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Abstract

Steady free convection boundary layer about a truncated cone embedded in a porous medium saturated with pure or
saline water at low temperatures has been studied in this paper. The governing coupled partial differential equations are
solved numerically using a very efficient finite-difference method. Several new parameters arise and the results are given for
some specific values of these parameters. The obtained results for a Boussinesq fluid are compared with known results from
the open literature and it is shown that the agreement between these results is very good.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Convective flow in porous media has been a subject of great interest for the last several decades due to its
numerous thermal engineering applications in various disciplines, such as geophysical thermal insulation,
modeling of packed sphere beds, cooling of electronic systems, groundwater hydrology, petroleum Ireservoirs,
coal combustors, ground water pollution, ceramic processes, to name just a few of these applications. Some of
the most important analytical, numerical and experimental studies with such applications, which present the
current state-of-the-art in the area of convective heat transfer in porous media, have been gathered in the
monographs by Nield and Bejan (1999), Ingham and Pop (1998, 2002), Vafai (2000). Pop and Ingham
(2001), and Bejan and Kraus (2003).

Studies of convective heat transfer in porous media have been carried out in the past using the Boussinesq
approximation, namely the fluid density p varies linearly with temperature. However, this is inappropriate for
water at low temperatures because of the extremum at about 4 °C in pure water at 1 atm. Such conditions
occur commonly in porous medium, such as permeable soils flooded by cold lake or sea water, water-ice
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slurries, etc. A limited number of studies have been devoted in the past to the problem of convective boundary
layer adjacent to heated or cooled bodies immersed in a porous medium saturated with cold water wherein a
density extremum may arise. It should be mentioned that the buoyancy flow with an extremum may become
very complicated, with local flow reversals and convective inversions. Density differences may then not be
expressed as a linear function of the temperature. Ramilison and Gebhart (1980) examined the possible sim-
ilarity solutions for vertical, buoyancy induced flow in a porous medium saturated with cold water. Lin and
Gebhart (1986) have considered the corresponding case of a horizontal surface in a porous medium saturated
with cold or saline water., Gebhart et al. (1983) obtained multiple steady state solutions for the problem con-
sidered by Lin and Gebhart (1986) using two numerical codes. A review of the convective flow in the vicinity
of the maximum-density condition in water at low temperatures, along with relevant citations, is available in
the survey by Kukula et al. (1987).

The present paper concerns the steady free convection boundary layer adjacent to a heated truncated cone
embedded in an extensive porous medium saturated with either pure or saline water under the conditions in
which a density extremum might occur. The density state equation used here is that proposed by Gebhart and
Mollendorf (1977), which has been shown to be very accurate for both pure and saline water to a pressure level
of 1000 bars up to 20 °C, and to 40% salinity. To the best of our knowledge, this problem has not been con-
sidered before. However, Yih (1999) made an analysis for free convection boundary layer about a truncated
cone in a porous medium saturated with a Boussinesq fluid subjected to the coupled effects of thermal and
mass diffusion.

2. Basic equations

Consider the steady free convection over a truncated cone (with half angle 7) embedded in a saturated por-
ous medium filled with pure or saline water. It is assumed that the surface of the truncated cone is maintained
at the constant temperature T,,, while the temperature of the ambient fluid is T, where T,,> T. Fig. |
shows the flow model and physical coordinate system. The governing boundary layer equations are given
by, see Chamkha et al. (2004),

o 0
= i) = |
ax(/u) —(—ay(rl) 0 (n
K ‘
U= P%HT - Tm|(/ - }Tx — Tmlq] cos y (2>
or  arT o'T
el A 3
uax+vay O e (3)

Fig. |. Physical mode! and coordinate system,
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v=0, T=7T, ony=0

(4)
T=T, asy— oc

where r = xsiny, x and y are the streamwise and transverse Cartesian coordinates, respectively, v and v are the
velocity components in the x and y directions, respectively, T is the fluid temperature, K is the permeability of
the porous medium, g is the magnitude of the gravitational acceleration, p, i and a,, are the density, viscosity
and effective thermal diffusivity of the porous medium. The new density equation, which applies to both pure
and saline water is given by

p = pn1<Sﬂp)[I - ﬁlx1(sﬁp)|T_ Tm(S.p)l‘/} (5>

where p is the pressure, s is the salinity and p,, and Ty, denote the maximum density and temperature, respec-
tively, for given pressure and salinity levels. The forms and values of ¢, ., pm and T, are given in the paper
by Gebhart and Mollendorf (1977).

We now introduce the following new variables:

E=x"/xy, X =(x—x0)/x, n= Ra,\I-'/Z(,V/X*)
W= aceral../zf(cf,n), 0. n) = (T —Tu)/(Tw — Tx)

where i is the stream function which is defined in the usual way as v = (1/r)3y/0y and v = —(1/r)0y/dx,
respectively and Ra, = p,gK BT — T |"x" cos 7/pom is the modified local Rayleigh number. Substituting
{6) into Egs. (1)-(3) we get

(6)

/=10 —R[I" - IR| (7)
v (] ¢ N\ .00 . of
0 = § =¢ —_—_p 8
(g -elrg ) !
subject to the boundary conditions (4), which become
F(E0)=0, 0(&0) =1, 6(¢o)=0 (9)
where primes denote partial differentiation with respect to n and the parameter R is defined as
Tw—T
R — m X 10
7. T, (10)

[t is worth mentioning that the parameter R places the prescribed temperature 7, and T, with respect to
T(s,p). Tt also indicates the local direction of the buoyancy force across the thermal region and thus, also
the direction of flow (see Ramilison and Gebhart, 1980).

In terms of the new variables, the velocity components in x- and y-directions are given by

u = (oanRa. /x")f
5 1 ¢ . af 1
= —(ocmRaJ../'/X*> [(54- ] +é>/ +¢ @];; - 5’7_//}

We are also interested in the local Nusselt number, which is given by

Nu. [Ral> = —0/(.0) (12)

—~

It is worth mentioning to this end that Eqs. (7) and (8) become similar for ¢ =0 and ¢ = oc and they
describe the free convection over a vertical flat plate and, respectively, over a full cone embedded in a porous
medium saturated with cold water.

