Queueing Models to be used in Simulation

Radu Trîmbițaș

UBB

1st Semester 2011-2012

Purpose

- Simulation is often used in the analysis of queueing models
- A simple but typical queueing model:

- Queueing models provide the analyst with a powerful tool for designing and evaluating the performance of queueing systems.
- Typical measures of system performance:
 - Server utilization, length of waiting lines, and delays of customers
 - For relatively simple systems, compute mathematically
 - For realistic models of complex systems, simulation is usually required.

2 / 41

• General characteristics of queues,

э

- General characteristics of queues,
- Meanings and relationships of important performance measures,

- General characteristics of queues,
- Meanings and relationships of important performance measures,
- Estimation of mean measures of performance.

- General characteristics of queues,
- Meanings and relationships of important performance measures,
- Estimation of mean measures of performance.
- Effect of varying input parameters,

- General characteristics of queues,
- Meanings and relationships of important performance measures,
- Estimation of mean measures of performance.
- Effect of varying input parameters,
- Mathematical solution of some basic queueing models.

- Key elements of queueing systems
 - Customer: refers to anything that arrives at a facility and requires service, e.g., people, machines, trucks, emails.
 - Server: refers to any resource that provides the requested service, e.g., repairpersons, retrieval machines, runways at airport.

- **Calling population**: the population of potential customers, may be assumed to be finite or infinite.
 - Finite population model: if arrival rate depends on the number of customers being served and waiting, e.g., model of one corporate jet, if it is being repaired, the repair arrival rate becomes zero.
 - Infinite population model: if arrival rate is not affected by the number of customers being served and waiting, e.g., systems with large population of potential customers.

- **System Capacity**: a limit on the number of customers that may be in the waiting line or system.
 - Limited capacity, e.g., an automatic car wash only has room for 10 cars to wait in line to enter the mechanism.
 - Unlimited capacity, e.g., concert ticket sales with no limit on the number of people allowed to wait to purchase tickets.

Arrival Processes - Infinite population models

- In terms of interarrival times of successive customers.
- Random arrivals: interarrival times usually characterized by a probability distribution.
 - Most important model: Poisson arrival process (with rate λ), where A_n represents the interarrival time between customer n-1 and customer n, and is exponentially distributed (with mean $1/\lambda$).
- Scheduled arrivals: interarrival times can be constant or constant plus or minus a small random amount to represent early or late arrivals.
 - e.g., patients to a physician or scheduled airline flight arrivals to an airport.
- At least one customer is assumed to always be present, so the server is never idle, e.g., sufficient raw material for a machine.

Arrival Processes - Finite population models

- Customer is pending when the customer is outside the queueing system, e.g., machine-repair problem: a machine is "pending" when it is operating, it becomes "not pending" the instant it demands service form the repairman.
- Runtime of a customer is the length of time from departure from the queueing system until that customer's next arrival to the queue, e.g., machine-repair problem, machines are customers and a runtime is time to failure.
- Let $A_1^{(i)}$, $A_2^{(i)}$, ... be the successive runtimes of customer *i*, and $S_1^{(i)}$, $S_2^{(i)}$, ... be the corresponding successive system times:

Queue Behavior and Queue Discipline

- **Queue behavior**: the actions of customers while in a queue waiting for service to begin, for example:
 - Balk: leave when they see that the line is too long,
 - Renege: leave after being in the line when it's moving too slowly,
 - Jockey: move from one line to a shorter line.
- **Queue discipline**: the logical ordering of customers in a queue that determines which customer is chosen for service when a server becomes free, for example:
 - First-in-first-out (FIFO)
 - Last-in-first-out (LIFO)
 - Service in random order (SIRO)
 - Shortest processing time first (SPT)
 - Service according to priority (PR).

• Service times of successive arrivals are denoted by S_1 , S_2 , S_3 .

- May be constant or random.
- $\{S_1, S_2, S_3, ...\}$ is usually characterized as a sequence of independent and identically distributed random variables, e.g., exponential, Weibull, gamma, lognormal, and truncated normal distribution.
- A queueing system consists of a number of service centers and interconnected queues.
 - Each service center consists of some number of servers, *c*, working in parallel, upon getting to the head of the line, a customer takes the 1st available server.

