(u|µ) = 1√
2πnσ2

o
exp

[
1

2nσ2
o
(u− nµ)2

]
, µ ∈ R,

and the joint density of U and µ is

f (u, µ) = L(u|µ)g(µ)

=
1√

2πnσ2
o
√

2πδ2
exp

[
− 1

2nσ2
o
(u−nµ)2− 1

2δ2 (µ−η)2
]

, u,µ∈R.

We rewrite the exponent as:

− 1
2nσ2

o
(u− nµ)2 − 1

2δ2 (µ− η)2

= − 1
2nσ2

o δ2

[
δ2 (u− nµ)2 + nσ2

o (µ− η)2
]

=− 1
2nσ2

o δ2

[
n2µ2δ2+nµ2σ2

o−2nuµδ2−2nµησ2
o +nη2σ2

o +u2δ2
]

=− 1
2nσ2

o δ2

[
n
(

σ2
o +nδ2

)
µ2−2n

(
uδ2+ησ2

o

)
µ+nη2σ2

o +u2δ2
]
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= − 1
2σ2

o δ2

[(
σ2

o + nδ2
)

µ2 − 2
(

uδ2 + ησ2
o

)
µ
]

− 1
2nσ2

o δ2

[
nη2σ2

o + u2δ2
]

= −nδ2 + σ2
o

2σ2
o δ2

[
µ2 − 2

uδ2 + ησ2
o

nδ2 + σ2
o

µ +

(
uδ2 + ησ2

o
nδ2 + σ2

o

)2]

− 1
2nσ2

o δ2

[
nη2σ2

o + u2δ2 −
(

uδ2 + ησ2
o

nδ2 + σ2
o

)2]
.

Finally:

− 1
2nσ2

o
(u− nµ)2 − 1

2δ2 (µ− η)2 =

− nδ2 + σ2
o

2σ2
o δ2

(
µ− uδ2 + ησ2

o
nδ2 + σ2

o

)2

− 1
2 (nδ2 + σ2

o )
(u− nη)2 .

Therefore,

f (u, µ)=
1√

2πnσ2
o
√

2πδ2
exp

[
− 1

2nσ2
o
(u−nµ)2− 1

2δ2 (µ−η)2
]

=
1√

2πnσ2
o
√

2πδ2
exp

[
−nδ2 + σ2

o
2σ2

o δ2

(
µ− uδ2 + ησ2

o
nδ2 + σ2

o

)2]
·

exp
[
− 1

2 (nδ2 + σ2
o )

(u− nη)2
]

and

m(u) =

e
− 1

2(nδ2+σ2
o )

(u−nη)2

√
2πnσ2

o
√

2πδ2

∞∫
−∞

exp

[
−nδ2 + σ2

o
2σ2

o δ2

(
µ− uδ2 + ησ2

o
nδ2 + σ2

o

)2]
d µ

=
e
− 1

2(nδ2+σ2
o )

(u−nη)2

√
2πn (nδ2 + σ2

o )

∞∫
−∞

exp
[
− nδ2+σ2

o
2σ2

o δ2

(
µ− uδ2+ησ2

o
nδ2+σ2

o

)2
]

d µ√
2πnσ2

o δ2

nδ2+σ2
o

.

The above integral is the integral of a normal pdf; its integral is 1. The marginal
density of U is N(nη, n2δ2 + nσ2

o ). Further, the posterior density of µ given
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U = u is

g∗(µ|u) = f (u, µ)

m(u)

=
1√
2πσ2

o
nδ2+σ2

o

exp

[
−nδ2 + σ2

o
2σ2

o δ2

(
µ− uδ2 + ησ2

o
nδ2 + σ2

o

)2]
,

that is normal with mean and variance

µ∗ =
uδ2 + ησ2

o
nδ2 + σ2

o
, σ∗2 =

σ2
o δ2

nδ2 + σ2
o

.