3. Results and discussion
Egs. (7) and (8) subject to the boundary conditions (9) have been solved numerically for some values of the

temperature parameter R in the range between —10 and 0.194 at some upstream coordinates ¢ = 0.0-1.0 using
the finite-difference scheme developed by Blottner (1970). The values of ¢ used are ¢ =1, 1.727147 and
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Table 1

Comparison of the values of —0'(£,0)

£ Cheng ct al. (1985) Yih (1999} Present
0 0.4437 0.4439 0.4444
0.5 0.5412 0.5285 0.5294
1.0 0.5991 0.5807 0.5812
2.0 0.6572 0.6373 0.6399
6.0 0.7219 0.7123 0.7130
10.0 0.7391 0.7330 0.7336
20.0 0.7532 0.7500 0.7507
40.0 0.7607 0.7592 0.7596
oC 0.7685 0.7686 0.7690

1.894816 (cold water approximation) also considered by Ramilison and Gebhart (1980). It should be men-
tioned that close to R =0.194 the convergence of the numerical solution is very slow. This is expected due
to the occurrence of the flow reversal across the convective layer. A comparison of the present results for
the local Nusselt number, —60'(&,0), with those reported by Cheng et al. (1985) and Yih (1999) is given in Table
1 for R =0 and g = 1 (classical Boussinesq approximation), and some values of the streamwise parameter £. It
can be seen from Table | and Fig. 8 that the present results are in excellent agreement with those of Cheng
et al. (1985) and Yih (1999), and we are, therefore, confident that the present numerical results are very
accurate.

The non-dimensional velocity /'(£,#) and non-dimensional temperature 6(¢,#) profiles are shown in Figs. 2-
8. Also, the variation of the local Nusselt number given by Eq. (12) is plotted in Figs. 9 and 10. It is seen from
Figs. 2 and 3 that for a fixed value of ¢ and ¢, the velocity profiles increase, while the temperature profiles
decrease as the parameter R decreases from zero. The same happens for these profiles when ¢ increases for
a fixed value of R and ¢ as can be seen from Figs. 4 and 5. However, Figs. 6 and 7 show that both the velocity
and temperature profiles decrease as the streamwise coordinate ¢ increase from & = 0 to & = oc (full cone). The
present results are also compared in Fig. 8 with those of Ramilison and Gebhart {1980) for the corresponding
problem of a vertical flat plate (£ = 0) embedded in a porous medium saturated with cold water. An excellent
agreement between these results can be again noticed. We notice that a small flow reversal occurs for the val-
ues of R in the range 0.1 < R £ 0.194 that confirms the findings of Ramilison and Gebhart (1980). Further.
Figs. 9 and 10 show that the values of the local Nusselt number increases with a decrease from zero of the
temperature parameter R and with the increase of the parameter ¢. The variation of the heat transfer is very
large over the whole range of R for the value of ¢ considered. However, the variation of the local Nusselt num-
ber is almost linear with &,

q=1.894816
g=1.0

il

Fig. 2. Effects of R on the tangential velocity profiles.
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0.25
0.00 ; . - .
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Fig. 3. Effects of R on the temperature profiles.
6

R=-3.0
=10
54
4 4
— 3
24
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0 T T T
0 1 2 3 4
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Fig. 4. Effects of ¢ on the tangential velocity profiles.
1.00
R=-3.0
E=1.0
0.75 A
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@ 0.50 4
0.25
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Fig. 5. Effects of ¢ on the temperature profiles.
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g=1.894816
R=-3.0

£=0.0.5.1.0, 5.0, 10. 00

-
. 3.0
n

Fig. 6. Development of the tangential velocity profiles.

1.00
G=1.894816
R=-3.0
£=0.0.5.1.0. 5.0.10, oo
0.75 A
<@ 0.50 4

0.25 1
0.00 T T T T T

0.0 0.5 1.0 1.5 2.0 2.5 3.0

n
Fig. 7. Development of the temperature profiles.

0.9

] q=1.894816
0.8 4
0.7 4

Present work, £=0
0.6 4 » o Ramilison and Gebhart |6]
20

Fig. 8. Reserved flow conditions for various values of R.
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Fig. 9. Effects of R on the local Nusselt number.

R=-3.0

q=1.894816
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0.8+

0.64

Nasl

Fig. 10. Effects of ¢ on the local Nusselt number.

4, Conclusions

The free convection boundary layer flow over a heated vertical truncated cone embedded in a porous med-
ium saturated with cold water wherein a density extremum may arise is investigated. Numerical investigations
supported by an exact analysis with the finite-difference are made for an isothermal surface and over a wide
range of the temperature parameter R and three values of the exponent ¢ in density Eq. (5). Two parameters
R, and ¢ arise and they determine the fundamental nature of the density field and the effects of the pressure
and salinity levels, respectively. The conventional free convection approximation is also included in the present
formulation by choosing ¢ = 1 in those flows for which R =0 (classical Boussinesq approximation). It is
shown that the effect of ¢ on heat transfer is great when [R] is high. and it increases with an increase of IR},
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1. Introduction

Let X be a real Banach space; let B ¢ X be a nonempty convex closed and bounded set. Let
T,S : B — B be two maps. For a given x¢, 1y € B, we consider the Ishikawa iteration (see [1])
forT and S:

X1 = (L= an)xn + 0 Tyn, Yu= (1= Pn)xn+ ppTxn, (1.1)

Ups1 = (1= ap)uy + 2,50,  vn = (1= )ty + PnStin, (1.2)
where {a,} € (0,1), {f.} €0,1), and

lima, = limf, =0, > a, = co. (1.3)
n—oo n—oo n=1

Set p, =0, Vn € N, to obtain the Mann iteration, see [2].
The map T is called Kannan mappings, see [3], if there exists b € (0,1/2) such that for
allx,y € B,

ITx = Tyl < b (llx = Tx|l + ly - Tyll). (1.4)
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Similar mappings are Chatterjea mappings, see [4], for which there exists ¢ € (0,1/2)
such that for all x, y € B,

ITx = Tyll < c (lx = Tyll + lly - Tx]). (1.5)

Zamtfirescu collected these classes. He introduced the following definition, see [5].

Definition 1.1 (see [5, 6]). The operator T : X—X satisfies condition Z (Zamfirescu condition)
if and only if there exist the real numbers a, b, c satistying 0 <a <1, 0 < b, ¢ <1/2 such that
for each pair x, y in X, at least one condition is true:

(i) (z1) ITx-Tyll < allx-yl,
(ii) (z2) ITx =Tyl <b(llx - Tx| + [y - Tyl),
(iii) (z3) [[Tx =Tyl < c(llx = Tyl + ly — Tx|}).
It is known, see Rhoades [7], that (z1), (z2), and (z3) are independent conditions.

