Problem 1 (Entropy rates of Markov chains)
(a) Find the entropy rate of the two-state Markov chain with transition matrix
\[P = \begin{bmatrix} 1 - p_{01} & p_{01} \\ p_{10} & 1 - p_{10} \end{bmatrix}. \]
(b) What values of \(p_{01}, p_{10} \) maximize the entropy rate?
(c) Find the entropy rate of the two-state Markov chain with transition matrix
\[P = \begin{bmatrix} 1 - p & p \\ 1 & 0 \end{bmatrix}. \]
(d) Find the maximum value of the entropy rate of the Markov chain of part (c). We expect that the maximizing value of \(p \) should be less than \(1/2 \), since the 0 state permits more information to be generated than the 1 state.
(e) Let \(N(t) \) be the number of allowable state sequences of length \(t \) for the Markov chain of part (c). Find \(N(t) \) and calculate
\[H_0 = \lim_{t \to \infty} \frac{1}{t} \log N(t). \]
Hint: Find a linear recurrence that expresses \(N(t) \) in terms of \(N(t-1) \) and \(N(t-2) \). Why is \(H_0 \) an upper bound on the entropy rate of the Markov chain? Compare \(H_0 \) with the maximum entropy found in part (d).

Solution.

(a) The stationary distribution is easily calculated.
\[\mu_0 = \frac{p_{10}}{p_{01} + p_{10}}, \quad \mu_1 = \frac{p_{01}}{p_{01} + p_{10}} \]
Therefore the entropy rate is
\[H(X_2|X_1) = \mu_0 H(p_{01}) + \mu_1 H(p_{10}) = \frac{p_{10}H(p_{01}) + p_{01}H(p_{10})}{p_{01} + p_{10}}. \]
(b) The entropy rate is at most 1 bit because the process has only two states. This rate can be achieved if (and only if) \(p_{01} = p_{10} = 1/2 \), in which case the process is actually i.i.d. with \(P(X_i = 0) = Pr(X_i = 1) = 1/2 \).

(c) As a special case of the general two-state Markov chain, the entropy rate is
\[
H(X_2|X_1) = \mu_0 H(p) + \mu_1 H(1) = \frac{H(p)}{p+1}.
\]

(d) By straightforward calculus, we find that the maximum value of \(H(X) \) of part (c) occurs for \(p = (3 - \sqrt{5})/2 = 0.382 \). The maximum value is
\[
H(p) = H(1 - p) = H\left(\frac{\sqrt{5} - 1}{2}\right) = 0.694.
\]

Note that \((\sqrt{5} - 1)/2 = 0.618\) is (the reciprocal of) the Golden Ratio.

(e) The Markov chain of part (c) forbids consecutive ones. Consider any allowable sequence of symbols of length \(t \). If the first symbol is 1, then the next symbol must be 0; the remaining \(N(t-2) \) symbols can form any allowable sequence. If the first symbol is 0, then the remaining \(N(t-1) \) symbols can be any allowable sequence. So the number of allowable sequences of length \(t \) satisfies the recurrence
\[
N(t) = N(t-1) + N(t-2), \quad N(1) = 2, N(2) = 3
\]
(The initial conditions are obtained by observing that for \(t = 2 \) only the sequence 11 is not allowed. We could also choose \(N(0) = 1 \) as an initial condition, since there is exactly one allowable sequence of length 0, namely, the empty sequence.) The sequence \(N(t) \) grows exponentially, that is, \(N(t) \approx c\lambda^t \). In fact
\[
N(t) = \left(\frac{-3\sqrt{5} + 1}{10} + \frac{1}{2}\right) \left(\frac{-\sqrt{5} + 1}{2}\right)^t + \left(\frac{1}{2} + 3\sqrt{5}\right) \left(\frac{\sqrt{5} + 1}{2}\right)^t.
\]
\[
H_0 = \lim_{t \to \infty} \frac{1}{t} \log N(t) = \lim_{t \to \infty} \frac{1}{t} \log_2 N(t) = \log_2 \frac{1 + \sqrt{5}}{2}.
\]

Problem 2 (Maximum entropy process) A discrete memoryless source has alphabet \(\{1, 2\} \) where the symbol 1 has duration 1 and the symbol 2 has duration 2. The probabilities of 1 and 2 are \(p_1 \) and \(p_2 \), respectively. Find the value of \(p_1 \) that maximizes the source entropy per unit time \(H(X)/E(l(X)) \). What is the maximum value \(H \)?
Solution. The entropy per symbol of the source is
\[
H(p_1) = -p_1 \log p_1 - (1 - p_1) \log(1 - p_1).
\]
and the average symbol duration (or time per symbol) is
\[
T(p_1) = 1p_1 + 2p_2 = p_1 + 2(1 - p_1) = 2 - p_1 = 1 + p_2.
\]
Therefore the source entropy per unit time is
\[
f(p_1) = \frac{H(p_1)}{T(p_1)} = \frac{-p_1 \log p_1 - (1 - p_1) \log(1 - p_1)}{2 - p_1}
\]
Since \(f(0) = f(1) = 0\), the maximum value of \(f(p_1)\) must occur for some point \(p_1\) such that \(0 < p_1 < 1\) and \(\frac{df}{dp_1} = 0\).

\[
\frac{d}{dp_1} \left(\frac{-p_1 \log p_1 - (1 - p_1) \log(1 - p_1)}{2 - p_1} \right) = \frac{1}{(p_1 - 2)^2} \left(\ln (1 - p_1) - 2 \ln p_1 \right) = 0
\]

\[1 - p_1 = \frac{p_1^2}{2}, \quad \text{Solution is: } \frac{1}{2} \sqrt{5} - \frac{1}{2}, -\frac{1}{2} \sqrt{5} - \frac{1}{2}. \text{The corresponding entropy per unit time is}
\]
\[
f(p_1) = \frac{-\left(1 + \frac{p_1^2}{2}\right) \log p_1}{1 + \frac{p_1^2}{2}} = -\log p_1 = 0.69424 \text{ bits.}
\]

Problem 3 (Initial conditions) Show, for a Markov chain, that
\[
H(X_0 | X_n) \geq H(X_0 | X_{n-1}).
\]
Thus initial conditions \(X_0\) become more difficult to recover as the future \(X_n\) unfolds.

Solution. For a Markov chain, by the data processing theorem, we have
\[
I(X_0; X_{n-1}) \geq I(X_0; X_n).
\]
Therefore
\[
H(X_0) - H(X_0 | X_{n-1}) \geq H(X_0) - H(X_0 | X_n),
\]
i.e. \(H(X_0 | X_n)\) increases with \(n\).