It follows the Bayesian estimator for µ is

µ̂B =
δ2U + σ2η

nδ2 + σ2
o

=
nδ2

nδ2 + σ2
o

Y +
σ2

nδ2 + σ2
o

η.

Weighted mean of MLE, Y and prior mean η. If n increases, the weight of Y
increases, while the weight of η decreases.

5 Bayesian Credible Intervals

Bayesian Credible Intervals

• In the Bayesian context, the parameter θ is a random variable with poste-
rior density function g∗(θ). If we consider the interval (a, b), the posterior
probability that the random variable θ is in this interval is

P∗(a ≤ θ ≤ b) =
∫ b

a
g∗(θ)d θ

If the posterior probability P∗(a ≤ θ ≤ b) = 1− α, we said that (a, b) is a
100(1− α)% credible interval for θ.

Example 7. A manufacturer of gunpowder has developed a new powder, which
was tested in eight shells. The resulting muzzle velocities, in feets per second,

were as follows: 3005 2925 2935 2965
2995 3005 2937 2905

Find a 95% confidence interval

for the true average velocity for shells of this type if muzzle velocities are ap-
proximately normally distributed. The manufacturer claims that µ ≥ 3280.84
feet/s. Do the sample data provide sufficient evidence to contradict the manu-
facturer’s claim at 0.025 level of significance?

Solution. See bayes/ bulletsfps. pdf .
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Example
In Example 7, that muzzle velocities were normally distributed with un-

known mean µ and unknown variance σ2. Suppose we wish to find a credi-
cle Bayes interval for µ and the muzzle velocities are with a high probabil-
ity within şi credem că 30 feet/s of their mean µ. Since for a normal popu-
lation P(µ − 2σ ≤ X ≤ µ + 2σ), it is reasonable to assume that the distri-
bution of muzzle velocities is N(µ, σ2

o ) such that 2σo = 30, i.e. σ2
o = 225.

If, prior to observing any data, we believed that there was a high probabil-
ity that µ ∈ (2700, 2900), we might choose to use a conjugate normal prior for
µ, N(η, δ2) such that η − 2δ = 2700 and η + 2δ = 2900, i.e. η = 2800 and
δ2 = 502 = 2500. Note that we have assumed considerably more knowledge
of muzzle velocities than we did in Example 7 where we assumed only the
normality (with unknown variance). To use the additional information we will
use the initial sample. Use the general form for the posterior density for µ|u
developed in Example 6 to give a 95% credible interval for µ.

Solution
This is a special case of Example 6 with

n = 8, u = ∑ yi = 23672, σ2
0 = 225, η = 2800, δ2 = 2500.

In Example 6, we have proven that the posterior density of µ|u is N(η∗, δ∗2)
where

η∗ =
uδ2 + ησ2

o
nδ2 + σ2

o
=

2500 · 23672 + 2800 · 225
8 · 2500 + 225

= 2957.23

δ∗2 =
σ2

o δ2

nδ2 + σ2
o
=

225 · 2500
8 · 2500 + 225

= 27.81.

Remind that for W ∼ N(µW , σ2
W) we have

P(µW + zα/2σW ≤W ≤ µW + z1−α/2σW) = 1− α.

It follows that a 95% credible interval for µ is

(η∗ − 1.96δ∗, η∗ + 1.96δ∗) = (2946.89, 2967.57).

Example

Example 8. If Y1, Y2, . . . , Yn is a random sample from an exponentially distributed
population with density f (y|θ) = θe−θy, 0 < y and the conjugate gamma prior
(with parameters α and β) for θ was employed, then the posterior density for
θ is a gamma density with parameters α∗ = n + α and β∗ = β/(β ∑ yi + 1).
Assume that an analyst chose α = 3 and β = 5 as appropriate parameter val-
ues for the prior and that a sample of size n = 10 yielded that ∑ yi = 1.26.
Construct 90% credible intervals for θ and the population mean µ = 1/θ.
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Solution
In this Example

n = 10, u = ∑ yi = 1.26, α = 3, β = 5.

