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Universal Compression

Universal Compression

Sometimes the pmf is unknown and its estimation requires two passes
over the data.

Are there any purely algorithmic forms of compression that can be
shown to relate to H and, ideally, can be shown to compress to the
entropy rate?

Note, that if it is algorithmic, it would be useful if it doesn’t need to
explicitly compute the probability distribution governing the symbols.

I.e., do there exist compression algorithms that do not use the
probability distribution but still give the entropy rate?
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Universal Compression Codes

Fixed Length Block Codes

We had fixed number of source symbols, fixed code length ( fixed
length codewords)

ex: AEP, and the method of types

Only a small number of source sequences gave code words

Good for entropy and proofs of existence of codes, but not very
practical
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Universal Compression Codes

Symbol Codes

Variable length codewords for each source symbol.

More probable symbols gave shorter length encodings.

Ex: Huffman codes

Need distribution, and penalty if a mismatch of D(p||q)
Still requires blocking of the symbols in order to achieve the entropy
rate (which occurs in the limit).
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Universal Compression Codes

Stream Codes

Here, we do not necessarily emit bits for every source symbol, might
need to wait and then emit bits for a sequence which could be
variable length.

More large number of source symbols can be represented with small
number of bits without blocking.

Can start encoding quickly, and can start decoding before encoding is
even finished.

Ex: Arithmetic codes (uses a subinterval of [0, 1] corresponding to
p(xn|x1, . . . , xn−1)) and requires a model (ideally adaptive) of the
source sequence.

Ex: adaptive arithmetic codes (Dirichlet distribution).

Another example: Lempel-Ziv: memorize strings that have already
occurred, don’t even model the source distribution (skip that step).
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Universal Compression Codes

Universal Source Coding

Huffman is inherently 2-pass. We use 1st pass to estimate p(x), but
this might not be feasible (we might want to start compressing right
away, which is the reason for stream codes).
Huffman pays at most one extra bit per symbol, so to achieve entropy
rate might need a long block length (where jointly encoding
independent source symbols can be beneficial in terms of average

number of bits per symbol nH(X )+1
n ).

In general, we want to be able to code down to the entropy without
needing the source distribution (explicitly).
I.e., universal if p(x) remains unknown, but we can still code at
H(X ).
Lempel-Ziv coding is universal (as we will see).
It is also the algorithm used in gzip, the widely used text
compression algorithm (although bzip2 often compresses a bit better,
which uses the Burrows-Wheeler block-sorting text compression
algorithm along with Huffman coding).
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Arithmetic Codes Arithmetic Coding

Arithmetic Coding I

This is the method used by DjVU (adaptive image compression used
for printed material, overtaken by PDF but probably certain PDF
formats use this as well).

Assume we are given a probabilistic model of the source, i.e., Xi i.i.d.

p(x1:n) =
n

∏
i=1

p(xi ),

or alternatively (Xi ) would be a 1st order Markov model

p(x1:n) = p(x1)
n

∏
i=2

p(xi |xi−1)

Higher order Markov models often used as well (as we’ll see).
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Arithmetic Codes Arithmetic Coding

Arithmetic Coding II

At each symbol, we use the conditional probability to provide the
probability of the next symbol.

Arithmetic coding can easily handle complex adaptive models of the
source that produce context-dependent predictive distributions (so
not necessarily. stationary); e.g., could use pt(xt |x1, . . . , xt−1)

Radu Tr̂ımbiţaş (UBB) Universal Source Coding December 2012 10 / 76



Arithmetic Codes Example

Arithmetic Coding - Example I

Let X = {a, e, i , o, u, !} so |X | = 6.

Source X1, X2, . . . need not be i.i.d.

Assume that p(xn|x1, x2, . . . , xn−1) is given to both encoder (sender,
compressor) and receiver (decoder, uncompressor).