Service Times and Service Mechanism II

- Example: consider a discount warehouse where customers may:
- Serve themselves before paying at the cashier:

Figure: Warehouse example

Service Times and Service Mechanism III

• Wait for one of the three clerks:

 Batch service (a server serving several customers simultaneously), or customer requires several servers simultaneously.

Radu Trîmbițaș (UBB)

Queueing Models

- A notation system for parallel server queues: A/B/c/N/K, (due to Kendall) where
- A represents the interarrival-time distribution,
- B represents the service-time distribution,
- c represents the number of parallel servers,
- N represents the system capacity,
- *K* represents the size of the calling population.

Queueing notation II

- Primary performance measures of queueing systems:
 - P_n: steady-state probability of having n customers in system,
 - $P_n(t)$: probability of *n* customers in system at time *t*,
 - λ : arrival rate,
 - λ_e : effective arrival rate,
 - μ : service rate of one server,
 - ρ : server utilization,
 - A_n : interarrival time between customers n-1 and n,
 - S_n: service time of the *n*th arriving customer,
 - W_{n_2} : total time spent in system by the nth arriving customer,
 - W_n^Q : total time spent in the waiting line by customer n,
 - L(t): the number of customers in system at time t,
 - $L_Q(t)$: the number of customers in queue at time t,
 - L: long-run time-average number of customers in system,
 - L_Q : long-run time-average number of customers in queue,
 - w: long-run average time spent in system per customer,
 - w_Q: long-run average time spent in queue per customer.

Time-Average Number in System L

- Consider a queueing system over a period of time T,
- Let T_i denote the total time during [0, T] in which the system contained exactly *i* customers, the time-weighted-average number in a system is defined by:

$$\widehat{\mathcal{L}} = \frac{1}{T} \sum_{i=1}^{\infty} i T_i = \sum_{i=1}^{\infty} i \left(\frac{T_i}{T} \right)$$

• Consider the total area under the function is L(t), then,

$$\widehat{L} = \frac{1}{T} \sum_{i=1}^{\infty} i T_i = \frac{1}{T} \int_0^T L(t) dt$$

• The long-run time-average # in system, with probability 1:

$$\widehat{L} = rac{1}{T} \int_0^T L(t) dt
ightarrow L$$
 as $T
ightarrow \infty$

Time-Average Number in Queue

• The time-weighted-average number in queue is:

$$\widehat{L}_Q = rac{1}{T}\sum_{i=0}^\infty iT_i^Q = rac{1}{T}\int_0^T L_Q(t)dt o L_Q \qquad ext{as } T o \infty$$

• G/G/1/N/K example: consider the results from the queueing system (N > 4, K > 3).

Average Time Spent in System Per Customer

• The average time spent in system per customer, called the average system time, is:

$$\widehat{w} = \frac{1}{N} \sum_{i=1}^{N} W_i$$

where W_1 , W_2 , ..., W_N are the individual times that each of the N customers spend in the system during [0, T].

- for stable systems $\widehat{w} \to w$ as $N \to \infty$
- If the system under consideration is the queue alone:

$$\widehat{w}_Q = rac{1}{N}\sum_{i=1}^N W^Q_i o w_Q$$
 as $N o \infty$

• G/G/1/N/K example (cont.): the average system time is

$$\widehat{w} = \frac{\sum_{i=1}^{5} W_i}{5} = \frac{2 + (8 - 3) + \dots + (20 - 16)}{5} = 4.6$$
 time units

17 / 41

• Conservation equation (a.k.a. Little's law)

$$\widehat{L} = \widehat{\lambda} \widehat{w}$$

 $L = \lambda w$ as $T \to \infty$ and $N \to \infty$

where \widehat{L} average # in system, $\widehat{\lambda}$ arrival rate, \widehat{w} average system time

- Holds for almost all queueing systems or subsystems (regardless of the number of servers, the queue discipline, or other special circumstances).
- G/G/1/N/K example (cont.): On average, one arrival every 4 time units and each arrival spends 4.6 time units in the system. Hence, at an arbitrary point in time, there is (1/4)(4.6) = 1.15 customers present on average.