Consider x,y € B. Since T satisfies condition Z, at least one of the conditions from (z1), (z2),
and (z3) is satisfied. If (z;) holds, then

ITx = Tyl < b (llx = Tx|l + lly = Tyll) <b(llx = Tx|l + (ly — xll + llx = Tx|| + [Tx - Tyl})).

(1.6)
Thus
(1-b)[[Tx - Tyl < bllx -yl + 2b[|x - Tx]|. (1.7)
From 0 < b < 1 one obtains,
b 2b
ITx = Tyll < = llx = yll + T llx = Tl (18)

If (z3) holds, then one gets

ITx =Tyl < (lbe~Tyll+ ly - Txll) < e(llx=Txll + [Tx =Tyl + llx — yll + lx = Tx|}) (1.9)

Hence,
(1= O)lITx = Ty|l < cllx - y|| + 2c]lx - T, (1.10)
that is,
ITx = Tyll < ——Jlx =yl + — |l - T (1.11)
1-¢ 1-c
Denote

6:=max{a, b ¢ }, (1.12)
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to obtain
0<6<1. (1.13)
Finally, we get
|ITx — Ty| < 6|lx - y|| +26||x - Tx||, Vx,y€B. (1.14)

Formula (1.14) was obtained as in [8].
Osilike and Udomene introduced in [9] a more general definition of a quasicontractive
operator; they considered the operator for which there exists L > 0 and g € (0,1) such that

ITx ~Tyll < qllx —yll + Lllx - Tx|, Vx,ye€B. (1.15)

Imoru and Olatinwo considered in [10], the following general definition. Because they
failed to name them, we will call them here contractive-like operators.

Definition 1.2. One calls contractive-like the operator T if there exist a constant g € 0,1) and a
strictly increasing and continuous function ¢ : [0, 00)—[0, o0) with ¢(0) = 0 such that for each
x,y€X,

ITx = Tyl < gllx = yll + (llx = Tx]l). (1.16)

In both papers [9, 10], the T-stability of Picard and Mann iterations was studied.

2. Preliminaries

The data dependence abounds in literature of fixed point theory when dealing with Picard-
Banach iteration, but is quasi-inexistent when dealing with Mann-Ishikawa iteration. As far
as we know, the only data-dependence result concerning Mann-Ishikawa iteration is in [11].
There, the data dependence of Ishikawa iteration was proven when applied to contractions.
In this note, we will prove data-dependence results for Ishikawa iteration when applied
to the above contractive-like operators. Usually, Ishikawa iteration is more complicated but
nevertheless more stable as Mann iteration. There is a classic example, see [12], in which
Mann iteration does not converge while Ishikawa iteration does. This is the main reason for
considering Ishikawa iteration in Theorem 3.2.
The following remark is obvious by using the inequality (1 - x) < exp(x), Vx > 0.

Remark 2.1. Let {6, } be a nonnegative sequence such that 6, € (0,1], Vn € N. If >>°,60, = oo, then
I1,,(1-6,) =0.

The following is similar to lemma from [13]. (Note that another proof for this lemma
[13] can be found in [11].)

Lemma 2.2. Let {a,} be a nonnegative sequence for which one supposes there exists ny € N, such that
for all n > ng one has satisfied the following inequality:

an1 < (1 - )Ln)an + -)Lno-n/ (21)
where A, € (0,1), VneN, 372 A, = o0, and 0, > 0 Vn € N. Then,

0 < lim sup a, < lim sup oy,. (2.2)

n—oo
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Proof. There exists n; € N such that o, < limsupo,, Vn > ny. Set n, = max{ng, n;} such that
the following inequality holds, for all n > ny:

ani1 < (1= 4y) (1= Aym1) -+ (1 = Ay, ) @, + lim sup o, (2.3)

Using the above Remark 2.1 with 6, = 1,, we get the conclusion. In order to prove (2.3),
consider (2.1) and the induction step:

an+2 < (1 - /\n+1>an+1 + An10ps1 < (1 - /\7“'1) (1 - /\n) (1 - ')L"_1) o (1 - )L"l)anl
+ (1 - )Ln+1)%ijl;10 sup o, + Xs10n41 (2.4)

=(1-A) (I =An) (1= Ap1) - (1= Ay ) A, + %g]g\o sup oy. =

3. Main results

Theorem 3.1. Let X be a real Banach space, B C X a nonempty convex and closed set, and T : B—B a
contractive-like map with x* being the fixed point. Then for all xy € B, the iteration (1.1) converges to
the unique fixed point of T.

Proof. The uniqueness comes from (1.16); supposing we have two fixed points x* and y*, we
get

" =yl = ITx" = Ty*| < qllx” - y”| + ¢(llx" = Tx"[|) = qllx* - y°I, 3.1)
thatis, (1 - gq)||x* — y*|| = 0. From (1.1) and (1.16) we obtain

[l = x| < (1= @) |20 = 7| + @a | Ty = Tx"||
< (U= a)[lxn =[] + angllyn - x7]]
< (L= a) |lxn = 7| + @ug (1 = ) | = || + gt || Tn = Tx"||

(3.2)
<(-an(1-9))(1- 1 =q)pn))|lxn — 7|
< (1=t (=)o -2 << (TTA-0) ) o =L
k=1
Use Remark 2.1 with 6y = aiq to obtain the conclusion. 0

This result allows us to formulate the following data dependence theorem.

Theorem 3.2. Let X be a real Banach space, let B C X be a nonempty convex and closed set, and let
€ > 0 be a fixed number. If T : B—B is a contractive-like operator with the fixed point x* and S : B—B
is an operator with a fixed point u*, (supposed nearest to x*) , and if the following relation is satisfied:

ITz-Sz|<e, VzeB, (3.3)
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then
€
* _ * < . .
|| x u||_1_q (3.4)
Proof. From (1.1) and (1.2), we have
X1 — U1 = (1= ) (0 = un) + o, (Tyy — Svy). (3.5)

Thus

201 = st || = [ (1 = @) (0 = ) + 0 (S = Tya) |

<(1—ap)||2xn — un|| + an||Svn — Ty + To, — Ty
<(1-an)|[xn = un|| + an||Ton = Sv|| + an[|Ton - Tya|
< (1= atn) [|20n = un| + ane + qetu||yn = vn | + A ([l yn = Tynl|)
< (1-ay) || =1 || +ane+qan (1 = ) || xn—tin || + qatnf | Txu=Stin ||+ n (|| Ty |)
< (L= an) [|20n = un| + ane + gt (1 = Bu) || 20w = ua|
+ @nPnq (|| Toxn = Ttan|| + || Trn = Sun]) + and([[yn = Tyal[)
< (1= an)||xn = un|| + ane + qan (1 = pu) || — un|
+ @ auPullxn = nll + qonud (|| 20 = Txul|) + qauPue + and (|| yn = Tya|)
=(1=an(1=q(1=Pn) = Pug®)) || %n = tn| + ctue + qatnPue
+ qetnPu (|| 2w = Txn|) + and (|| yn = Tynl|)
= (1-au(1=q) (1+aPu)) |0 —1tnl| +an (aBud (| Xn=T2nl|) + @ ([[yn=Tynl|) +qBne +e)