Like in Shannon-Fano-Elias coding, we divide the unit interval up into
segments of length according to the probabilities p(X1 = x) for
x = {a, e, i , o, u, !}.
Consider the following figure:
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Arithmetic Codes Example

Arithmetic Coding - Example II

Each subinterval may be further divided into segments of (relative)
length P(X2 = x2|X1 = x1) or actual length P(X2 = x2, X1 = x1).
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Arithmetic Codes Example

Arithmetic Coding - Example III

Relative lengths longer or shorter P(X1 = j)ρP(X2 = j |X1 = k),
where ρ ∈ {<,>,=}
The following figure shows this, starting with p(X1 = a).
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Arithmetic Codes Example

Arithmetic Coding - Example IV

Length of interval for ”ae” is
P(X1 = a, X2 = e) = P(X1 = a)p(X2 = e|X1 = a).

Intervals keep getting exponentially smaller with n larger.

Key: at each stage, relative lengths of the intervals can change
depending on history. At t = 1, relative interval fraction for ”a” is
p(a), at t = 2, relative interval fraction for ”a” is p(a|X1), which
might change depending on X1, and so on.

This is different than Shannon-Fano-Elias coding which uses the same
interval length at each step.

Thus, if a symbol gets very probable, it uses a long relative interval
(few bits), and if it gets very improbable, it uses short relative interval
(more bits).

Radu Tr̂ımbiţaş (UBB) Universal Source Coding December 2012 14 / 76



Arithmetic Codes Interval division

Arithmetic Coding

How to code? Let i be the current source symbol number for Xi .

We maintain a lower and an upper interval position.

Ln(i |x1, x2, . . . , xn−1) =
i−1

∑
j=1

p(xn = j |x1, x2, . . . , xn−1)

Un(i |x1, x2, . . . , xn−1) =
i

∑
j=1

p(xn = j |x1, x2, . . . , xn−1)

on arrival of nth input symbol, we divide the (n− 1)st interval which
is defined by Ln and Un via the half-open interval [Ln, Un).
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Arithmetic Codes Interval division

Interval Division

Example: initial interval is [0, 1) and we divide it depending on the symbol
we receive.

a↔ [L1(a); U1(a)) = [0, p(X1 = a))

e ↔ [L1(e); U1(e)) = [p(X1 = a), p(X1 = a) + p(X1 = e))

i ↔ [L1(i); U1(i)) = [p(a) + p(e); p(a) + p(e) + p(i))

o ↔ [L1(o); U1(o)) = [p(a) + p(e) + p(i); p(a) + p(e) + p(i) + p(o))

u ↔ [L1(u); U1(u)) =

[
∑

x∈{a,e,i ,o}
p(x), ∑

x∈{a,e,i ,o,u}
p(x)

)

!↔ [L1(u); U1(u)) =

[
∑

x∈{a,e,i ,o,u}
p(x), 1

)
In general, we use an algorithm for the string x1, x2, . . . to derive the
intervals [`, u) at each time step where ` is the lower and u is the upper
range.
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Arithmetic Codes Interval division

Algorithm

Suppose we want to send N source symbols. Then we can follow the
algorithm below.

` := 0;
u := `;
p := u − `;
for n = 1..N do
{First compute Ui and Li for all i ∈ X }
u := `+ pUn(xn|x1, . . . , xn−1);
` := `+ pLn(xn|x1, . . . , xn−1);
p := u − `;

end for
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Arithmetic Codes Encoding

Encoding

Once we have final interval, to encode we simply send any binary
string that lives in the interval [`; u) after running the algorithm.

On the other hand, we can make the algorithm online, so that it starts
writing out bits in the interval once they are known unambiguously.

Analogous to Shannon-Fano-Elias coding, if the current interval is
[0.100101, 0.100110) then we can send the common prefix 1001 since
that will not change.
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Arithmetic Codes Encoding

Example

Here is an example (Let � be a termination symbol):

With these probabilities, we will consider encoding the string bbba�,
and we’ll get the final interval

I..e, the final code word will be 100111101
Lets look at the entire picture
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Arithmetic Codes Encoding

Coding Example from [2]
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Arithmetic Codes Encoding

Coding Example from [2]
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Arithmetic Codes Encoding

Coding Example from [2]

Q: Why can’t we use 1001111?A: Because its interval is too large.
Codeword 100111101’s interval is entirely within bbba�’s interval, so we
are prefix free.
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Arithmetic Codes Decoding

Decoding

To decode a binary string, say α = 0.z1z2z3 . . . we use the algorithm:

1: ` := 0;
2: u := `;
3: p := u − `;
4: while special symbol � not received do
5: find i such that

Ln(i |x1, . . . , xn−1) <
α− `

u − `
< Un(i |x1, . . . , xn−1)

6: u := `+ pUn(i |x1, . . . , xn−1);
7: ` := `+ pLn(i |x1, . . . , xn−1);
8: end while
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Arithmetic Codes Analysis

Number of bits

Problem is, a given number in the final interval [Ln, Un) could be
arbitrarily long (e.g., periodic or irrational number). We only need to
send enough to uniquely identify string.