Server Utilization I

- Definition: the proportion of time that a server is busy.
 - Observed server utilization, $\hat{\rho}$, is defined over a specified time interval [0, T].
 - Long-run server utilization is ρ .
 - For systems with long-run stability: $\widehat{\rho} \to \rho$ as $\mathcal{T} \to \infty$
- For $G/G/1/\infty/\infty$ queues:
 - Any single-server queueing system with average arrival rate λ customers per time unit, where average service time $E(S) = 1/\mu$ time units, infinite queue capacity and calling population.
 - Conservation equation, $L = \lambda w$, can be applied.
 - For a stable system, the average arrival rate to the server, λ_s , must be identical to λ .
 - The average number of customers in the server is:

$$\widehat{L}_{s} = \frac{1}{T} \int_{0}^{T} \left(L(t) - L_{Q}(t) \right) dt = \frac{T - T_{0}}{T}$$

Server Utilization II

• In general, for a single-server queue:

$$\widehat{\mathcal{L}}_{s}=\widehat{
ho}
ightarrow\mathcal{L}_{s}=
ho$$
 as $\mathcal{T}
ightarrow\infty$

and

$$\rho = \lambda E(s) = \frac{\lambda}{\mu} < 1$$

• For a single server stable queue

$$ho = rac{\lambda}{\mu} < 1$$

• For an unstable queue $(\lambda > \mu)$, long-run server utilization is 1.

• For $G/G/c/\infty/\infty$ queues:

- A system with *c* identical servers in parallel.
- If an arriving customer finds more than one server idle, the customer chooses a server without favoring any particular server.
- For systems in statistical equilibrium, the average number of busy servers, L_s , is: $L_s = \lambda E(s) = \lambda/\mu$.
- The long-run average server utilization is:

$$ho = rac{L_s}{c} = rac{\lambda}{c\mu}$$
, where $\lambda < c\mu$ for stable systems

Server Utilization and System Performance

- System performance varies widely for a given utilization ρ .
 - For example, a D/D/1 queue with

 $E(A) = 1/\lambda$ $E(S) = 1/\mu,$

where:

$$L = \rho = \lambda / \mu$$
, $w = E(S) = 1/\mu$, $L_Q = W_Q = 0$.

- By varying λ and μ , server utilization can assume any value between 0 and 1.
- Yet there is never any line.
- In general, variability of interarrival and service times causes lines to fluctuate in length.

Server Utilization and System Performance

- Example: A physician who schedules patients every 10 minutes and spends S_i minutes with the *i*th patient: $S_i = \begin{pmatrix} 9 & 12 \\ 0.9 & 0.1 \end{pmatrix}$
- Arrivals are deterministic, $A_1 = A_2 = \ldots = \lambda^{-1} = 10$.
- Services are stochastic, $E(S_i) = 9.3 \text{ min}$ and $V(S_0) = 0.81 \text{ min}^2$.
- On average, the physician's utilization $=
 ho=\lambda/\mu=0.93<1.$
- Consider the system is simulated with service times: S1 = 9, S2 = 12, S3 = 9, S4 = 9, S5 = 9, The system becomes:

• The occurrence of a relatively long service time $(S_2 = 12)$ causes a waiting line to form temporarily.

