Entropy Rates of a Stochastic Process

Best Achievable Data Compression

Radu Trîmbiţaş

October 2012

1 Entropy Rates of a Stochastic Process

Entropy rates

- The AEP states that nH(X) bits suffice on the average for n i.i.d. RVs
- What for dependent RVs?
- For stationary processes *H*(*X*₁, *X*₂, ..., *X*_n) grows (asymptotically) linearly with *n* at a rate *H*(*X*) the *entropy rate* of the process
- A stochastic process {X_i}_{i∈I} is an indexed sequence of random variables,
 X_i : S → X is a RV ∀i ∈ I
- If *I* ⊆ ℕ, {*X*₁, *X*₂,...} is a discrete stochastic process, called also a discrete information source.
- A discrete stochastic process is characterized by the joint probability mass function

 $P((X_1, X_2, \ldots, X_n) = (x_1, x_2, \ldots, x_n)) = p(x_1, x_2, \ldots, x_n)$

where $(x_1, x_2, ..., x_n) \in X^n$.

1.1 Markov chains

Markov chains

Definition 1. A stochastic process is said to be *stationary* if the joint distribution of any subset of the sequence of random variables is invariant with respect to shifts in the time index

$$P(X_1 = x_1, \dots, X_n = x_n) = P(X_{1+\ell} = x_1, \dots, X_{n+\ell} = x_n)$$
(1)

 $\forall n, \ell \text{ and } \forall x_1, x_2, \ldots, x_n \in \mathcal{X}.$

Definition 2. A discrete stochastic process $\{X_1, X_2, ...\}$ is said to be a *Markov chain* or *Markov process* if for n = 1, 2, ...

$$P(X_{n+1} = x_{n+1} | X_n = x_n, X_{n-1} = x_{n-1}, \dots, X_1 = x_1)$$

= $P(X_{n+1} = x_{n+1} | X_n = x_n), \quad x_1, x_2, \dots, x_n, x_{n+1} \in \mathcal{X}.$ (2)

The joint pmf can be written as

$$p(x_1, x_2, \dots, x_n) = p(x_1)p(x_2|x_1)\dots p(x_n|x_{n-1}).$$
(3)

Definition 3. A Markov chain is said to be *time invariant* (*time homogeneous*) if the conditional probability $p(x_{n+1}|x_n)$ does not depend on *n*; that is for n = 1, 2, ...

$$P(X_{n+1} = b | X_n = a) = P(X_2 = b | X_1 = a), \quad \forall a, b \in \mathcal{X}.$$
 (4)

This property is assumed unless otherwise stated.

- $\{X_i\}$ Markov chain, X_n is called the *state* at time n
- A time-invariant Markov chain is characterized by its initial state and a *probability transition matrix* $P = [P_{ij}], i, j = 1, ..., m$, where $P_{ij} = P(X_{n+1} = j | X_n = i)$.
- The Markov chain {*X_n*} is *irreducible* if it is possible to go from any state to another with a probability > 0
- The Markov chain {*X_n*} is *aperiodic* if ∀ state *a*, the possible times to go from *a* to *a* have highest common factor = 1.
- Markov chains are often described by a directed graph where the edges are labeled by the probability of going from one state to another.
- *p*(*x_n*) pmf of the random variable at time *n*

$$p(x_{n+1}) = \sum_{x_n} p(x_n) P_{x_n x_{n+1}}$$
(5)

- A distribution on the states such that the distribution at time n + 1 is the same as the distribution at time n is called a *stationary distribution* - so called because if the initial state of a Markov chain is drawn according to a stationary distribution, the Markov chain form a stationary process.
- If the finite-state Markov chain is irreducible and periodic, the stationary distribution is unique, and from any starting distribution, the distribution of *X_n* tends to a stationary distribution as *n* → ∞.

Example 4. Consider a two-state Markov chain with a probability transition matrix

$$P = \left[\begin{array}{cc} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{array} \right]$$

(Figure 1)

Figure 1: Two-state Markov chain

The stationary probability is the solution of $\mu P = \mu$ or $(I - P^T)\mu^T = 0$. We add the condition $\mu_1 + \mu_2 = 0$.

The solution is

$$\mu_1 = rac{eta}{lpha + eta}, \quad \mu_2 = rac{lpha}{lpha + eta}.$$

Click here for a Maple solution Markovex1.html. The entropy of X_n is

$$H(X_n) = H\left(\frac{\beta}{\alpha+\beta}, \frac{\alpha}{\alpha+\beta}\right)$$

1.2 Entropy rate

Entropy rate

Definition 5. The *entropy rate* of a stochastic process $\{X_i\}$ is defined by

$$H(\mathcal{X}) = \lim_{n \to \infty} \frac{1}{n} H(X_1, \dots, X_n)$$
(6)

when the limit exists.