How do we choose the number of bits to send?

Define

Fn(i |x1, x2, . . . , xn−1) =
1

2
[Ln(i) + Un(i)]

and bFn(i |x1, x2, . . . , xn−1)c` which is Fn truncated to ` bits.

We could use `(xn|x1, . . . , xn−1) = dlog 1/p(xn|x1, . . . , xn−1)e+ 1

Instead, lets use the Shannon length of the entire code as

`(x1:n) = dlog 1/p(x1:n)e+ 1.
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Arithmetic Codes Analysis

Code length

By the same arguments we made for the Shannon-Fano-Elias codes,
this is a prefix code and thus is uniquely decodable, etc.

Also, we have:

E `(x1:n) = ∑
x1:n

p(x1:n)`(x1:n)

= ∑
x1:n

p(x1:n) (dlog 1/p(x1:n)e+ 1)

≤ −∑
x1:n

p(x1:n) log p(x1:n) + 2

= H(X1:n) + 2.

So the per symbol length ≤ H(X1:n) + 2/n→ H(X )

But this was not a block code.
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Arithmetic Codes Analysis

Estimating p(xn|x1, . . . , xn−1)

We still have the problem that we need to estimate
p(xn|x1, . . . , xn−1).

We’d like to use adaptive models.

One possibility is the Dirichlet model, having no independencies:

p(a|x1:n−1) =
N(a|x1:n−1) + α

∑a′ (N(a′|x1:n−1) + α)

Small α means more responsive

Large α means more sluggish.

How do we derive this? We can do so in a Bayesian setting.

In general the problem of density estimation is a topic in and of itself.
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Arithmetic Codes Analysis

Laplace’s rule: Bayesian derivation

For simplicity, assume binary alphabet, so X = {0, 1}.
N0 = N(0|x1:n) and N1 = N(1|x1:n) counts, and N = N0 + N1.

Assumptions: there exists p0, p1 and p2 for 0, 1, and the termination
symbol.

Length of a given string has a geometric distribution, i.e.,

p(`) = (1− p�)
`p�

so that E ` = 1/p� and Var(`) = (1− p�)p
2
�.

Characters are drawn independently, so that

p(x1:n|p0; N) = pN0
0 pN1

1

this is the ”likelihood” function of the data.

Uniform priors, i.e., P(p0) = 1 for p0 ∈ [0, 1].
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Arithmetic Codes Analysis

Laplace’s rule: Bayesian derivation

Then

P(p0|x1:n, N) =
P(x1:n|p0, N)P(p0)

P(x1:n|N)

P(p0|x1:n, N) =
pN0

0 pN1
1

P(x1:n|N)

Using the Beta integral, we can get:

P(x1:n|N) =
∫ 1

0
P(x1:n|p0, N)dp0 =

∫ 1

0
pN0

0 pN1
1 P(p0)dp0

=
Γ (N0 + 1) Γ (N1 + 1)

Γ (N0 + N1 + 2)
=

N0!N1!
(N0 + N1 + 2)!
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Arithmetic Codes Analysis

Laplace’s rule: Bayesian derivation

To make a prediction, we want:

P(Xn+1 = 0|x1:n, N) =
∫ 1

0
P(0|p0)P(p0|x1:n, N)dp0

=
∫ 1

0
p0

pN0
0 pN1

1

P(x1:n|N)
dp0

=
∫ 1

0

pN0+1
0 pN1

1

P(x1:n|N)
dp0

=

[
(N0 + 1)!N1!
(N0 + N1 + 2)!

]
/
[

N0!N1!
(N0 + N1 + 1)!