Radu Trîmbițaș (UBB)

Queueing Models

1st Semester 2011-2012 23 / 41

Costs in Queueing Problems

- Costs can be associated with various aspects of the waiting line or servers:
- System incurs a cost for each customer in the queue, say at a rate of \$10 per hour per customer.
 - The average cost per customer is (W_j^Q is the time customer *j* spends in queue):

$$\sum_{j=1}^{N} \frac{\$10 \cdot W_j^Q}{N} = \$10 \cdot \widehat{w}_Q$$

• If λ customers per hour arrive (on average), the average cost per hour is:

$$\left(\widehat{\lambda}\frac{\textit{customer}}{\textit{hour}}\right)\left(\frac{\$10\cdot\widehat{w}_Q}{\textit{customer}}\right) = \$10\cdot\lambda\cdot\widehat{w}_Q = \$10\cdot\widehat{L}_Q/\textit{hour}$$

- Server may also impose costs on the system, if a group of c parallel servers (1 ≤ c ≤ ∞) have utilization r, each server imposes a cost of \$5 per hour while busy.
 - The total server cost is: $\$5 \cdot c\rho$.

24 / 41

Steady-State Behavior of Infinite-Population Markovian Models I

- Markovian models: exponential-distribution arrival process (mean arrival rate = λ).
- Service times may be exponentially distributed as well (M) or arbitrary (G).
- A queueing system is in statistical equilibrium if the probability that the system is in a given state is not time dependent:

$$P(L(t) = n) = P_n(t) = P_n.$$

- Mathematical models in this chapter can be used to obtain approximate results even when the model assumptions do not strictly hold (as a rough guide).
- Simulation can be used for more refined analysis (more faithful representation for complex systems).

Radu Trîmbițaș (UBB)

25 / 41

Steady-State Behavior of Infinite-Population Markovian Models II

• For the simple model studied in this chapter, the steady-state parameter, *L*, the time-average number of customers in the system is:

$$L=\sum_{n=0}^{\infty}nP_n$$

• Apply Little's equation to the whole system and to the queue alone:

$$w = \frac{L}{\lambda}, \qquad w_Q = w - \frac{1}{\mu}, \qquad L_Q = \lambda w_Q$$

• $G/G/c/\infty/\infty$ example: to have a statistical equilibrium, a necessary and sufficient condition is $\lambda/c\mu < 1$.

- Single-server queues with Poisson arrivals & unlimited capacity.
- Suppose service times have mean $1/\mu$ and variance σ^2 and $\rho = \lambda/\mu < 1$, the steady-state parameters of M/G/1 queue:

$$\rho = \frac{\lambda}{\mu}, \qquad P_0 = 1 - \rho$$

$$L = \rho + \frac{\rho^2 \left(1 + \sigma^2 \mu^2\right)}{2 \left(1 - \rho\right)}, \qquad L_Q = \frac{\rho^2 \left(1 + \sigma^2 \mu^2\right)}{2 \left(1 - \rho\right)}$$

$$w = \frac{1}{\mu} + \frac{\lambda \left(\frac{1}{\mu^2} + \sigma^2\right)}{2 \left(1 - \rho\right)}, \qquad w_Q = \frac{\lambda \left(\frac{1}{\mu^2} + \sigma^2\right)}{2 \left(1 - \rho\right)}$$

27 / 41

- No simple expression for the steady-state probabilities P_0 , P_1 , ...
- $L L_Q = \rho$ is the time-average number of customers being served.
- Average length of queue, L_Q, can be rewritten as:

$$L_Q = \frac{\rho^2}{2(1-\rho)} + \frac{\lambda^2 \sigma^2}{2(1-\rho)}$$

If λ and μ are held constant, L_Q depends on the variability, σ^2 , of the service times.

M/G/1 Queues - Example

- Two workers competing for a job, Able claims to be faster than Baker on average, but Baker claims to be more consistent,
- Poisson arrivals at rate $\lambda = 2$ per hour (1/30 per minute).
- Able: $1/\mu = 24$ minutes and $\sigma^2 = 20^2 = 400$ minutes²:

$$L_Q = \frac{\left(1/30\right)^2 \left(24^2 + 400\right)}{2 \left(1 - \frac{4}{5}\right)} = 2.7111 \text{ customers}$$

The proportion of arrivals who find Able idle and thus experience no delay is $P_0 = 1 - \rho = 1/5 = 20\%$.

