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Purpose

Simulation is often used in the analysis of queueing models

A simple but typical queueing model:

Queueing models provide the analyst with a powerful tool for
designing and evaluating the performance of queueing systems.

Typical measures of system performance:

Server utilization, length of waiting lines, and delays of customers
For relatively simple systems, compute mathematically
For realistic models of complex systems, simulation is usually required.
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Outline

Discuss some well-known models (not development of queueing theories):

General characteristics of queues,

Meanings and relationships of important performance measures,

Estimation of mean measures of performance.

Effect of varying input parameters,

Mathematical solution of some basic queueing models.
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Radu Tr̂ımbiţaş (UBB) Queueing Models 1st Semester 2011-2012 3 / 41



Outline

Discuss some well-known models (not development of queueing theories):

General characteristics of queues,

Meanings and relationships of important performance measures,

Estimation of mean measures of performance.

Effect of varying input parameters,

Mathematical solution of some basic queueing models.
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Key elements of queueing systems

Key elements of queueing systems

Customer: refers to anything that arrives at a facility and requires
service, e.g., people, machines, trucks, emails.
Server: refers to any resource that provides the requested service, e.g.,
repairpersons, retrieval machines, runways at airport.
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Calling Population

Calling population: the population of potential customers, may be
assumed to be finite or infinite.

Finite population model: if arrival rate depends on the number of
customers being served and waiting, e.g., model of one corporate jet, if
it is being repaired, the repair arrival rate becomes zero.
Infinite population model: if arrival rate is not affected by the number
of customers being served and waiting, e.g., systems with large
population of potential customers.
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System Capacity

System Capacity: a limit on the number of customers that may be
in the waiting line or system.

Limited capacity, e.g., an automatic car wash only has room for 10 cars
to wait in line to enter the mechanism.
Unlimited capacity, e.g., concert ticket sales with no limit on the
number of people allowed to wait to purchase tickets.
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Arrival Processes - Infinite population models

In terms of interarrival times of successive customers.

Random arrivals: interarrival times usually characterized by a
probability distribution.

Most important model: Poisson arrival process (with rate λ), where An

represents the interarrival time between customer n− 1 and customer
n, and is exponentially distributed (with mean 1/λ).

Scheduled arrivals: interarrival times can be constant or constant plus
or minus a small random amount to represent early or late arrivals.

e.g., patients to a physician or scheduled airline flight arrivals to an
airport.

At least one customer is assumed to always be present, so the server
is never idle, e.g., sufficient raw material for a machine.
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Arrival Processes - Finite population models

Customer is pending when the customer is outside the queueing
system, e.g., machine-repair problem: a machine is “pending” when it
is operating, it becomes “not pending” the instant it demands service
form the repairman.
Runtime of a customer is the length of time from departure from the
queueing system until that customer’s next arrival to the queue, e.g.,
machine-repair problem, machines are customers and a runtime is
time to failure.
Let A

(i)
1 , A

(i)
2 , . . . be the successive runtimes of customer i , and S

(i)
1 ,

S
(i)
2 , . . . be the corresponding successive system times:
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Queue Behavior and Queue Discipline

Queue behavior: the actions of customers while in a queue waiting
for service to begin, for example:

Balk: leave when they see that the line is too long,
Renege: leave after being in the line when it’s moving too slowly,
Jockey: move from one line to a shorter line.

Queue discipline: the logical ordering of customers in a queue that
determines which customer is chosen for service when a server
becomes free, for example:

First-in-first-out (FIFO)
Last-in-first-out (LIFO)
Service in random order (SIRO)
Shortest processing time first (SPT)
Service according to priority (PR).
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Service Times and Service Mechanism

Service times of successive arrivals are denoted by S1, S2, S3.

May be constant or random.
{S1,S2,S3, . . . } is usually characterized as a sequence of independent
and identically distributed random variables, e.g., exponential, Weibull,
gamma, lognormal, and truncated normal distribution.

A queueing system consists of a number of service centers and
interconnected queues.