]
=

N0 + 1

N0 + N1 + 2
Laplace’s rule

Dirichlet’s approach is (N0 + α)/(N0 + N1 + 2α) so the only
difference is the fractional α.
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Lempel-Ziv Codes

Lempel-Ziv Compression

The Lempel Ziv Algorithm is an algorithm for lossless data
compression.

It is not a single algorithm, but a whole family of algorithms,
stemming from the two algorithms proposed by Jacob Ziv and
Abraham Lempel in their landmark papers in 1977 [3] and 1978 [4].

The Lempel Ziv algorithms belong to yet another category of lossless
compression techniques known as dictionary coders.

Lempel Ziv algorithms are widely used in compression utilities such as
gzip, GIF image compression and the V.42 modem standard.
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Lempel-Ziv Codes

Lempel-Ziv Family

Figure: Lempel-Ziv family
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Lempel-Ziv Codes Dictionary Coding

Dictionary Coding

Dictionary coding techniques rely upon the observation that there are
correlations between parts of data (recurring patterns).

The basic idea is to replace those repetitions by (shorter) references
to a ”dictionary” containing the original.
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Lempel-Ziv Codes Dictionary Coding

Static Dictionary

The simplest forms of dictionary coding use a static dictionary.

Such a dictionary may contain frequently occurring phrases of
arbitrary length, digrams (two-letter combinations) or n-grams.

This kind of dictionary can easily be built upon an existing coding
such as ASCII by using previously unused codewords or extending the
length of the codewords to accommodate the dictionary entries.

A static dictionary achieves little compression for most data sources.
The dictionary can be completely unsuitable for compressing
particular data, thus resulting in an increased message size (caused by
the longer codewords needed for the dictionary).
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Lempel-Ziv Codes Dictionary Coding

Semi-Adaptive Dictionary

The aforementioned problems can be avoided by using a
semi-adaptive encoder.

This class of encoders creates a dictionary custom-tailored for the
message to be compressed. Unfortunately, this makes it necessary to
transmit/store the dictionary together with the data.

This method usually requires two passes over the data, one to build
the dictionary and another one to compress the data.

A question arising with the use of this technique is how to create an
optimal dictionary for a given message. It has been shown that this
problem is NP-complete (vertex cover problem).

Fortunately, there exist heuristic algorithms for finding near-optimal
dictionaries.
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Lempel-Ziv Codes Dictionary Coding

Adaptive Dictionary

The Lempel Ziv algorithms belong to this third category of dictionary
coders.

The dictionary is being built in a single pass, while at the same time
also encoding the data.

As we will see, it is not necessary to explicitly transmit/store the
dictionary because the decoder can build up the dictionary in the
same way as the encoder while decompressing the data.
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Lempel-Ziv Codes LZ77

Principle I

So far we have always been talking about the dictionary as if it were
some kind of data structure that is being filled with entries when the
dictionary is being built.

It turns out that it is not necessary to use an explicit dictionary.

Example 1

The string ”abcbbacdebbadeaa” is to be encoded. The algorithm is
working from left to right and has already encoded the left part (the string
E = ”abcbbacde”). The string S = ”bbadeaa” is the the data yet to be
encoded.
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Lempel-Ziv Codes LZ77

Principle II

First, the algorithm searches for the longest string in the encoded data
E matching a prefix of S. In this particular case, the longest match is
the string ”bba” starting at the third position (counting from zero).

Therefore it is possible to code the first two characters of S, ”bba”,
as a reference to the third and fourth character of the whole string.

References are encoded as a fixed-length codeword consisting of three
elements: position, length and first non-matching symbol. In our
case, the codeword would be 33d. In it, four characters have been
coded with just one codeword.
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Lempel-Ziv Codes LZ77

Principle III

When the matches get longer, those coded references will consume
significantly fewer space than, for example, coding everything in
ASCII.

Probably you have already spotted the weakness of the outlined
algorithm.

What happens if the input is very long and therefore references (and
lengths) become very large numbers?

Well, the previous example was not yet the actual LZ77 algorithm.
The LZ77 algorithm employs a principle called sliding-window: It
looks at the data through a window of fixed-size, anything outside
this window can neither be referenced nor encoded.