• Baker: $1/\mu = 25$ minutes and $\sigma^2 = 2^2 = 4$ minutes²:

$$L_Q = \frac{\left(1/30\right)^2 \left(25^2 + 4\right)}{2 \left(1 - \frac{5}{6}\right)} = 2.0967 \text{ customers}$$

The proportion of arrivals who find Baker idle and thus experience no delay is $P_0 = 1 - \rho = 1/6 = 16.7\%$.

 Although working faster on average, Able's greater service variability results in an average queue length about 30% greater than Baker's. Radu Trimbitas (UBB)
 Queueing Models 1st Semester 2011-2012 29 / 41

M/M/1 Queues I

- Suppose the service times in an M/G/1 queue are exponentially distributed with mean $\frac{1}{\mu}$, then the variance is $\sigma^2 = \frac{1}{\mu^2}$.
- M/M/1 queue is a useful approximate model when service times have standard deviation approximately equal to their means.
- The steady-state parameters:

$$\rho = \frac{\lambda}{\mu},$$

$$P_n = \rho (1 - \rho)^n$$

$$L = \frac{\lambda}{\mu - \lambda} = \frac{\rho}{1 - \rho}, \qquad L_Q = \frac{\lambda^2}{\mu (\mu - \lambda)} = \frac{\rho^2}{1 - \rho}$$

$$w = \frac{1}{\mu - \lambda} = \frac{1}{\mu (1 - \rho)}, \qquad w_Q = \frac{\lambda}{\mu (\mu - \lambda)} = \frac{\rho}{\mu (1 - \rho)}$$

- **Example**: M/M/1 queue with service rate $\mu = 10$ customers per hour.
- Consider how L and w increase as arrival rate, λ, increases from 5 to 8.64 by increments of 20%:
- If $\lambda/\mu \ge 1$, waiting lines tend to continually grow in length.

λ	5	6	7.2	8.64	10
ρ	0.5	0.6	0.72	0.864	1.000
L	1	1.5	2.57	6.35	∞
w	0.2	0.25	0.36	0.73	∞

• Increase in average system time, w, and average number in system, L, is highly nonlinear as a function of ρ

- For almost all queues, if lines are too long, they can be reduced by decreasing server utilization (ρ) or by decreasing the service time variability (σ^2).
- A measure of the variability of a distribution, coefficient of variation (*cv*):

$$cv = \frac{V(X)}{E(X)^2}$$

• The larger *cv* is, the more variable is the distribution relative to its expected value

Effect of Utilization and Service Variability II

Consider L_Q for any M/G/1 queue:

$$L_Q = \frac{\rho^2 (1 + \sigma^2 \mu^2)}{2 (1 - \rho)} \\ = \frac{\rho^2}{(1 - \rho)} \left(\frac{1 + (cv)^2}{2}\right)$$

Other common multiserver queueing models:

- $M/G/c/\infty$: general service times and c parallel server. The parameters can be approximated from those of the $M/M/c/\infty/\infty$ model.
- M/G/∞: general service times and infinite number of servers, e.g., customer is its own system, service capacity far exceeds service demand.
- M/M/C/N/∞: service times are exponentially distributed at rate m and c servers where the total system capacity is N ≥ c customer (when an arrival occurs and the system is full, that arrival is turned away).

- When the calling population is small, the presence of one or more customers in the system has a strong effect on the distribution of future arrivals.
- Consider a finite-calling population model with K customers (M/M/c/K/K):
 - The time between the end of one service visit and the next call for service is exponentially distributed, (mean = $1/\lambda$).
 - Service times are also exponentially distributed.
 - c parallel servers and system capacity is K.