Each service center consists of some number of servers, c , working in
parallel, upon getting to the head of the line, a customer takes the 1st

available server.
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Service Times and Service Mechanism II

Example: consider a discount warehouse where customers may:

Serve themselves before paying at the cashier:

Figure: Warehouse example
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Service Times and Service Mechanism III

Wait for one of the three clerks:

Batch service (a server serving several customers simultaneously), or
customer requires several servers simultaneously.
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Queueing notation I

A notation system for parallel server queues: A/B/c/N/K , (due to
Kendall) where

A represents the interarrival-time distribution,

B represents the service-time distribution,

c represents the number of parallel servers,

N represents the system capacity,

K represents the size of the calling population.
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Queueing notation II

Primary performance measures of queueing systems:

Pn: steady-state probability of having n customers in system,
Pn(t): probability of n customers in system at time t,
λ: arrival rate,
λe : effective arrival rate,
µ: service rate of one server,
ρ: server utilization,
An: interarrival time between customers n− 1 and n,
Sn: service time of the nth arriving customer,
Wn: total time spent in system by the nth arriving customer,
WQ

n : total time spent in the waiting line by customer n,
L(t): the number of customers in system at time t,
LQ(t): the number of customers in queue at time t,
L: long-run time-average number of customers in system,
LQ : long-run time-average number of customers in queue,
w : long-run average time spent in system per customer,
wQ : long-run average time spent in queue per customer.
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Time-Average Number in System L

Consider a queueing system over a period of time T ,

Let Ti denote the total time during [0,T ] in which the system
contained exactly i customers, the time-weighted-average number in
a system is defined by:

L̂ =
1

T

∞

∑
i=1

iTi =
∞

∑
i=1

i

(
Ti

T

)
Consider the total area under the function is L(t), then,

L̂ =
1

T

∞

∑
i=1

iTi =
1

T

∫ T

0
L(t)dt

The long-run time-average # in system, with probability 1:

L̂ =
1

T

∫ T

0
L(t)dt → L as T → ∞
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Time-Average Number in Queue

The time-weighted-average number in queue is:

L̂Q =
1

T

∞

∑
i=0

iTQ
i =

1

T

∫ T

0
LQ(t)dt → LQ as T → ∞

G/G/1/N/K example: consider the results from the queueing
system (N > 4, K > 3).

L̂ = (0 · 3 + 1 · 12 + 2 · 4 + 3 · 1) /20

= 1.15 customers

LQ(t) =

{
0, L(t) = 0
L(t)− 1, L(t) ≥ 1

LQ(t) =
0 · 15 + 1 · 4 + 2 · 1

20
= 0.3 customers
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Average Time Spent in System Per Customer

The average time spent in system per customer, called the average
system time, is:

ŵ =
1

N

N

∑
i=1

Wi

where W1, W2, . . ., WN are the individual times that each of the N
customers spend in the system during [0,T ].

for stable systems ŵ → w as N → ∞
If the system under consideration is the queue alone:

ŵQ =
1

N

N

∑
i=1

WQ
i → wQ as N → ∞

G/G/1/N/K example (cont.): the average system time is

ŵ =
∑5

i=1 Wi

5
=

2 + (8− 3) + · · ·+ (20− 16)

5
= 4.6 time units
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The Conservation Equation

Conservation equation (a.k.a. Little’s law)

L̂ = λ̂ŵ

L = λw as T → ∞ and N → ∞

where L̂ average # in system, λ̂ arrival rate, ŵ average system time

Holds for almost all queueing systems or subsystems (regardless of the
number of servers, the queue discipline, or other special
circumstances).

G/G/1/N/K example (cont.): On average, one arrival every 4 time
units and each arrival spends 4.6 time units in the system. Hence, at
an arbitrary point in time, there is (1/4)(4.6) = 1.15 customers
present on average.
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Server Utilization I

Definition: the proportion of time that a server is busy.