As more data is being encoded, the window slides along, removing the
oldest encoded data from the view and adding new unencoded data
to it.
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Lempel-Ziv Codes LZ77

Principle IV

The window is divided into a search buffer containing the data that
has already been processed, and a lookahead buffer containing the
data yet to be encoded.
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Lempel-Ziv Codes LZ77

The Algorithm

The actual LZ77 algorithm

1: while lookAheadBuffer not empty do
2: get a reference(position, length) to longest match
3: if length > 0 then
4: output(position, length, nextsymbol)
5: shift the window length + 1 positions along
6: else
7: output(0,0, first symbol in the lookAheadBuffer)
8: shift the window 1 position along
9: end if

10: end while

The algorithms starts out with the lookahead buffer filled with the
first symbols of the data to be encoded, and the search buffer filled
with a predefined symbol of the input alphabet (zeros, for example).
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Lempel-Ziv Codes LZ77

Example I

The following is the example given in [3]:

S = 001010210210212021021200... (input string)

Ls = 9 (length of look ahead buffer)

n = 18 (window size)

The search buffer is loaded with zeros and the lookahead buffer is
loaded with the first 9 characters of S .

The algorithm searches for the longest match in the search buffer.
Since it is filled with zeros, any substring of length 2 can be used.

In the example, the substring starting at the last position (8, if
counting from 0) of the search buffer is being used. Note that the
match extends into the lookahead buffer!
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Lempel-Ziv Codes LZ77

Example II

Figure: Encoding
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Lempel-Ziv Codes LZ77

Example III

Matches are encoded as codewords consisting of the position of the
match, the length of the match and the first symbol following the
prefix of the lookahead buffer that a match has been found for.
Therefore, codewords need to have the length (D size of alphabet)

Lc = logD(n− Ls) + logD(Ls) + 1

In the example the length is Ls = log3(9) + log3(9) + 1 = 5.

The first match is encoded as the codeword C1 = 22021. 22 is the
position of the match in radix-3 representation (810 = 223). The two
following positions represent the length of the match (210 = 23, 02
because 2 positions are reserved for it according to the formula for
Lc). The last element is the first symbol following the match, which
in our case is 1.
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Lempel-Ziv Codes LZ77

Example IV

The algorithm now shifts the window 3 positions to the right, resulting
in the situation depicted in 2. This time, the algorithm finds the
longest match at the 7th position of the search buffer, the length of
the match is 3 because once again it is possible to extend the match
into the lookahead buffer. The resulting codeword is C2 = 21102.
Steps 3 and 4 result in the codewords C3 = 20212 and C4 = 02220.

The decoder also starts out with a search buffer filled with zeros and
reverses the process as shown in Figure 3
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Lempel-Ziv Codes LZ77

Example V

Figure: Decoding
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Lempel-Ziv Codes Improvements

Improvements
LZR

The LZR modification allows pointers to reference anything that has
already been encoded without being limited by the length of the search
buffer (window size exceeds size of expected input). Since the position and
length values can be arbitrarily large, a variable-length representation is
being used positions and lengths of the matches.
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Lempel-Ziv Codes Improvements

Improvements I
LZSS

The mandatory inclusion of the next non-matching symbol into each
codeword will lead to situations in which the symbol is being explicitly
coded despite the possibility of it being part of the next match.
Example: In ”abbca|caabb”, the first match is a reference to ”ca”
(with the first non-matching symbol being ”a”) and the next match
then is ”bb” while it could have been ”abb” if there were no
requirement to explicitly code the first non-matching symbol.

The popular modification by Storer and Szymanski (1982) removes
this requirement. Their algorithm uses fixed-length codewords
consisting of offset (into the search buffer) and length (of the match)
to denote references. Only symbols for which no match can be found
or where the references would take up more space than the codes for
the symbols are still explicitly coded.