4P (|0 =Txal]) + @ (| yn=Tyl|) +Pne+e

< (1-an(1-9)) || Xn—tta ]| + (@ (1 - 9)) 1-¢g

(3.6)

Note that lim,, ... (||x,, = Txy|) = lim,—ep(||yn — Tyx|]) = 0 because ¢ is a continuous map and
both {x,}, {y.} converge to the fixed point of T. Set

)‘n = an(]- - Q)/

_ 4@ (|20 = Txul]) + §(llyn = Tynll) + Pne + £ (3.7)
n - 1_q ,
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and use Lemma 2.2 to obtain the conclusion

* _ * L
|| = || < e (3.8)
]

Remark 3.3. (i) Set p, =0, Vn € N, to obtain the data dependence for Mann iteration.

(ii) The Zamfirescu operators and implicitly (Chatterjea and Kannan) are contractive-like
operators, therefore our Theorem 3.2 remains true for these classes.

4. Numerical example
The following example follows the example from [8].

Example 4.1. Let T : R—R be given by
Tx=0, ifxé€ (-o0,2]
=-0.5, if x € (2, +).

(4.1)

Then T is contractive-like operator with g = 0.2 and ¢ = identity.

Note the unique fixed point is 0. Consider now the map S : R—R,
Sx=1, ifxe(-oxo,2]
(4.2)
=-1.5, if x € (2,+o0)
with the unique fixed point 1. Take ¢ to be the distance between the two maps as follows:
|Sx-Tx||<1, VxeR. (4.3)

Setug = x0 =0, a, = B = 1/(n +1). Independently of above theory, the Ishikawa iteration
applied to S, leads to

Iteration step Ishikawa iteration
1 0.5

10 0.9 (44)
100 0.99
Note that forn =1,
1 1 1
0.5—n+10+n+15<§>, (4.5)

since y; = (1/(n+1))0+ (1/n+ 1)1 = 1/2. (The above computations can be obtained also
by using a Matlab program.) This leads us to “conclude” that Ishikawa iteration applied to S
converges to fixed point, (x* = 1). Eventually, one can see that the distance between the two
fixed points is one. Actually, without knowing the fixed point of S (and without computing it),
via Theorem 3.2, we can do the following estimate for it:

1 110

Il < 7= = 7=g3 12. (4.6)

1-02 8

As a conclusion, instead of computing fixed points of S, choose T more closely to S and the
distance between the fixed points will shrink too.
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Abstract

The mixed convection flow near an axisymmetric stagnation point on a vertical
cylinder is considered. The equations for the fluid flow and temperature fields
reduce to similarity form that involve a Reynolds number R and a mixed convection
parameter A, as well as the Prandtl number o. Numerical solutions are obtained
for representative values of these parameters, which show the existence of a critical
value A = A:(R, o) for the existence of solutions in the opposing (A < 0) case.
The variation of A\, with R is considered. In the aiding (A > 0) case solutions
are possible for all A and the asymptotic limit A — oo is obtained. The limits of
large and small R are also treated and the nature of the solution for large Prandtl
number is briefly discussed.
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1 Introduction

Combined forced and free convection flows (mixed convection) are encountered in many
technological and industrial applications including solar receivers exposed to wind cur-
rents, electronic devices cooled by fans, nuclear reactors cooled during emergency shut-
down, heat exchanges placed in a low-velocity environment and many more. Two-
dimensional stagnation point flows arise in the vicinity of a stagnation line resulting from
a two-dimensional flow impinging on a curved surface at right angles to it and thereafter
flowing symmetrically about the stagnation line. Hiemenz [1] was the first to study
two-dimensional stagnation-point flows. Later Eckert [2] and Gorla [3] considered the
corresponding forced convection heat transfer problem. Three-dimensional stagnation-
point flows have been studied by Homann [4] and the axisymmetric stagnation-point flow
on circular cylinder by Wang [5] and Gorla [6]. The three-dimensional flow resulting from
an axisymmetric stagnation flow impinging obliquely on a body surface has been treated
by Weidman and Putkaradze [7]. The problem of axisymmetric stagnation-point flow
acting on a porous flat plate oscillating transversely in its own plane has been investi-
gated by Weidman and Mahalingam [8]. In this case a three-dimensional flow results
from a stagnation-point flow on a flat plate oscillating in its own plane. Gorla [9] has
studied the unsteady viscous flow in the vicinity of an axisymmetric stagnation point on
a circular cylinder.

The steady mixed convection flow near the stagnation region of a vertical flat plate has
been studied by Ramachandran et al. [10] and by Gorla [11] for the flow near an axisym-
metric stagnation point on a slender impermeable vertical cylinder. Mixed convection
flows arise when the buoyancy forces resulting from temperature differences within the
flow become comparable to the pressure gradient forces arising from the forced flow. As a
consequence, both the flow and thermal fields are significantly affected by the buoyancy
forces. The study of thick axisymmetric free convection boundary layers along slender
bodies has been shown by Kuiken [12] to have an unusual structure at large distances
along the cylinder. When the boundary-layer variables are scaled so as to be of order
unity within the boundary layer, the boundary conditions that hold on the surface of the
slender body are given at a value of the independent variable which is close to zero. As
a result, when a perturbation analysis is used to obtain the solution at large distances
along the cylinder, the body is reduced to a line at the first approximation.

Recently several papers have been published on axisymmetric mixed convection boundary-
layer flows along slender bodies. Naraian and Uberoi [13, 14] have studied the mixed
convection boundary layer on a vertical needle. These are bodies of revolution whose
diameter is of the same order as the thickness of the velocity or thermal boundary layers
that develop on it. By appropriately varying the radius of the needle, the boundary-layer
equations admit similarity solutions. Wang [16] found a similarity solution for the mixed
convection boundary layer on an adiabatic vertical needle with a heat source at the tip,

a situation that arises, for example, for a stick burning at its lower end.