Observed server utilization, ρ̂, is defined over a specified time interval
[0,T ].
Long-run server utilization is ρ.
For systems with long-run stability: ρ̂→ ρ as T → ∞

For G/G/1/∞/∞ queues:

Any single-server queueing system with average arrival rate λ
customers per time unit, where average service time E (S) = 1/µ time
units, infinite queue capacity and calling population.
Conservation equation, L = λw , can be applied.
For a stable system, the average arrival rate to the server, λs , must be
identical to λ.
The average number of customers in the server is:

L̂s =
1

T

∫ T

0
(L(t)− LQ(t)) dt =

T − T0

T
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Server Utilization II

In general, for a single-server queue:

L̂s = ρ̂→ Ls = ρ as T → ∞

and

ρ = λE (s) =
λ

µ
< 1

For a single server stable queue

ρ =
λ

µ
< 1

For an unstable queue (λ > µ), long-run server utilization is 1.
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Server Utilization III

For G/G/c/∞/∞ queues:

A system with c identical servers in parallel.

If an arriving customer finds more than one server idle, the customer
chooses a server without favoring any particular server.

For systems in statistical equilibrium, the average number of busy
servers, Ls , is: Ls = λE (s) = λ/µ.

The long-run average server utilization is:

ρ =
Ls
c

=
λ

cµ
, where λ < cµ for stable systems
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Server Utilization and System Performance

System performance varies widely for a given utilization ρ.

For example, a D/D/1 queue with

E (A) = 1/λ

E (S) = 1/µ,

where:

L = ρ = λ/µ,w = E (S) = 1/µ, LQ = WQ = 0.

By varying λ and µ, server utilization can assume any value between 0
and 1.
Yet there is never any line.

In general, variability of interarrival and service times causes lines to
fluctuate in length.
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Server Utilization and System Performance

Example: A physician who schedules patients every 10 minutes and

spends Si minutes with the ith patient: Si =

(
9 12

0.9 0.1

)
Arrivals are deterministic, A1 = A2 = . . . = λ−1 = 10.
Services are stochastic, E (Si ) = 9.3 min and V (S0) = 0.81 min2.
On average, the physician’s utilization = ρ = λ/µ = 0.93 < 1.
Consider the system is simulated with service times: S1 = 9,
S2 = 12, S3 = 9, S4 = 9, S5 = 9, . . . . The system becomes:

The occurrence of a relatively long service time (S2 = 12) causes a
waiting line to form temporarily.
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Costs in Queueing Problems

Costs can be associated with various aspects of the waiting line or
servers:
System incurs a cost for each customer in the queue, say at a rate of
$10 per hour per customer.

The average cost per customer is (WQ
j is the time customer j spends

in queue):
N

∑
j=1

$10 ·WQ
j

N
= $10 · ŵQ

If λ customers per hour arrive (on average), the average cost per hour
is: (

λ̂
customer

hour

)( $10 · ŵQ

customer

)
= $10 · λ · ŵQ = $10 · L̂Q/hour

Server may also impose costs on the system, if a group of c parallel
servers (1 ≤ c ≤ ∞) have utilization r , each server imposes a cost of
$5 per hour while busy.

The total server cost is: $5 · cρ.
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Steady-State Behavior of Infinite-Population Markovian
Models I

Markovian models: exponential-distribution arrival process (mean
arrival rate = λ).

Service times may be exponentially distributed as well (M) or
arbitrary (G).

A queueing system is in statistical equilibrium if the probability that
the system is in a given state is not time dependent:

P(L(t) = n) = Pn(t) = Pn.

Mathematical models in this chapter can be used to obtain
approximate results even when the model assumptions do not strictly
hold (as a rough guide).

Simulation can be used for more refined analysis (more faithful
representation for complex systems).
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Steady-State Behavior of Infinite-Population Markovian
Models II

For the simple model studied in this chapter, the steady-state
parameter, L, the time-average number of customers in the system is:

L =
∞

∑
n=0

nPn

Apply Little’s equation to the whole system and to the queue alone:

w =
L

λ
, wQ = w − 1

µ
, LQ = λwQ

G/G/c/∞/∞ example: to have a statistical equilibrium, a necessary
and sufficient condition is λ/cµ < 1.
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M/G/1 Queues

Single-server queues with Poisson arrivals & unlimited capacity.