Radu Tr̂ımbiţaş (UBB) Universal Source Coding December 2012 47 / 76



Lempel-Ziv Codes Improvements

Improvements II
LZSS

1: while lookAheadBuffer not empty do
2: get a pointer(position, match) to the longest match
3: if length > MinimumMatchLength then
4: output(PointerFlag , position, length)
5: shift the window length characters along
6: else
7: output(SymbolFlag , first symbol of lookAheadBuffer);
8: shift the window 1 character along;
9: end if

10: end while
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Lempel-Ziv Codes Improvements

Improvements

LZB uses an elaborate scheme for encoding the references and
lengths with varying sizes.

The LZH implementation employs Huffman coding to compress the
pointers.
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Lempel-Ziv Codes LZ78

Principle

The LZ78 is a dictionary-based compression algorithm that maintains
an explicit dictionary.

The codewords output by the algorithm consist of two elements:

an index referring to the longest matching dictionary entry and
the first non-matching symbol.

In addition to outputting the codeword for storage/transmission, the
algorithm also adds the index and symbol pair to the dictionary.

When a symbol that not yet in the dictionary is encountered, the
codeword has the index value 0 and it is added to the dictionary as
well.

With this method, the algorithm gradually builds up a dictionary.
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Lempel-Ziv Codes LZ78

Algorithm I

w := NIL;
while there is input do

K := next symbol from input;
if wK exists in the dictionary then

w := wK ;
else

output (index(w), K );
add wK to the dictionary;
w := NIL;

end if
end while

Note that this simplified pseudo-code version of the algorithm does
not prevent the dictionary from growing forever.
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Algorithm II

There are various solutions to limit dictionary size, the easiest being
to stop adding entries and continue like a static dictionary coder or to
throw the dictionary away and start from scratch after a certain
number of entries has been reached.

Those and more sophisticated approaches will be presented in section
Improvements.
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Example

The string S = 001212121021012101221011 is to be encoded. Figure 4
shows the encoding process.

Figure: Encoding
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Example - continued I

In the first step, 0 is encountered and added to the dictionary. The
output is 00 because is no match (index 0) and the first
non-matching character is 0. The encoder then proceeds to the
second position, encountering 0, which is already dictionary. The
following 1 is not yet in the dictionary, so the encoder adds the string
01 to the dictionary (a reference to the first entry plus the symbol 1)
and outputs this pair. The next steps follow the same scheme until
the end of the input is reached.

The decoding process is shown in figure 5. The decoder receives the
reference 0 0, with the index 0 indicating that a previously unknown
symbol (0) needs to be added to the dictionary and to the
uncompressed data. The next codeword is 1 1 resulting in the entry
01 (a reference to entry 1 plus the symbol 1) being added to the
dictionary and the string 01 appended to the uncompressed data. The
decoder continues this way until all codewords have been decoded.
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Example - continued II

Figure: Decoding
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Improvements

LZ78 has several weaknesses. First of all, the dictionary grows
without bounds.

Various methods have been introduced to prevent this, the easiest
being to become either static once the dictionary is full or to throw
away the dictionary and start creating a new one from scratch.

There are also more sophisticated techniques to prevent the dictionary
from growing unreasonably large, some of these will be presented in
the sequel.

The dictionary building process of LZ78 yields long phrases only fairly
late in the dictionary building process and only includes few substrings
of the processed data into the dictionary.

The inclusion of an explicitly coded symbol into every match may
cause the next match to be worse than it could be if it were allowed
to include this symbol.
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Improvements I
LZW

This improved version of the original LZ78 algorithm is perhaps the
most famous modification and is sometimes even mistakenly referred
to as the Lempel Ziv algorithm.

Published by Terry Welch in 1984, it basically applies the LZSS
principle of not explicitly transmitting the next nonmatching symbol
to the LZ78 algorithm.

The only remaining output of this improved algorithm are fixed-length
references to the dictionary (indexes).

Of course, we can’t just remove all symbols from the output and add
nothing elsewhere. Therefore the dictionary has to be initialized with
all the symbols of the input alphabet and this initial dictionary needs
to be made known to the decoder.
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Improvements II
LZW

In the original proposal, the pointer size is chosen to be 12 bit, allowing for
up to 4096 dictionary entries. Once this limit has been reached, the
dictionary becomes static.
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Improvements I
LZC

LZC is the variant of the LZW algorithm that is used in the once
popular UNIX compress program. It compresses according to the
LZW principle but returns to variable-length pointers like the original
LZ78 algorithm.