Steady-State Behavior of Finite-Population Models II

• Some of the steady-state probabilities:

$$P_{0} = \left[\sum_{n=0}^{c-1} {\binom{K}{n}} \left(\frac{\lambda}{\mu}\right)^{n} + \sum_{n=c}^{K} \frac{K!}{(K-n)!c!c^{n-c}} \left(\frac{\lambda}{\mu}\right)^{n}\right]^{-1}$$

$$P_{n} = \begin{cases} {\binom{K}{n}} \left(\frac{\lambda}{\mu}\right)^{n} P_{0}, & n = 0, 1, \dots, c-1 \\ \frac{K!}{(K-n)!c!c^{n-c}} \left(\frac{\lambda}{\mu}\right)^{n}, & n = c, c+1, \dots, K \end{cases}$$

$$L = \sum_{n=0}^{K} nP_{n}, \quad w = \frac{L}{\lambda_{e}}, \quad \rho = \frac{\lambda_{e}}{c\mu}$$

where λ_e is the long run effective arrival rate of customers to queue (or entering/exiting service)

$$\lambda_{e} = \sum_{n=0}^{K} \left(K - n \right) \lambda P_{n}$$

Steady-State Behavior of Finite-Population Models III

- Example: two workers who are responsible for 10 milling machines.
 - Machines run on the average for 20 minutes, then require an average 5-minute service period, both times exponentially distributed: $\lambda = 1/20$ and $\mu = 1/5$.
 - All of the performance measures depend on P_0 :

$$P_{0} = \left[\sum_{n=0}^{2-1} {\binom{10}{n}} \left(\frac{1}{4}\right)^{n} + \sum_{n=2}^{10} \frac{10!}{(10-n)! 2! 2^{n-2}} \left(\frac{1}{4}\right)^{n}\right]^{-1} = 0.0647$$

- Then, we can obtain the other P_n .
- Expected number of machines in system:

$$L = \sum_{n=0}^{10} nP_n = 3.17 \text{ machines}$$

• The average number of running machines:

$$K - L = 10 - 3.17 = 6.83$$
 machines

- Many systems are naturally modeled as networks of single queues: customers departing from one queue may be routed to another.
- The following results assume a stable system with infinite calling population and no limit on system capacity:
 - Provided that no customers are created or destroyed in the queue, then the departure rate out of a queue is the same as the arrival rate into the queue (over the long run).
 - If customers arrive to queue *i* at rate λ_i, and a fraction 0 ≤ p_{ij} ≤ 1 of them are routed to queue *j* upon departure, then the arrival rate from queue *i* to queue *j* is λ_ip_{ij} (over the long run).
- The overall arrival rate into queue *j*:

$$\lambda_j = a_j + \sum_i \lambda_i p_{ij}$$

Networks of Queues II

- If queue j has $c_j < \infty$ parallel servers, each working at rate μ_j , then the long-run utilization of each server is $\rho_j = \frac{\lambda_j}{c\mu_j}$ (where $\rho_j < 1$ for stable queue).
- If arrivals from outside the network form a Poisson process with rate a_j for each queue j, and if there are c_j identical servers delivering exponentially distributed service times with mean $1/\mu_j$, then, in steady state, queue j behaves likes an $M/M/c_j$ queue with arrival rate

$$\lambda_j = a_j + \sum_i \lambda_i p_{ij}$$

- **Discount store example:** see Figure 1
- Suppose customers arrive at the rate 80 per hour and 40% choose self-service. Hence:
 - Arrival rate to service center 1 is $\lambda_1=80(0.4)=32$ per hour
 - Arrival rate to service center 2 is $\lambda_2 = 80(0.6) = 48$ per hour.

- $c_2 = 3$ clerks and $\mu_2 = 20$ customers per hour.
- The long-run utilization of the clerks is:

$$\rho_2 = 48/(3*20) = 0.8$$

- All customers must see the cashier at service center 3, the overall rate to service center 3 is λ₃ = λ₁ + λ₂ = 80 per hour.
 - If $\mu_3 = 90$ per hour, then the utilization of the cashier is: $\rho_3 = 80/90 = 0.89$

- Introduced basic concepts of queueing models.
- Show how simulation, and some times mathematical analysis, can be used to estimate the performance measures of a system.
- Commonly used performance measures: L, L_Q, w, w_Q, ρ , and λ_e .
- When simulating any system that evolves over time, analyst must decide whether to study transient behavior or steady-state behavior.
 - Simple formulas exist for the steady-state behavior of some queues.
- Simple models can be solved mathematically, and can be useful in providing a rough estimate of a performance measure.