Suppose service times have mean 1/µ and variance σ2 and
ρ = λ/µ < 1, the steady-state parameters of M/G/1 queue:

ρ =
λ

µ
, P0 = 1− ρ

L = ρ +
ρ2
(
1 + σ2µ2

)
2 (1− ρ)

, LQ =
ρ2
(
1 + σ2µ2

)
2 (1− ρ)

w =
1

µ
+

λ

(
1

µ2
+ σ2

)
2 (1− ρ)

, wQ =

λ

(
1

µ2
+ σ2

)
2 (1− ρ)
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M/G/1 Queues II

No simple expression for the steady-state probabilities P0, P1, . . .
L− LQ = ρ is the time-average number of customers being served.

Average length of queue, LQ , can be rewritten as:

LQ =
ρ2

2 (1− ρ)
+

λ2σ2

2 (1− ρ)

If λ and µ are held constant, LQ depends on the variability, σ2, of the
service times.
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M/G/1 Queues - Example

Two workers competing for a job, Able claims to be faster than Baker
on average, but Baker claims to be more consistent,
Poisson arrivals at rate λ = 2 per hour (1/30 per minute).
Able: 1/µ = 24 minutes and σ2 = 202 = 400 minutes2:

LQ =
(1/30)2 (242 + 400

)
2
(
1− 4

5

) = 2. 7111 customers

The proportion of arrivals who find Able idle and thus experience no
delay is P0 = 1− ρ = 1/5 = 20%.
Baker: 1/µ = 25 minutes and σ2 = 22 = 4 minutes2:

LQ =
(1/30)2 (252 + 4

)
2
(
1− 5

6

) = 2. 0967 customers

The proportion of arrivals who find Baker idle and thus experience no
delay is P0 = 1− ρ = 1/6 = 16.7%.
Although working faster on average, Able’s greater service variability
results in an average queue length about 30% greater than Baker’s.
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M/M/1 Queues I

Suppose the service times in an M/G/1 queue are exponentially
distributed with mean 1

µ , then the variance is σ2 = 1
µ2 .

M/M/1 queue is a useful approximate model when service times
have standard deviation approximately equal to their means.

The steady-state parameters:

ρ =
λ

µ
,

Pn = ρ (1− ρ)n

L =
λ

µ− λ
=

ρ

1− ρ
, LQ =

λ2

µ (µ− λ)
=

ρ2

1− ρ

w =
1

µ− λ
=

1

µ (1− ρ)
, wQ =

λ

µ (µ− λ)
=

ρ

µ (1− ρ)
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M/M/1 Queues II

Example: M/M/1 queue with service rate µ = 10 customers per
hour.

Consider how L and w increase as arrival rate, λ, increases from 5 to
8.64 by increments of 20%:

If λ/µ ≥ 1, waiting lines tend to continually grow in length.
λ 5 6 7.2 8.64 10

ρ 0.5 0.6 0.72 0.864 1.000
L 1 1.5 2.57 6.35 ∞
w 0.2 0.25 0.36 0.73 ∞

Increase in average system time, w , and average number in system, L,
is highly nonlinear as a function of ρ
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Effect of Utilization and Service Variability

For almost all queues, if lines are too long, they can be reduced by
decreasing server utilization (ρ) or by decreasing the service time
variability (σ2).

A measure of the variability of a distribution, coefficient of variation
(cv):

cv =
V (X )

E (X )2

The larger cv is, the more variable is the distribution relative to its
expected value
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Effect of Utilization and Service Variability II

Consider LQ for any M/G/1 queue:

LQ =
ρ2
(
1 + σ2µ2

)
2 (1− ρ)

=
ρ2

(1− ρ)

(
1 + (cv)2

2

)
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Multiserver Queue

Other common multiserver queueing models:

M/G/c/∞: general service times and c parallel server. The
parameters can be approximated from those of the M/M/c/∞/∞
model.

M/G/∞: general service times and infinite number of servers, e.g.,
customer is its own system, service capacity far exceeds service
demand.