Examples

- 1. Typewriter *m* equally likely output letters; he(she) can produce m^n sequences of length *n*, all of them equally likely. $H(X_1, ..., X_n) = \log m^n$, and the entropy rate is $H(\mathcal{X}) = \log m$ bits per symbol.
- 2. $X_1, X_2, ...$ i.i.d. RVs

$$H(\mathcal{X}) = \lim_{n \to \infty} \frac{H(X_1, \dots, X_n)}{n} = \lim_{n \to \infty} \frac{nH(X_1)}{n} = H(X_1).$$

3. X_1, X_2, \ldots independent, but not identically distributed RVs

$$H(X_1,\ldots,X_n) = \sum_{i=1}^n H(X_i)$$

It is possible that $\frac{1}{n} \sum H(x_i)$ does not exists

Definition 6.

$$H'(\mathcal{X}) = \lim_{n \to \infty} H(X_n | X_{n-1}, X_{n-2}, \dots X_1).$$
(7)

 $H(\mathcal{X})$ is entropy per symbol of the *n* RVs; $H'(\mathcal{X})$ is the conditional entropy of the last RV given the past.

For stationary processes both limits exist and are equal.

Lemma 7. For a stationary stochastic process, $H(X_n|X_{n-1},...,X_1)$ is nonincreasing in *n* and has a limit $H'(\mathcal{X})$.

Proof.

$$H(X_{n+1}|X_1, X_2, \dots, X_n) \le H(X_{n+1}|X_n, \dots, X_2)$$
 conditioning
= $H(X_n|X_{n-1}, \dots, X_1).$ stationarity

 $(H(X_n|X_{n-1},\ldots,X_1))_n$ is decreasing and nonnegative, so it has a limit $H'(\mathcal{X})$.

Lemma 8 (Cesáro). If $a_n \to a$ and $b_n = \frac{1}{n} \sum_{i=1}^n a_i$ then $b_n \to a$.

Theorem 9. For a stationary stochastic process $H(\mathcal{X})$ (given by (6)) and $H'(\mathcal{X})$ (given by (7)) exist and

$$H(\mathcal{X}) = \mathcal{H}'(\mathcal{X}). \tag{8}$$

Proof. By the chain rule,

$$\frac{H(X_1,\ldots,X_n)}{n} = \frac{1}{n} \sum_{i=1}^n H(X_i | X_{i-1},\ldots,X_1).$$

But,

$$H(\mathcal{X}) = \lim_{n \to \infty} \frac{H(X_1, \dots, X_n)}{n}$$

= $\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n H(X_i | X_{i-1}, \dots, X_1)$
= $\lim_{n \to \infty} H(X_n | X_{n-1}, \dots, X_1)$ (Lemma 8)
= $H'(\mathcal{X})$ (Lemma 7)

1.3 Entropy rate for Markov chain

Entropy rate for Markov chain

• For a stationary Markov chain, the entropy rate is given by

$$H(\mathcal{X}) = H'(\mathcal{X}) = \lim H(X_n | X_{n-1}, \dots, X_1) = \lim H(X_n | X_{n-1})$$

= $H(X_2 | X_1),$ (9)

where the conditional entropy is calculated using the given stationary distribution.

• The stationary distribution μ is the solution of the equations

$$\mu_j = \sum_i \mu_i P_{ij}, \; \forall j.$$

• Expression of conditional entropy:

Theorem 10. $\{X_i\}$ stationary Markov chain with stationary distribution μ and transition matrix P. Let $X_1 \sim \mu$. then the entropy rate is

$$H(\mathcal{X}) = -\sum_{i} \sum_{j} \mu_{i} P_{ij} \log P_{ij}.$$
 (10)

Proof. $H(\mathcal{X}) = H(X_2|X_1) = \sum_i \mu_i \left(-\sum_j P_{ij} \log P_{ij}\right).$

Example 11 (Two-state Markov chain). The entropy rate of the two-state Markov chain in Figure 1 is

$$H(\mathcal{X}) = H(X_2|X_1) = \frac{\beta}{\alpha+\beta}H(\alpha) + \frac{\alpha}{\alpha+\beta}H(\beta).$$

Remark. If the Markov chain is irreducible and aperiodic, it has a unique stationary distribution on the states, and any initial distribution tends to the stationary distribution as $n \to \infty$. In this case, even though the initial distribution is not the stationary distribution, the entropy rate, which is defined in terms of long-term behavior, is $H(\mathcal{X})$, as defined in (9) and (10).