The present paper considers the steady mixed convection flow that develops near an
axisymmetric stagnation point on a vertical isothermal cylinder in the case when the
boundary layer is thick compared to the radius of the cylinder. We start by describing



the governing equations, following closely [8, 11] for the forced convection problem. This
results in two ordinary differential equations for the flow and temperature fields that
involve, as well as the Prandtl number o, the two further parameters R, which is measure
of the forced flow, and a mixed convection parameter \. We start by giving numerical
solutions to these equationsfor representative values of A and R, finding dual solutions
for negative A with critical points A\, < 0, requiring A > A, for the existence of a solution.
We determine how A, varies with R, before considering the asymptotic limits of A — oo
(free convection limit) and R — oo and R — 0.

2 Equations

We consider the steady mixed convection flow near an axisymmetric stagnation point on
an infinite cylinder. The cylinder is taken as mounted vertically and the flow is assumed
to be axisymmetric about the z-axis, which measures distance along the cylinder in a
vertical direction with gravity acting in the negative x direction. The stagnation point
is at x = 0, r = a, where r measures distance radially from the centre of the cylinder of
radius a. The ambient fluid has a constant temperature 7, and the cylinder is maintained

at a temperature T, (z) = Tj (—) + T,,. Having T,, > T, corresponds to assisting flow,
a

with T, < T, corresponding to opposing flow. The outer flow in this situation, taken
directly from [11], is

u:—<%°°) <r—“72>, v =20 (%) (1)

where Uy is the planar flow at large distances from the cylinder and where v and v are
the velocity components in the  and r directions respectively.

Again following [11], we introduce the variables

T

T-Ty

1= ()" =), =20 (D) £ 0 =

a

(2)

a

where T is the temperature of the fluid. Applying (2) in the governing equations and
making the standard Boussinesq approximation, we find that our flow is described by
the similarity equations, again from [11],

nf" + "+ R(ff+ 1= )+ 20 =0 (3)

nd" +6 +ocR(f0'—f'0)=0 (4)

subject to the boundary conditions, from (1), that
f(Hy=o0, f(1)=0, (1) =1, ff=1,0—-0 as n— o0 (5)
(primes denote differentiation with respect to n) where o is the Prandtl number and

where
Usa )= BT,

R= —
v’ 88U v

(6)



are, respectively, a Reynolds number and a mixed convection parameter, with A\ > 0
corresponding to assisting flow and A < 0 corresponding to opposing flow. In (6) v is the
kinematic viscosity of the fluid, g the acceleration due to gravity and 8 the coefficient of
thermal expansion.

The parameters perhaps of most physical interest are the skin friction parameter Cy
and the Nusselt number Nu, defined as

_Tw _ G o 8_1) _ B_T
Cr = U2 Nu = 7k(Tw T where 7, = 1 (aT)r:a Gw = <8r )r:a (7)

and where p and £ are the dynamic viscosity and thermal conductivity respectively. From
(2), we have that

Cp=2 (2) (1),  Nu=—20'(1) (8)

We start by describing numerical solutions to equations (3, 4) subject to boundary
conditions (5). Throughout we assume that the Prandtl number o is of O(1), our nu-
merical results are all for the case when o = 1.

3 Numerical results

Equations (3, 4) subject to boundary conditions (5) were solved numerically using a
standard shooting method for solving boundary-value problems (D02AGF in the NAG
library). In figure 1 we plot f”(1) and 6'(1) against A for R = 1,5,10 (with 0 = 1). This
figure shows that, for A < 0, there is a critical value A\, with solutions possible only for
0> A > A, and for A > A, there are dual solutions. The value of \. decreases as R
is increased, thus giving a greater range of negative A for possible solutions. For A > 0
there is only one solution with the values of f”(1) increasing and €'(1) decreasing as A
is increased (for a given value of R). For the larger values of A, the values of f”(1) for
R =1 becomes greater than those for the larger values of R (= 5, 10), indicating that,
for sufficiently large values of A\, f”(1) increases as R is decreased. However, the values
of —0'(1) increase as R is increased (for a given value of ).

In figure 2 we take values for A (A = 1, —2) representative respectively of aiding and
opposing mixed convection and plot the corresponding values of f”(1) and #'(1) against
R. We see that in both cases #'(1) decreases as R is increased. However, for A =1, f"(1)
has a minimum value, of f”(1) = 1.6648 at R = 0.272, before increasing again for the
larger values of R. For A = —2 there is a critical value R, of R (R, ~ 0.622) below which
there are no solutions, as might be expected from figure 1.

3.1 Critical points

We saw in figure 1 the existence of a critical value A, of A, requring A > A. for a solu-
tion to exist. We can calculate how A, varies with R using the appproach described in
[17, 18]. Essentially we perturb about the solution given by equations (3, 4) to obtain
a linear homogeneous problem. It is then the existence of a nontrivial solution to this
homogeneous problem that determines A, for a given value of R (and o). In figure 3 we



plot A\, against R, with the figure showing that A, decreases as R is increased, seemingly
in a linear manner for the larger values of R, and increases towards zero as R is reduced.
The region in the (A, R) parameter space where solutions exist is labelled on this figure.

Our numerical solutions suggest considering various limiting forms and we now discuss
these in more detail, starting with the free convection limit, A — oc.

4 Asymptotic results

4.1 X large

To obtain a solution valid for A large we start by putting
f=XMEF (=M -1 9)
leaving # unscaled. This results in the equations
(L4+ X YVIOF" + X VAF" + R(FF" —F?)+ X 'R4+60=0 (10)

(1+ AV + X Y4 + oR(FO — F'9) =0 (11)

where primes now denote differentiation with respect to (, subject to the boundary
conditions

F(0)=0, F'(0)=0,000)=1, F —=X2 050 as (=0 (12)
Equations (10, 11) suggest looking for a solution by expanding
F=Fy+ X YR+  0=0+X"% +-.. (13)

We can scale the leading-order problem obtained by substituting expansion (13) into
equations (10, 11) by putting

Fy=R*"'F,, (=RVY (14)
This results in
Fo +FoFg—Fa4+0,=0 (15)
0" + o(Foby — Fyflp) = 0 (16)
subject to
Fo(0) =0, Fy(0)=0, 6,(0)=1, F,—0, 0p—0 as  — oo (17)

where primes now denote differentiation with respect to . A numerical solution of (15
—17) gives, for o =1, Fg(O) = 0.73950, 6;(0) = —0.595009.

