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October 2012

1 Entropy Rates of a Stochastic Process

Entropy rates

• The AEP states that nH(X) bits suffice on the average for n i.i.d. RVs

• What for dependent RVs?

• For stationary processes H(X1, X2, . . . , Xn) grows (asymptotically) lin-
early with n at a rate H(X ) – the entropy rate of the process

• A stochastic process {Xi}i∈I is an indexed sequence of random variables,
Xi : S→ X is a RV ∀i ∈ I

• If I ⊆ N, {X1, X2, . . . } is a discrete stochastic process, called also a discrete
information source.

• A discrete stochastic process is characterized by the joint probability mass
function

P((X1, X2, . . . , Xn) = (x1, x2, . . . , xn)) = p(x1, x2, . . . , xn)

where (x1, x2, . . . , xn) ∈ X n.

1.1 Markov chains

Markov chains

Definition 1. A stochastic process is said to be stationary if the joint distribution
of any subset of the sequence of random variables is invariant with respect to
shifts in the time index

P(X1 = x1, . . . , Xn = xn) = P(X1+` = x1, . . . , Xn+` = xn) (1)

∀n, ` and ∀x1, x2, . . . , xn ∈ X .
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Definition 2. A discrete stochastic process {X1, X2, . . . } is said to be a Markov
chain or Markov process if for n = 1, 2, . . .

P (Xn+1 = xn+1|Xn = xn, Xn−1 = xn−1, . . . , X1 = x1)

= P(Xn+1 = xn+1|Xn = xn), x1, x2, . . . , xn, xn+1 ∈ X . (2)

The joint pmf can be written as

p(x1, x2, . . . , xn) = p(x1)p(x2|x1) . . . p(xn|xn−1). (3)

Definition 3. A Markov chain is said to be time invariant (time homogeneous) if
the conditional probability p(xn+1|xn) does not depend on n; that is for n =
1, 2, . . .

P (Xn+1 = b|Xn = a) = P(X2 = b|X1 = a), ∀a, b ∈ X . (4)

This property is assumed unless otherwise stated.

• {Xi}Markov chain, Xn is called the state at time n

• A time-invariant Markov chain is characterized by its initial state and a
probability transition matrix P = [Pij], i, j = 1, . . . , m, where Pij = P(Xn+1 =
j|Xn = i).

• The Markov chain {Xn} is irreducible if it is possible to go from any state
to another with a probability > 0

• The Markov chain {Xn} is aperiodic if ∀ state a, the possible times to go
from a to a have highest common factor = 1.

• Markov chains are often described by a directed graph where the edges
are labeled by the probability of going from one state to another.

• p(xn) - pmf of the random variable at time n

p(xn+1) = ∑
xn

p(xn)Pxnxn+1 (5)

• A distribution on the states such that the distribution at time n + 1 is the
same as the distribution at time n is called a stationary distribution - so
called because if the initial state of a Markov chain is drawn according to
a stationary distribution, the Markov chain form a stationary process.

• If the finite-state Markov chain is irreducible and periodic, the stationary
distribution is unique, and from any starting distribution, the distribu-
tion of Xn tends to a stationary distribution as n→ ∞.

Example 4. Consider a two-state Markov chain with a probability transition
matrix

P =

[
1− α α

β 1− β

]
(Figure 1)

2



Figure 1: Two-state Markov chain

The stationary probability is the solution of µP = µ or (I − PT)µT = 0. We
add the condition µ1 + µ2 = 0.

The solution is
µ1 =

β

α + β
, µ2 =

α

α + β
.

Click here for a Maple solution Markovex1.html. The entropy of Xn is

H(Xn) = H
(

β

α + β
,

α

α + β

)
.

1.2 Entropy rate

Entropy rate

Definition 5. The entropy rate of a stochastic process {Xi} is defined by

H(X ) = lim
n→∞

1
n

H (X1, . . . , Xn) (6)

when the limit exists.

Examples

1. Typewriter - m equally likely output letters; he(she) can produce mn se-
quences of length n, all of them equally likely. H (X1, . . . , Xn) = log mn ,
and the entropy rate is H(X ) = log m bits per symbol.

2. X1, X2, . . . i.i.d. RVs

H(X ) = lim
n→∞

H (X1, . . . , Xn)

n
= lim

n→∞

nH(X1)

n
= H (X1) .

3. X1, X2, . . . independent, but not identically distributed RVs

H (X1, . . . , Xn) =
n

∑
i=1

H(Xi)

It is possible that 1
n ∑ H(xi) does not exists
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Definition 6.
H′(X ) = lim

n→∞
H (Xn|Xn−1, Xn−2, . . . X1) . (7)

H(X ) is entropy per symbol of the n RVs; H′(X ) is the conditional entropy
of the last RV given the past.

For stationary processes both limits exist and are equal.

Lemma 7. For a stationary stochastic process, H(Xn|Xn−1, . . . , X1) is nonincreasing
in n and has a limit H′(X ).

Proof.

H(Xn+1|X1, X2, . . . , Xn) ≤ H(Xn+1|Xn, . . . , X2) conditioning
= H(Xn|Xn−1, . . . , X1). stationarity

(H(Xn|Xn−1, . . . , X1))n is decreasing and nonnegative, so it has a limit H′(X ).

Lemma 8 (Cesáro). If an → a and bn = 1
n ∑n

i=1 ai then bn → a.