M/M/C/N/∞: service times are exponentially distributed at rate m
and c servers where the total system capacity is N ≥ c customer
(when an arrival occurs and the system is full, that arrival is turned
away).
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Steady-State Behavior of Finite-Population Models I

When the calling population is small, the presence of one or more
customers in the system has a strong effect on the distribution of
future arrivals.

Consider a finite-calling population model with K customers
(M/M/c/K/K ):

The time between the end of one service visit and the next call for
service is exponentially distributed, (mean = 1/λ).

Service times are also exponentially distributed.

c parallel servers and system capacity is K .
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Steady-State Behavior of Finite-Population Models II

Some of the steady-state probabilities:

P0 =

[
c−1

∑
n=0

(
K

n

)(
λ

µ

)n

+
K

∑
n=c

K !
(K − n)!c !cn−c

(
λ

µ

)n
]−1

Pn =


(
K

n

)(
λ

µ

)n

P0, n = 0, 1, . . . , c − 1

K !
(K − n)!c !cn−c

(
λ

µ

)n

, n = c , c + 1, . . . ,K

L =
K

∑
n=0

nPn, w =
L

λe
, ρ =

λe

cµ

where λe is the long run effective arrival rate of customers to queue
(or entering/exiting service)

λe =
K

∑
n=0

(K − n) λPn
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Steady-State Behavior of Finite-Population Models III

Example: two workers who are responsible for 10 milling machines.

Machines run on the average for 20 minutes, then require an average
5-minute service period, both times exponentially distributed:
λ = 1/20 and µ = 1/5.
All of the performance measures depend on P0:

P0 =

[
2−1

∑
n=0

(
10

n

)(
1

4

)n

+
10

∑
n=2

10!
(10− n)!2!2n−2

(
1

4

)n
]−1

= 0.0647

Then, we can obtain the other Pn.
Expected number of machines in system:

L =
10

∑
n=0

nPn = 3.17 machines

The average number of running machines:

K − L = 10− 3.17 = 6.83 machines
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Networks of Queues I

Many systems are naturally modeled as networks of single queues:
customers departing from one queue may be routed to another.

The following results assume a stable system with infinite calling
population and no limit on system capacity:

Provided that no customers are created or destroyed in the queue, then
the departure rate out of a queue is the same as the arrival rate into
the queue (over the long run).
If customers arrive to queue i at rate λi , and a fraction 0 ≤ pij ≤ 1 of
them are routed to queue j upon departure, then the arrival rate from
queue i to queue j is λipij (over the long run).

The overall arrival rate into queue j :

λj = aj + ∑
i

λipij
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Networks of Queues II

If queue j has cj < ∞ parallel servers, each working at rate µj , then

the long-run utilization of each server is ρj =
λj

cµj
(where ρj < 1 for

stable queue).

If arrivals from outside the network form a Poisson process with rate
aj for each queue j , and if there are cj identical servers delivering
exponentially distributed service times with mean 1/µj , then, in
steady state, queue j behaves likes an M/M/cj queue with arrival
rate

λj = aj + ∑
i

λipij

Discount store example: see Figure 1

Suppose customers arrive at the rate 80 per hour and 40% choose
self-service. Hence:

Arrival rate to service center 1 is λ1 = 80(0.4) = 32 per hour
Arrival rate to service center 2 is λ2 = 80(0.6) = 48 per hour.
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Networks of Queues III

c2 = 3 clerks and µ2 = 20 customers per hour.

The long-run utilization of the clerks is:

ρ2 = 48/(3 ∗ 20) = 0.8

All customers must see the cashier at service center 3, the overall rate
to service center 3 is λ3 = λ1 + λ2 = 80 per hour.

If µ3 = 90 per hour, then the utilization of the cashier is:
ρ3 = 80/90 = 0.89
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Summary

Introduced basic concepts of queueing models.

Show how simulation, and some times mathematical analysis, can be
used to estimate the performance measures of a system.

Commonly used performance measures: L, LQ , w , wQ , ρ, and λe .

When simulating any system that evolves over time, analyst must
decide whether to study transient behavior or steady-state behavior.

Simple formulas exist for the steady-state behavior of some queues.

Simple models can be solved mathematically, and can be useful in
providing a rough estimate of a performance measure.
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