We can continue to the next order by first rescaling

F,=R'F,, 6,=R"%, (18)



This gives, with (14),

F' + FoF, + F\Fy, —2F,F, + 0, = —(Fy +CFy) (19)
0, + o(Fob, + F16), — Fof, — F16,) = —(6), + C 61 (20)

subject to
F (0)=0, F,(0)=0, 6,(0) =0, F,—0, 0, =0 as ¢ — o0 (21)

A numerical solution gives, again for o = 1, that F, (0) = 0.06888, 5'1(0) = —0.23452.

From (9, 14) and (18) we have

(de 23 1/4 1/4
2L ~ | = 0.7395 + 0.0689(RA) ™ /% + -+ ),
d772)n:1 <R) ( )
(22)

(j—i) ~ — (RN)*(0.5951 4 0.2345(RA\) 4 + . ..) as A — oo
n=1

Expressions (22) show that, for sufficiently large values of A\, —f'(1) increases as R is
increased and that f”(1) decreases as R is increased, in line with figure 1. In figure 4
we plot the values of (A\3/R)~Y/*f"(1) and —(AR)~'/4@'(1) obtained from the numerical
solution of equations (3, 4) against A for R = 1, 10. In both cases the asymptotic limit
for A large given by (22) is approached as A increases, though more slowly for R = 10
than for R = 1 as might be expected from (22).

4.2 R large

To obtain a solution for R large we follow the approach given in [7] for the forced con-
vection case and start by writing

f=R"¢,  £=R"(n-1) (23)

and leaving 6 unscaled. This results in the equations
(1+RV2)¢" + R2¢" + 1+ ¢¢" — ¢” + AR710 =0 (24)
(1+R7Y26)0" + R7Y20' + o(¢0' — ¢'0) = 0 (25)

subject to the boundary conditions given in (5) and where primes now denote differenti-
ation with respect to £&. Equations (24, 25) suggest an expansion in powers of R~/2, the
leading-order term just being the forced convection limit discussed in [7].

For convection to have an effect at leading order we require A to be large, specifically
of O(R). This leads us to put

A=uR with g of O(1) (26)
The problem for the leading-order terms ¢g, 6y is now

v+ 1+ oty — AT + by =0 (27)
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0y + o (doby — dobo) =0 (28)
still subject to the boundary conditions that
¢0(0) = 0: ¢6(0) = 07 00(0) = 17 ¢6 - 17 00 — 0 as 5 — 0 (29)

Equations (27 - 29) have to solved numerically and graphs of ¢{(0) and 6;(0) for o =1
plotted against p are shown in figure 5. From these figures we see that there is a critical
value p, of p with dual solutions for 0 > p > p. and no solutions for p < p.. For o =1,
we find that p. = —2.3618, giving

Ae ~ —2.3618R + - - - as R— o0 (30)

For i > 0 there is only one solution with both ¢f(0) and —6}(0) increasing as y is in-
creased.

Expression (30) shows a linear increase in |A.| with R, as noted previously about figure
3, and to confirm this asymptotic behaviour we plot the values of A\,R~! obtained from
our numerical integrations to find A, against R in figure 6. The numerically determined
values approach this asymptotic limit (shown by the broken line), though only slowly as
R is increased, suggesting that the O(R~/2?) correction has a significant effect even at
moderately large values of R.

For u large we can recover expressions (22) by putting

go=p't gy,  E=ptte (31)

When (31) is substituted into equations (27 - 29) and then y — oo, we obtain equations
(15 - 17) and, on using (26), the leading-order terms in (22).

4.3 R small

The behaviour of the solution for R small depends on whether A is small or of O(1). We
start with the latter case, assuming that A > 0.

4.3.1 X of O(1)

For this case we start in an inner region where 7 is of O(1) and scale
f=AR)g, 0=1+B(R)h (32)

The scaling factors A and B are to be determined, though we assume that

RA
AR)>1,  BR)<1, =<1, AR<I (33)

When (32) is substituted into equations (3, 4) and (33) is taken, the leading-order terms
9o, ho are given by, on satisfying the boundary condtions on 7 = 1,

go = ag(nlogn —n+1) ho = by logn (34)



for constants ag, by to be determined. Before continuing the solution in the inner region,
we next consider the outer region.

For the outer region we write

f=R"1G, Hz%fH, Y =p8n, where ﬁzﬂ(R)«l,%<<1 (35)

with the scaling factor B(R) also to be determined. When (35) is substituted into equa-
tions (3, 4) and the assumptions for 3 given in (35) applied, we find that the leading-order
problem in the outer region is

YG"+G"+GG" —G* 4+ \H =0, YH"+H +0(GH'-G'H) =0 (36)
subject to the outer boundary conditions at leading order that
G -0, H—-0 as Y —> (37)

To find the inner boundary conditions for (36) we need to match with the inner region.

We can express the inner solution (34) as, on using (35),

/ A(R) agY [logY + (—logpB) — 1] + - --
(38)
0 ~ [1+0byB(R)(—logB)]+byB(R)logV + -
From (38) we choose
_ p 1 p B
A(R) - m, B(R) = m = E’ bO =1 (39)
Hence B(R) is given implicitly by
. 2 R'/?
52(—10g5):R, with IBN(_\{;giR)lﬂ_f_ as R—=0 (40)

We note that (39, 40) are consistent with the assumptions in (33) and (35). Expressions
(38) then give, at leading order,

Gr~a)Yy +---, H~—logY +--- as Y =0 (41)

To get higher order terms in (41) we need to consider the inner region again. On
using (39) we see that an expansion of the form

(_lgoilgﬁ)_i_..._FO(/B)’ h:h0+(_liz;71gﬁ)+"'+0(ﬁ) (42)

is required, where the O(8) terms in (42) also include terms in

B(—logB)?,  B(-logP),  B(~logB)™"

g=9go+

8



and h; = by logn for some constant b;. When (42) is substituted into equations (3, 4)
and using (32, 35) we find, after some calculation, that the inner boundary condition
(41) for the outer region becomes modified to

1
G ~ a0Y+%Y210gY+§(a§—%—)\bl)Y2+---,
(43)
H ~ —=logY +b —oaYlogY +oag(by +2)Y +--- as Y =0

We can remove the parameter A from this problem by writing Y = A/?Y and then
the problem in the outer region becomes

YG"+G"+GG" —G?+ H =0, ?HI'-FHI-}-U(GH'—GIH):O (44)

subject to the conditions that

G'—=0, H—-0 as Y — o0 (45)
and
v’ 1 5
(46)
H ~ —logY +b —oa,Y logY + otg(by +2)Y + - -- as Y — 0

where ag = /\’I/an and by = b, + % log A.
The problem given by (44 — 46) has to be solved numerically to determine the con-

stants @ and b, and we find, for ¢ = 1, that @, = 1.0016, b; = —1.2396. This then gives
for small R and 0 =1,

d2f) 1 ' 12
L) = ———_(1.0016AY% + -
(dn2 =1 ﬂ(—logﬂ)Q( t)

