Asymptotic Equipartition Property
An Analogous of the Law of Large Numbers

Radu Trîmbiţaş
UBB
October 2012
The **law of large numbers** states that for i.i.d. RVs $\frac{1}{n} \sum X_i$ is close to $E(X)$ for large values of n.

The **AEP** states that states that $\frac{1}{n} \log \frac{1}{p(X_1, X_2, \ldots, X_n)}$ is close to the entropy H.

The probability $p(X_1, X_2, \ldots, X_n)$ assigned to an observed sequence will be close to 2^{-nH}.

This enables us to divide the set of all sequences into two sets, the typical set, where the sample entropy is close to the true entropy, and the nontypical set, which contains the other sequences.
Definition 1 (Convergence of random variables)

Given a sequence of RVs, \(X_1, X_2, \ldots\) we say that the sequences \(X_1, X_2, \ldots\) converges to a random variable \(X\)

1. **In probability** \(X_n \xrightarrow{p} X\) if for every \(\varepsilon > 0\), \(P(|X_n - X| > \varepsilon) \to 0\).
2. **In mean square** if \(E((X_n - X)^2) \to 0\).
3. With probability 1 (also called *almost surely*) \(X_n \xrightarrow{a.s.} X\) if \(P(\lim_{n \to \infty} X_n = X) = 1\).
Theorem 2 (AEP)

If X_1, X_2, \ldots are i.i.d. $\sim p(x)$, then

$$-\frac{1}{n} \log p (X_1, X_2, \ldots, X_n) \xrightarrow{p} H(X)$$

(1)
Proof.

\(X_i \) i.i.d \(\implies \) \(\log p(X_i) \) i.i.d, by the weak law of large numbers

\[
-\frac{1}{n} \log p(X_1, X_2, \ldots, X_n) = -\frac{1}{n} \sum_i \log p(X_i)
\]

\(\xrightarrow{p} -E(\log p(X)) \)

\(= H(X) \).
Definition 3

The typical set $A_{\varepsilon}^{(n)}$ with respect to $p(x)$ is the set of sequences $(x_1, x_2, \ldots, x_n) \in \mathcal{X}^n$ with the property

$$2^{-n(H(X)+\varepsilon)} \leq p(x_1, x_2, \ldots, x_n) \leq 2^{-n(H(X)-\varepsilon)}.$$ (2)
Theorem 4

(1) If \((x_1, x_2, \ldots, x_n) \in A_\varepsilon^{(n)}\), then

\[
H(X) - \varepsilon \leq -\frac{1}{n} \log p(x_1, x_2, \ldots, x_n) \leq H(X) + \varepsilon.
\]

(2) \(P\left(A_\varepsilon^{(n)}\right) > 1 - \varepsilon\) for \(n\) sufficiently large.

(3) \(|A_\varepsilon^{(n)}| \leq 2^{n(H(X) + \varepsilon)}\), where \(|A|\) denotes the cardinal of \(A\).

(4) \(|A_\varepsilon^{(n)}| \geq (1 - \varepsilon) 2^{n(H(X) - \varepsilon)}\) for \(n\) sufficiently large.

Thus, the typical set has probability nearly 1, all elements of the typical set are nearly equiprobable, and the number of elements in the typical set is nearly \(2^{nH}\).
Proof.

(1) from definition of $A_{\varepsilon}^{(n)}$.

(2) follows from Theorem 2, since $P((X_1, X_2, \ldots, X_n) \in A_{\varepsilon}^{(n)} \rightarrow 1$ as $n \rightarrow \infty$. Thus, $\forall \delta > 0 \exists n_0$ such that for all $n \geq n_0$

$$P \left(\left| -\frac{1}{n} \log p(X_1, X_2, \ldots, X_n) - H(X) \right| < \varepsilon \right) > 1 - \delta.$$

Setting $\delta = \varepsilon$ completes the proof of (2).
Asymptotic equipartition property theorem VI

Proof - continuation.

\[(3)\]
\[
1 = \sum_{x \in \mathcal{X}^n} p(x) \geq \sum_{x \in A_\varepsilon^{(n)}} p(x) \geq \sum_{x \in A_\varepsilon^{(n)}} 2^{-n(H(X)+\varepsilon)} = 2^{-n(H(X)+\varepsilon)} |A_\varepsilon^{(n)}|
\]

Hence \(|A_\varepsilon^{(n)}| \leq 2^{n(H(X)+\varepsilon)}. \)

\[(4)\] For sufficiently large \(n\), \(P \left(A_\varepsilon^{(n)} \right) > 1 - \varepsilon \), so that

\[
1 - \varepsilon < P \left(A_\varepsilon^{(n)} \right) \leq \sum_{x \in A_\varepsilon^{(n)}} 2^{-n(H(X)-\varepsilon)} = 2^{-n(H(X)-\varepsilon)} |A_\varepsilon^{(n)}|
\]

which yields to

\[
|A_\varepsilon^{(n)}| \geq (1 - \varepsilon) 2^{n(H(X)-\varepsilon)}.
\]
Consequences of the AEP: Data compression I