1.4 Functions of Markov chains

Functions of Markov chains

- $X_1, X_2, \ldots, X_n, \ldots$ stationary Markov chain, $Y_i = \phi(X_i), H(\mathcal{Y}) = ?$
- in many cases $Y_1, Y_2, \ldots, Y_n, \ldots$ is not a Markov chain, but it is stationary
- lower bound

Lemma 12.

$$H(Y_n|Y_{n-1},\ldots,Y_2,X_1) \le H(\mathcal{Y}). \tag{11}$$

Proof. For k = 1, 2, ...

$$H(Y_{n}|Y_{n-1},...,Y_{2},X_{1}) \stackrel{(a)}{=} H(Y_{n}|Y_{n-1},...,Y_{2},Y_{1},X_{1})$$

$$\stackrel{(b)}{=} H(Y_{n}|Y_{n-1},...,Y_{2},Y_{1},X_{1},X_{0},X_{-1},...,X_{-k})$$

$$\stackrel{(c)}{=} H(Y_{n}|Y_{n-1},...,Y_{2},Y_{1},X_{1},X_{0},X_{-1},...,X_{-k})$$

$$\stackrel{(d)}{\leq} H(Y_{n}|Y_{n-1},...,Y_{2},Y_{1},Y_{0},...,Y_{-k})$$

$$\stackrel{(e)}{=} H(Y_{n+k+1}|Y_{n+k},...,Y_{1}),$$

(a) follows from the fact that $Y_1 = \phi(X_1)$, (b) from the Markovity, (c) from $Y_i = \phi(X_i)$, (d) conditioning reduces entropy, (e) stationarity.

Proof - continuation. Since inequality is true for all *k*, in the limit

$$H(Y_n|Y_{n-1},\ldots,Y_2,X_1) \leq \lim_k H(Y_{n+k+1}|Y_{n+k},\ldots,Y_1)$$

= $H(\mathcal{Y}).$

Lemma 13.

$$H(Y_n|Y_{n-1},\ldots,Y_2,X_1) - H(Y_n|Y_{n-1},\ldots,Y_2,Y_1,X_1) \to 0.$$
(12)

Proof. Expression of interval length:

$$H(Y_n|Y_{n-1},\ldots,Y_2,X_1) - H(Y_n|Y_{n-1},\ldots,Y_2,Y_1,X_1) = I(X_1;Y_n|Y_{n-1},\ldots,Y_1).$$

By properties of mutual information,

$$I(X_1;Y_1,\ldots,Y_n) \leq H(X_1),$$

and $I(X_1; Y_1, ..., Y_n)$ increases with *n*. Thus, $\lim I(X_1; Y_1, ..., Y_n)$ exists and

$$\lim_{n\to\infty} I(X_1;Y_1,\ldots,Y_n) \leq H(X_1).$$

Proof - continuation. By the chain rule

$$H(X_1) \ge \lim_{n \to \infty} I(X_1; Y_1, \dots, Y_n)$$

=
$$\lim_{n \to \infty} \sum_{i=1}^n I(X_1; Y_i | Y_{i-1}, \dots, Y_1)$$

=
$$\sum_{i=1}^\infty I(X_1; Y_i | Y_{i-1}, \dots, Y_1)$$

The general term of the series must tend to 0

$$\lim I(X_1;Y_n|Y_{n-1},\ldots,Y_1)=0.$$

The last two lemmas imply

Theorem 14. $X_1, X_2, \ldots, X_n, \ldots$ stationary Markov chain, $Y_i = \phi(X_i)$

$$H(Y_n|Y_{n-1},...,Y_1,X_1) \le H(\mathcal{Y}) \le H(Y_n|Y_{n-1},...,Y_1)$$
(13)

and

$$\lim H(Y_n|Y_{n-1},\ldots,Y_1,X_1) = H(\mathcal{Y}) = \lim H(Y_n|Y_{n-1},\ldots,Y_1)$$
(14)

Hiden Markov models

- We could consider *Y_i* to be a stochastic function of *X_i*
- X₁, X₂,..., X_n,... stationary Markov chain, Y₁, Y₂,..., Y_n,... a new process where Y_i is drawn according to p(y_i|x_i), conditionally independent of all the other X_j, j ≠ i

$$p(x^n, y^n) = p(x_1) \prod_{i=1}^{n-1} p(x_{i+1}|x_i) \prod_{i=1}^n p(y_i|x_i).$$

- $Y_1, Y_2, \ldots, Y_n, \ldots$ is called a hidden Markov model (HMM)
- Applied to speech recognition, handwriting recognition, and so on.
- The same argument as for functions of Markov chain works for HMMs.

References

References

- [1] Thomas M. Cover, Joy A. Thomas, *Elements of Information Theory*, 2nd edition, Wiley, 2006.
- [2] David J.C. MacKay, *Information Theory, Inference, and Learning Algorithms*, Cambridge University Press, 2003.
- [3] Robert M. Gray, Entropy and Information Theory, Springer, 2009