The maximum index length can be set by the user of the compress
program taking into account to the memory available (from 9 to 16
bits). It first starts with 9-bit indexes for the first 512 dictionary
entries, then continues with 10-bit codes and so on until the
user-specified limit has been reached. Finally, the algorithm becomes
a static encoder, regularly checking the compression ratio.

When it detects a decrease, it throws away the dictionary and starts
building up a new one from scratch.
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Other Improvements I

LZT is another variation on the LZW theme, the algorithm is almost
like the LZC variant, the only difference being that it makes room for
new phrases to be added to the dictionary by removing the least
recently used entry (LRU replacement).

LZMS creates new dictionary entries not by appending the first
non-matching character, but by concatenating the last two phrases
that have been encoded. This leads to the quick building of rather
long entries, but in turn leaves out many of the prefixes of those long
entries.

The dictionary used by LZJ contains every unique string of the input
up to a certain length, coded by a fixed-length index. Once the
dictionary is full, all strings that have only been used once are
removed. This is continued until the dictionary becomes static.
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Other Improvements II

LZFG uses the dictionary building technique from the original LZ78
algorithm, but stores the elements in a trie data structure. In
addition, a sliding window like LZ77’s is used to remove the oldest
entries from the dictionary.
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Abraham Lempel (1936 -) is an Israeli computer
scientist and one of the fathers of the LZ family of
lossless data compression algorithms. Prizes: 2007
IEEE Richard W. Hamming Medal,.

Jacob Ziv (1931 - ) is an Israeli computer scientist who,
along with Abraham Lempel, developed the LZ family
of lossless data compression algorithms. Prizes: 1995
the IEEE Richard W. Hamming Medal, 1997 Claude E.
Shannon Award from the IEEE Information Theory
Society.

Terry Welch (? - 1985) inventor of LZW algorithm.
Senior manager for Digital Equipment Corporation. BS,
MS, and PhD degrees were received from MIT in
electrical engineering, senior member of IEEE.
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Preparing Results I

Assume we have a stationary and ergodic process defined for time
from −∞ to ∞ and that both the encoder and decoder have access
to . . . , X−2, X−1, the infinite past of the sequence.

To encode X0, X1, . . . , Xn−1 (a block of length n), we find the last
time we have seen these n symbols in the past.

Let

Rn (X0, X1, . . . , Xn−1) =

max {j < 0 : (X−j , X−j+1, . . . , X−j+n−1) = (X0, X1, . . . , Xn−1)} .
(1)

Then to represent X0, X1, . . . , Xn−1, we need only to send Rn to the
receiver, who can then look back Rn into the past and recover X0, X1,
. . . , Xn−1.
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Preparing Results II

Thus, the cost of the encoding is the cost to represent Rn. The
asymptotic optimality of the algorithm means

1

n
E log Rn → H (X ) .

Lemma 2

There exists a prefix-free code for the integers such that the length of the
codeword for integer k is log k + 2 log log k + O(1).
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Proof of Lemma 2

Proof.

If we know that k ≤ m, codelength ≤ log m bits. Otherwise we first
represent dlog ke in unary and k in binary

C1(k) = 00 . . . 0︸ ︷︷ ︸
dlog ke

1 xx . . . x︸ ︷︷ ︸
k in binary

.

The length of C1(k) is 2 dlog ke+ 1 ≤ 2 log k + 3. If we use C1(k) to
represent log k , the length is less than log k + 2 log log k + 4.
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Kac’s Lemma I

Lemma 3 (Kac)

Let . . . , U−2, U−1, U0, U1, . . . be a stationary ergodic process on a
countable alphabet. For any u such that p(u) > 0 and for i = 1, 2, . . . , let

Qu(i) = P {U−i = u : Uj 6= u, − i < j < 0|U0 = u} (2)

Then

E (R1(U)|X0 = u) = ∑
i

iQu(i) =
1

p(u)
. (3)

Thus, the conditional expected waiting time to see the symbol u again,
looking backward from zero, is 1/p(u).
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Kac’s Lemma II

Notes: 1. The expected recurence time is

E (R1(U)) = ∑ p(u)
1

p(u)
= m = |X |.