(d&) 1 ( 1.2396 + 3 log A
n=1

(47)

dn (—log B) (—logd) )

with 3 given in terms of R by (40). Equations (3, 4) were solved numerically with
A = 1 for small values of R. The solution domain increases as R is decreased, in line
with (35), and the outer boundary condition had to be applied at increasingly larger
values of n = 1, as R was decreased, the results shown in figure 7 were obtained using
Neo = 250. In figure 7 we give plots of (1) and #'(1) against R obtained from our
numerical integrations, the values obtained from (47) are shown by broken lines. The
agreement with the asymptotic forms for small R is not particularly good, though both
solutions are following the same trend. This difference can, perhaps, be explained by the
fact that the approach to the asymptotic forms (47) is only very slow, with correction
terms of (—logB)™! ~ (—logR)™! and hence R has to be extremely small for these
correction terms to have only a small effect. In practice we probably require values of
R too small for obtaining reasonably accurate numerical solutions. At these very small
values of R, 1. needs to be extremely large leading to errors in the shooting method
employed to solve the two-point boundary-value problem.

9



4.3.2 A small

We can see, particularly from (36, 37), that, when A is of O(1), the flow is driven at
leading order only by the natural convection effects. The forced flow enters the solution
at higher order. However, when ) is small, this cannot be the case and to get an estimate
on A when the forced convection effects have an influence at leading order, we see from
(35) that the buoyancy term included in equation (36) is of O(A3?R~') whereas the
forced convection term is of O(R). This suggests, on using (40), that these two effects
will be comparable when A ~ R(—log R) and leads us to put

A= R(—logR)v with v of O(1) for R small (48)

We start our solution for this case in the inner region where we have at leading order,
motivated by our previous solution for A of O(1),

1 1 dq
[~ mco(nlogn—n—i—l)—l-- ey O~ 1+m (—10g77—|— mlogn—l— . )
(49)
for constants ¢y and d; to be determined. For the outer region we now put
1 1
fzﬁG, Hzmﬂ, Y =Rn (50)

Applying (50) in equations (3, 4) gives, at leading order
YG" +G"+14+GG"-G?*+vH=0, YH'+H +0(GH -G'H)=0 (51
now subject to the outer boundary conditions
G —1, H—0 as Y — o0 (52)
and, on matching with the inner region,
GroeY+-o+, He~—logV +di+--- as Y —0 (53)

We note that v cannot be scaled out of problem (51 — 53) (as it could previously) and
that, for v = 0 (forced convection limit)

) o [

w=1 G=Y, H=-—

giving
o —v 3 1
dy = / e "(3+v)logu dv —logo = —1.4448 — log o
0 (14v)?
Plots of ¢y against v obtained by solving (51 — 53) numerically are given in figure 8.
This figure shows that there is a critical value v, of v, with v, = —0.9832 for 0 = 1, and

dual solutions for 0 > v > v,.. This gives
Ae ~ —0.9832R(—logR) + - - - as R—0 (55)

For v > 0 there is only one solution and the problem given by (44 - 46) can be recovered
for v large by putting Y = v'/2Y in (51 - 53) and letting v — oo.

10



5 Conclusions

We have considered the mixed convection boundary-layer flow around an axisymmetric
stagnation point. The equations for the flow and temperature fields reduce to similar-
ity form (3 — 5) and involve the three parameters, the Prandtl number o, a Reynolds
number R and a mixed convection parameter A, defined in (6). The similarity equations
were solved numerically for representative values of the parameters R and A, see figures
1 and 2. The main conclusions from these numerical integrations were that, for A < 0
(opposing flow), there was a critical value A, of A with dual solutions for A\, < A < 0 and
no solutions for A < A.. For A > 0 (aiding flow) there was a single solution for all A. An
asymptotic solution for A large was derived, with the results summarized in (22).

The occurrence of dual solutions for opposing flows is not unexpected and is consistent,
with many previous studies of similarity solutions in mixed convection, see [17, 18, 19|
for example. The critical value A\, was seen to depend on R (and on o), see figure 3.
A solution for R large was obtained which showed that A. is of O(R) in this case, as
given in (30) for o = 1. Thus for strong external flows (large R) boundary-layer flows
are still possible even when there are strongly opposing buoyancy forces. For R small
the flow was seen to be driven predominantly by the buoyancy forces when ) is of O(1),
as summarized in (47). However, for ) small both buoyancy and the external flow have
comparable effects, giving a critical value of O(R(—log R)) for R small, as given by (55)
for 0 = 1. The effect of weak external flows is to severely limit the range of A\ where
there can be opposing flows.

Our numerical results were for the case 0 = 1 and we expect qualitatively similar
behaviour when o is of O(1), typical of gases. For liquids (water) o is somewhat larger
and it is thus worth briefly considering the large ¢ limit. Following the treatment in
[20, 21] we expect that, for o large, the solution to involve a relatively thin thermal inner
layer and a thicker outer viscous flow region. In the inner region we have

n=1+oc"13r, f=0"%2d (56)
with 6 left unscaled. At leading order, for o large, we obtain
" =0, 0" + R(®0' — d'9) =0 (57)

subject to
®(0) =0, 9'(0)=0, 6(0) =1, -0 as 7 — 0 (58)

with the outer condition on ® relaxed at this stage and where primes denote differentia-
tion with respect to 7.

Equations (57, 58) give
® = Ayr? (59)

for some constant Ay = Ag(R) to be determined and
(3)!
3(3)!

0 —

4 2 1
e—sU(g;g;s) where Szg(RAo)T?’ (60)
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in terms of confluent hypergeometric functions [22]. Expressions (56) and (60) give

(ﬁ> = (g £
dn /-,

2()"

Expression (61) shows that the heat transfer increases as o is increased, being of O(c'/?)
for o large.