The posterior density of θ is a gamma density with α∗ and β∗ given by

α∗ = n + α = 13

β∗ =
β

β ∑ y1 + 1
=

5
5 · 1.26 + 1

= 0.685.

We will find two values a and b such that

P∗(a ≤ θ ≤ b) = .90.

This (a, b) will be a 90% credible interval for θ. Further, since

a ≤ θ ≤ b⇐⇒ 1/b ≤ 1/θ ≤ 1/a,

We need the 0.05 and 0.95 quantiles of γ(α∗, β∗). See Bayes/ gammaBayes. pdf

6 Bayesian Tests of Hypotheses

Bayesian Tests of Hypotheses

• Tests of hypotheses can also be approached from a Bayesian perspective.

• If we are interested in testing that the parameter θ lies in one of two sets of
values, Ω0 and Ωa, we can use the posterior distribution of θ to calculate
the posterior probability that θ is in each of these sets of values.

• When testing H0 : θ ∈ Ω0 versus Ha : θ ∈ Ωa, one often-used approach
is to compute the posterior probabilities P∗(θ ∈ Ω0) and P∗(θ ∈ Ωa) and
accept the hypothesis with the higher posterior probability. That is, for
testing H0 : θ ∈ Ω0 versus Ha : θ ∈ Ωa,

accept H0 if P∗(θ ∈ Ω0) > P∗(θ ∈ Ωa),

accept Ha if P∗(θ ∈ Ωa) > P∗(θ ∈ Ω0).

Example
Example 9. In Example 14, we obtained a 95% credible interval for the mean
muzzle velocity associated with shells prepared with a reformulated gunpow-
der. We assumed that the associated muzzle velocities are normally distributed
with mean µ and variance σ2

o = 225 and that a reasonable prior density for
µ is normal with mean η = 2800 and variance δ2 = 2500. Use the data
from Example 7 to obtain that the posterior density for µ is normal with mean
η∗ = 2957.23 and standard deviation δ∗ = 5.274. Conduct the Bayesian test for

H0 : µ ≤ 2950 vs. Ha : µ > 2950.
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Solution
In this case, if Z has a standard normal distribution,

P∗(θ ∈ Ω0) = P∗(µ ≤ 2950)

= P
(

Z ≤ 2950− η∗

δ∗

)
= P

(
Z ≤ 2950− 2957.23

5.274

)
= P(Z ≤ −1. 370 9) = 0.0853.

and P∗(θ ∈ Ωa) = P∗(µ > 2950) = 1− P∗(µ ≤ 2950) = 1− 0.0853 = 0.914 7.
Thus, we see that the posterior probability of Ha is much larger than the poste-
rior probability of H0 and our decision is to accept Ha : µ > 2950.

Comments

• Again, we note that if a different analyst uses the same data to conduct
a Bayesian test for the same hypotheses but different values for any of η,
δ2 şi σ2

o , she will obtain posterior probabilities of the hypotheses that are
different than those obtained in Example 9.

• Thus, different analysts with different choices of values for the prior pa-
rameters might reach different conclusions.

• In the frequentist settings, the parameter θ has a fixed but unknown
value, and any hypothesis is either true or false. If θ ∈ Ω0, then the
null hypothesis is certainly true (with probability 1), and the alternative
is certainly false.

• The only way we could know whether or not θ ∈ Ω0 is if we knew the true
value of θ. If this were the case, conducting a test of hypotheses would
be superfluous. For this reason, the frequentist makes no reference to the
probabilities of the hypotheses but focuses on the probability of a type I
error, α, and the power of the test, power(θ) = 1− β(θ).

• Conversely, the frequentist concepts of size and power are not of concern
to an analyst using a Bayesian test.