Theorem 9. For a stationary stochastic process H(X ) (given by (6)) and H′(X )
(given by (7)) exist and

H(X ) = H′(X ). (8)

Proof. By the chain rule,

H (X1, . . . , Xn)

n
=

1
n

n

∑
i=1

H(Xi|Xi−1, . . . , X1).

But,

H(X ) = lim
n→∞

H (X1, . . . , Xn)

n

= lim
n→∞

1
n

n

∑
i=1

H(Xi|Xi−1, . . . , X1)

= lim
n→∞

H(Xn|Xn−1, . . . , X1) (Lemma 8)

= H′(X ) (Lemma 7)

1.3 Entropy rate for Markov chain

Entropy rate for Markov chain

• For a stationary Markov chain, the entropy rate is given by

H (X ) = H′ (X ) = lim H (Xn|Xn−1, . . . , X1) = lim H (Xn|Xn−1)

= H(X2|X1), (9)

where the conditional entropy is calculated using the given stationary
distribution.

4



• The stationary distribution µ is the solution of the equations

µj = ∑
i

µiPij, ∀j.

• Expression of conditional entropy:

Theorem 10. {Xi} stationary Markov chain with stationary distribution µ and tran-
sition matrix P. Let X1 ∼ µ. then the entropy rate is

H(X ) = −∑
i

∑
j

µiPij log Pij. (10)

Proof. H(X ) = H(X2|X1) = ∑i µi

(
−∑j Pij log Pij

)
.

Example 11 (Two-state Markov chain). The entropy rate of the two-state Markov
chain in Figure 1 is

H(X ) = H(X2|X1) =
β

α + β
H(α) +

α

α + β
H(β).

Remark. If the Markov chain is irreducible and aperiodic, it has a unique
stationary distribution on the states, and any initial distribution tends to the
stationary distribution as n → ∞. In this case, even though the initial distri-
bution is not the stationary distribution, the entropy rate, which is defined in
terms of long-term behavior, is H(X ), as defined in (9) and (10).

1.4 Functions of Markov chains

Functions of Markov chains

• X1, X2, . . . , Xn, . . . stationary Markov chain, Yi = φ(Xi), H(Y) =?

• in many cases Y1, Y2, . . . , Yn, . . . is not a Markov chain, but it is stationary

• lower bound

Lemma 12.
H(Yn|Yn−1, . . . , Y2, X1) ≤ H(Y). (11)

Proof. For k = 1, 2, . . .

H(Yn|Yn−1, . . . , Y2, X1)
(a)
= H(Yn|Yn−1, . . . , Y2, Y1, X1)

(b)
= H(Yn|Yn−1, . . . , Y2, Y1, X1, X0, X−1, . . . , X−k)

(c)
= H (Yn|Yn−1, . . . , Y2, Y1, X1, X0, X−1, . . . ,
X−k, Y0, . . . , Y−k)

(d)
≤ H (Yn|Yn−1, . . . , Y2, Y1, Y0, . . . , Y−k)

(e)
= H (Yn+k+1|Yn+k, . . . , Y1) ,
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(a) follows from the fact that Y1 = φ(X1), (b) from the Markovity, (c) from
Yi = φ(Xi), (d) conditioning reduces entropy, (e) stationarity.

Proof - continuation. Since inequality is true for all k, in the limit

H(Yn|Yn−1, . . . , Y2, X1) ≤ lim
k

H (Yn+k+1|Yn+k, . . . , Y1)

= H(Y).

Lemma 13.

H(Yn|Yn−1, . . . , Y2, X1)− H(Yn|Yn−1, . . . , Y2, Y1, X1)→ 0. (12)

Proof. Expression of interval length:

H(Yn|Yn−1, . . . , Y2, X1)− H(Yn|Yn−1, . . . , Y2, Y1, X1)

= I(X1; Yn|Yn−1, . . . , Y1).

By properties of mutual information,

I(X1; Y1, . . . , Yn) ≤ H(X1),

and I(X1; Y1, . . . , Yn) increases with n. Thus, lim I(X1; Y1, . . . , Yn) exists and

lim
n→∞

I(X1; Y1, . . . , Yn) ≤ H(X1).

Proof - continuation. By the chain rule

H(X1) ≥ lim
n→∞

I(X1; Y1, . . . , Yn)

= lim
n→∞

n

∑
i=1

I(X1; Yi|Yi−1, . . . , Y1)

=
∞

∑
i=1

I(X1; Yi|Yi−1, . . . , Y1)

The general term of the series must tend to 0

lim I (X1; Yn|Yn−1, . . . , Y1) = 0.

The last two lemmas imply

Theorem 14. X1, X2, . . . , Xn, . . . stationary Markov chain, Yi = φ(Xi)

H(Yn|Yn−1, . . . , Y1, X1) ≤ H(Y) ≤ H(Yn|Yn−1, . . . , Y1) (13)

and
lim H(Yn|Yn−1, . . . , Y1, X1) = H(Y) = lim H(Yn|Yn−1, . . . , Y1) (14)
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Hiden Markov models

• We could consider Yi to be a stochastic function of Xi

• X1, X2, . . . , Xn, . . . stationary Markov chain, Y1, Y2, . . . , Yn, . . . a new pro-
cess where Yi is drawn according to p(yi|xi), conditionally independent
of all the other Xj, j 6= i

p(xn, yn) = p(x1)
n−1

∏
i=1

p(xi+1|xi)
n

∏
i=1

p(yi|xi).

• Y1, Y2, . . . , Yn, . . . is called a hidden Markov model (HMM)

• Applied to speech recognition, handwriting recognition, and so on.

• The same argument as for functions of Markov chain works for HMMs.
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