- \(X_1, X_2, \ldots, X_n \sim p(x), \) i.i.d
- We wish short descriptions of such sequences
- We divide sequences in \(\mathcal{X}^n\) in two sets: the typical set \(A_{\epsilon}^{(n)}\) and its complement (Figure 1)
- All elements in each set are ordered (e.g. lexicographic order)
- We represent each sequence of \(A_{\epsilon}^{(n)}\) by its index of the sequence in the set.
- Since there are \(\leq 2^{n(H+\epsilon)}\) sequences in \(A_{\epsilon}^{(n)}\), the indexing requires \(\leq n(H + \epsilon) + 1\) bits
- We prefix each sequence by 0: \(\leq n(H + \epsilon) + 2\) bits required (Figure 2)
- Similarly, for the complement of \(A_{\epsilon}^{(n)}\) we need \(n \log |\mathcal{X}| + 1\); we prefix each sequence by 1
Features of the coding scheme

- one-to-one and easy decodable; the initial bit acts as a flag to indicate the length of the codeword
- For complement of $A_{\varepsilon}^{(n)}$ we have a brute-force enumeration, without taking into account that the number of sequences in $(A_{\varepsilon}^{(n)})^C \leq |X|^n$
- Typical sequences have short descriptions of length $\approx nH$

Notations x^n - a sequence x_1, x_2, \ldots, x_n; $\ell(x^n)$ is the length of the codeword corresponding to x^n
Let X^n i.i.d $\sim p(x)$, and $\varepsilon > 0$. The there exists a code that maps sequences x^n of length n into binary strings such that the mappings is one-to-one (and therefore invertible) and

$$E \left[\frac{1}{n} \ell (X^n) \right] \leq H(X) + \varepsilon$$

for n sufficiently large.

We can represent sequences X^n using $nH(X)$ bits on the average.
Consequences of the AEP: Data compression IV

Proof.

If n is sufficiently large so that $P \left(A_{\varepsilon}^{(n)} \right) \geq 1 - \varepsilon$, the expected length of codeword is

$$E \left(\ell \left(X^n \right) \right) = \sum_{x^n} p(x^n) \ell(x^n)$$

$$= \sum_{x^n \in A_{\varepsilon}^{(n)}} p(x^n) \ell(x^n) + \sum_{x^n \in \left(A_{\varepsilon}^{(n)} \right)^c} p(x^n) \ell(x^n)$$

$$\leq \sum_{x^n \in A_{\varepsilon}^{(n)}} p(x^n) \left(n (H + \varepsilon) + 2 \right) + \sum_{x^n \in \left(A_{\varepsilon}^{(n)} \right)^c} p(x^n) \left(n \log |\mathcal{X}| + 2 \right)$$

$$= P \left(A_{\varepsilon}^{(n)} \right) \left(n (H + \varepsilon) + 2 \right) + P \left(\left(A_{\varepsilon}^{(n)} \right)^c \right) \left(n \log |\mathcal{X}| + 2 \right)$$

$$\leq n (H + \varepsilon) + \varepsilon n \log |\mathcal{X}| + 2 = n \left(H + \varepsilon' \right)$$

But, $\varepsilon' = \varepsilon + \varepsilon \log |\mathcal{X}| + \frac{2}{n}$ can be made arbitrarily small.
Typical sets and source coding

\[X^n: |X^n| \text{ elements} \]

Non-typical set

Typical set
\[A_{\varepsilon}^{(n)}: 2^{n(H+\varepsilon)} \text{ elements} \]

Figure: Typical sets and source coding
Source coding using the typical sets

Non-Typical set
Description: $n \log |\mathcal{Y}| + 2$ bits

Typical set
Description: $n(H + \epsilon) + 2$ bits

Figure: Source code using the typical set
It is not clear that $A_{\varepsilon}^{(n)}$ is the smallest set that contains most of the probability.

Definition 6

For each $n = 1, 2, \ldots$, let $B_{\delta}^{(n)} \subset \mathcal{X}^n$ with

$$P \left(B_{\delta}^{(n)} \right) \geq 1 - \delta.$$ (4)
Theorem 7

Let X_1, X_2, \ldots, X_n be i.i.d. $\sim p(x)$. For $\delta < \frac{1}{2}$ and any $\delta' > 0$, if $P \left(B_\delta^{(n)} \right) > 1 - \delta$, then

$$\frac{1}{n} \log \left| B_\delta^{(n)} \right| > H - \delta'$$

for n sufficiently large.

Definition 8

The notation $a_n \equiv b_n$ means

$$\lim_{n \to \infty} \frac{1}{n} \log \frac{a_n}{b_n} = 0.$$
Thus, $a_n \doteq b_n$ implies a_n and b_n are equal to the first order in the exponent. We can restate the above theorem: if $\delta_n \to 0$ and $\varepsilon_n \to 0$, then

$$
\left| B_{\delta_n}^{(n)} \right| \doteq \left| A_{\varepsilon_n}^{(n)} \right| \doteq 2^{nH}.
$$