Example

Example 10. In Example 8, we obtained credible intervals for θ and the popu-
lation mean µ based on a random sample Y1, Y2, . . . , Yn, from an exponentially
distributed population with density f (y|θ) = θe−θy, 0 < y. Using a conjugate
gamma prior for θ with parameters α = 3 and β = 5, we obtained that the pos-
terior density for θ is a gamma density with parameters α∗ = 13 and β∗ = .685.
Conduct a Bayesian test for

H0 : µ > .12 vs Ha : µ ≤ .12.
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Solution
Since the mean of the exponential distribution is µ = 1/θ, the hypotheses

are equivalent to H0 : θ < 1/0.12 = 8.333 versus Ha : θ ≥ 0. Because the
posterior density for θ is a gamma density with parameters α∗ = 13 and β∗ =
.685, then

P∗(θ ∈ Ω0) = P∗(θ < 0.833)
P∗(θ ∈ Ωa) = P∗(θ ≥ 0.833).

In R Bayes/ Bayestestgamma. pdf . The posterior probability of Ha is some-
what larger than the posterior probability of H0. It is up to the analyst to de-
cide whether the probabilities are sufficiently different to merit the decision to
accept Ha : µ ≤ 0.12.

7 An Alternative Method

An Alternative Method

• There is a shortcut to finding the all-important posterior density for θ.
If L(y1, y2, . . . , yn|θ) denotes the conditional likelihood of the data and θ
has a continuous prior density g(θ), then the posterior density of θ is

g∗(θ|y1, y2, . . . , yn) =
L(y1, y2, . . . , yn|θ)g(θ)

∞∫
−∞

L(y1, y2, . . . , yn|θ)g(θ)d θ

.

• Notice that the denominator on the right hand side of the expression de-
pends on y1, y2, . . . , yn, but does not depends on θ. (Definite integration
with respect to θ produces a result that is free of θ.) Realizing that, with
respect to θ, the denominator is a constant, we can write

g∗(θ|y1, y2, . . . , yn) = c(y1, y2, . . . , yn)L(y1, y2, . . . , yn|θ)g(θ),

where
c(y1, y2, . . . , yn) =

1
∞∫
−∞

L(y1, y2, . . . , yn|θ)g(θ)d θ

does not depend on θ.

• Further, notice that, because the posterior density is a bona fide density
function, the quantity c(y1, y2, . . . , yn) must be such that

∞∫
−∞

g∗(θ|y1, y2, . . . , yn)d θ =

c(y1, y2, . . . , yn)

∞∫
−∞

L(y1, y2, . . . , yn|θ)g(θ)d θ = 1

15
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• Finally, we see that the posterior density is proportional to the product of
the conditional likelihood of the data and the prior density for θ:

g∗(θ|y1, y2, . . . , yn) ∝ L(y1, y2, . . . , yn|θ)g(θ),

where the proportionally constant is chosen so that the integral of the
posterior density function is 1.

• We illustrate by reconsidering Example 1.

Example 11. Let Y1, Y2, . . . , Yn denote a random sample from a Bernoulli distri-
bution where P(Yi = 1) = p and P(Yi = 0) = 1− p and assume that the prior
distribution for p is beta(α, β). Find the posterior distribution for p.

Solution

• As before,

L(y1, y2, . . . , yn|p)g(p) = p(y1, y2, . . . , yn|p)g(p)

= p∑ yi (1− p)n−∑ yi
pα−1(1− p)β−1

B(α, β)
,

g∗(p|y1, y2, . . . , yn) ∝ p∑ yi+α−1(1− p)n−∑ yi+β−1.

• From the above, we recognize that the resultant posterior for p must be
beta with parameters α∗ = ∑ yi + α şi β∗ = n−∑ yi + β.

• Advantage of proportionality method: less work.

• Disadvantage? We never exhibited the predictive mass function for the
data and lost the opportunity to critique the Bayesian model.
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