2. Qu(i) is the conditional probability that the most recent previous
occurence of the symbol u is i , given that U0 = u.
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Proof of Kac Lemma. . . .
Let U0 = u. For j = 1, 2, . . . and k = 0, 1, 2, . . . we define

Ajk = {U−j = u, U−` 6= u,−j < ` < k , Uk = u} .

We see that Ajk ∩ Avw = ∅ for (j , k) 6= (u, v) and P
(⋃

j ,k Ajk

)
= 1.

1 = P

(⋃
j ,k

Ajk

)
=

∞

∑
j=1

∞

∑
k=0

P (Ajk)

=
∞

∑
j=1

∞

∑
k=0

P (Uk = u)P (U−j = u, U` 6= u,−j < ` < k |Uk = u)

=
∞

∑
j=1

∞

∑
k=0

P (Uk = u)Qu(j + k) =: S // definition of Qu

. . .
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. . . proof of Kac’s Lemma (continued).

But

S =
∞

∑
j=1

∞

∑
k=0

P (U0 = u)Qu(j + k) //stationarity

= P (U0 = u)
∞

∑
j=1

∞

∑
k=0

Qu(j + k)

= P (U0 = u)
∞

∑
i=1

iQu(i)︸ ︷︷ ︸
E (R1(U)|X0=u)

.

The last equality follows from the fact that ∃(j , k) such that j + k = i .
The conclusion follows from

1 = S = P (U0 = u)E (R1(U)|X0 = u) .
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Preparing Results

Corollary 4

Let . . . , U−2, U−1, U0, U1, . . . be a stationary ergodic process.Then

E
[
Rn (X0, X1, . . . , Xn−1) | (X0, X1, . . . , Xn−1) = x−1

0

]
=

1

p
(
xn−1

0

) .

Proof.

Define the process Ui = (Xi , Xi+1, . . . , Xi+n−1). It is stationary and
ergodic, and thus by Kac’s lemma the average recurence time for U
conditioned by U0 = u is 1/p(u). Translating this to the X process proves
the corollary.
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Main Theorem

Theorem 5

Let Ln

(
X n−1

0

)
= log Rn + 2 log log Rn + O(1) be the description length for

X n−1
0 in the simple algorithm described above. Then

1

n
ELn

(
X n−1

0

)
→ H (X ) (4)

as n→ ∞, where H (X ) is the entropy rate of the process {Xi}.
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Proof of main theorem. . . .
We look for upper and lower bounds for ELn. But, ELn ≥ nH for any
prefix code. We first show that

lim
1

n
E log Rn ≤ H (5)

To prove the bound for E log Rn, we expand the expectation by
conditioning on X n−1

0 and applying Jensen’s inequality.

1

n
E log Rn =

1

n ∑
xn−1

0

p
(
xn−1

0

)
E
[
log Rn

(
X n−1

0 |X n−1
0 = xn−1

0

)]
(6)

≤ 1

n ∑
xn−1

0

p
(
xn−1

0

)
log E

[
Rn

(
X n−1

0 |X n−1
0 = xn−1

0

)]
(7)

=
1

n ∑
xn−1

0

p
(
xn−1

0

)
log

1

p
(
xn−1

0

) =
1

n
H
(
xn−1

0

)
↘ H (X ) (8)

. . .
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. . . Proof of main theorem.

The second term in the expression for Ln is log log Rn, and we wish to
show that

1

n
E
[
log log Rn

(
xn−1

0

)]
→ 0.

Again, we use Jensen’s inequality,

1

n
E log log Rn ≤

1

n
log E

[
log Rn

(
xn−1

0

)]
≤ 1

n
log H

(
xn−1

0

)
where the lst inequality follows from (8). ∀ε > 0, for n large enough,
H
(
xn−1

0

)
≤ n(H + ε), and therefore

1

n
log log Rn <

1

n
log n +

1

n
log (H + ε)→ 0.
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Comments

This scheme is not practical and not realistic

if entropy rate is 1
2 and string length is 200 bits, one would have to

look an average of 2100 ≈ 1030 bits on the past to find a match, not
feasible

Proof of optimality for finite window is in [5]
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