+ - as g — oo (61)

To determine the constant Ay we need to consider the outer region, in which we can
neglect the temperature and write n = 1 4+ 7. This leads to

A+ + "+ ROU+ [ = %) =0 (62)
and, on matching with the inner region, that
f~AR +-- as §—0, ff—0 as 7— o0 (63)

Equations (62, 63) are essentially the forced convection limit with the solution given
by [7]. Their solution then gives Ay in terms of R. For R large [7] show that Ag ~
0.6163 RY/2 + ... giving (Z—Z) of O(RY?¢'/3 for R and o large.
n=1

The leading order problem (57 — 60, 62, 63) for o large does not give a critical value
for A. In fact the solution is independent of A\ at leading order, with the buoyancy forces
arising at O(c~/%) in the inner region. This suggests that the critical value ), will, for a
given value of R, decrease to large negative values as o is increased. We illustrate this in
figure 9 with a plot of #'(1) against A for R =1 and o = 10 to compare with the results
for o = 1. This figure clearly shows that the critical values A, has decreased for o = 10
over that for 0 = 1, giving a greater range of A for solutions in the opposing case. The
values of §'(1) have, for a given A, also decreased for o = 10, in line with expression (61).
In figure 10 we plot A, against o again for R = 1, showing that \. decreases relatively
slowly as o is increased, as can be expected from the above analysis for the large A case.
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Captions for figures

Figure 1 Plots of (a) f”(1) and (b) '(1) against A for R = 1, 5, 10 obtained from the
numerical solution of equations (3, 4) subject to boundary conditions (5) for o = 1.

Figure 2 Plots of (a) f”(1) and (b) ¢'(1) against R for A = 1, —2 obtained from the
numerical solution of equations (3, 4) subject to boundary conditions (5) for o = 1.

Figure 3 A plot of the critical value A, of A against R (for 0 = 1). The region in the
(A, R) parameter plane where solutions exist is labelled on the figure.

Figure 4 Plots of (A\3/R)~"*f"(1) and —(AR)~/*#'(1) obtained from the numerical
solution of equations (3, 4) against A for R =1, 10 and ¢ = 1.

Figure 5 Plots of (a) ¢}(0) and (b) 6,(0) against 4 = A R™" for the solution for large
R given by (27 - 29) for o0 = 1.

Figure 6 A plot of A, R™! against R for 0 = 1. The asymptotic limit (30) for R large
is shown by the broken line.

Figure 7 Plots of (a) f”(1) and (b) #'(1) against R for A = 1, o = 1 for small R obtained
from the numerical solution of equations (3, 4) subject to boundary conditions (5). The
asymptotic expressions (47) are shown by the broken lines.

Figure 8 A plot of ¢y against v, defined in (48), for 0 = 1 arising in the small R, small
A problem (51 — 53).

Figure 9 Plots of §'(1) against A for R =1 and o = 1, 10 obtained from the numerical
solution of equations (3, 4) subject to boundary conditions (5).

Figure 10 A plot of the critical value A\, of A against ¢ for R = 1. The region in the
(A, o) parameter plane where solutions exist is labelled on the figure.
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Figure 1: Plots of (a) f”(1) and (b) #'(1) against A for R = 1, 5, 10 obtained from the

numerical solution of equations (

(b)
3, 4) subject to boundary conditions (5) for o = 1.
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Figure 2: Plots of (a) f”(1) and (b) #'(1) against R for A = 1, —2 obtained from the
numerical solution of equations (3, 4) subject to boundary conditions (5) for o = 1.
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Figure 3: A plot of the critical value A, of A against R (for 0 = 1). The region in the
(A, R) parameter plane where solutions exist is labelled on the figure.

17



2.54

2.0

1.5

1.0

1.1

1.0

0.9 R=10

0.8+

0.74

0.6 T T T T T T T T

Figure 4: Plots of (A3/R)™'/*f"(1) and —(AR)*/*¢'(1) obtained from the numerical
solution of equations (3, 4) against A for R =1, 10 and o = 1.
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Figure 5: Plots of (a) ¢§(0) and (b) 4(0) against u = A R™! for the solution for large R
given by (27 - 29) for o = 1.
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Figure 6: A plot of A\, R~! against R for 0 = 1. The asymptotic limit (30) for R large is
shown by the broken line.
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Figure 7: Plots of (a) f”(1) and (b) #'(1) against R for A = 1, ¢ = 1 for small R obtained
from the numerical solution of equations (3, 4) subject to boundary conditions (5). The
asymptotic expressions (47) are shown by the broken lines.
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Figure 8: A plot of ¢y against v, defined in (48), for 0 = 1 arising in the small R, small
A problem (51 — 53).
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Figure 9: Plots of §'(1) against A for R = 1 and ¢ = 1, 10 obtained from the numerical
solution of equations (3, 4) subject to boundary conditions (5).
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Figure 10: A plot of the critical value A, of A\ against o for R = 1. The region in the
(A, o) parameter plane where solutions exist is labelled on the figure.
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Brinkman Flow of a Viscous Fluid through a Spherical

Porous Medium Embedded in another Porous Medium

A. Postelnicu’, T. Grosan? and |. Pop?

'Department of Thermal Engineering and Fluid Mechanics, Transilvania University,
500036, Brasov, Romania

’Faculty of Mathematics, University of Cluj, R-3400 Cluj, CP 253, Romania

Abstract A mathematical model for the two-dimensional steady viscous and
incompressible flow past a permeable sphere embedded in another porous medium is
presented under the assumption of the Darcy-Brinkman equation model and a uniform
shear flow away from the sphere. Closed form analytical solutions are presented for
streamlines inside and outside the sphere and shearing stress at the surface of the sphere.
The streamlines and the shearing stress at any point on the surface of the sphere are
shown in several graphs for different values of the governing parameters. It is shown that
the dimensionless shearing stress on the sphere is periodic in nature and its absolute value
increases with an increase in both porous parameters.

Keywords: permeable sphere - porous media - Darcy-Brinkman model - analytical
solution

Nomenclature

a radius of the sphere, m

K, permeability of the porous medium, m 2
P pressure, Pa

P, non-dimensional pressure

r radial coordinate, m

r non-dimensional radial coordinate

ui,vi radial and transversal coordinates, m.s ™
u,,v; non-dimensional radial and transverse components of velocity

U, constant velocity away from the sphere, m.s ™



Greek symbols

i porosity of the porous medium

@ ratio of the porosities

0 angular coordinate

o, parameter of the porous medium, a/ \/K_,

ooy Ty NON-dimensional skin friction at the surface of the sphere in the radial and

transversal directions
Vi non-dimensional stream function

Subscript
i=12

1. Introduction

Flow in porous media has been an area of intensive investigation for the last several
decades. The growing emphasis on effective granular and fibrous insulation systems for
the successful containment of the transport of radio-nuclide from deposits of nuclear
waste materials has stimulated various studies in fluid saturated porous media and many
results were obtained for the forced and convective flow in the fundamental geometries
of internal (cavities, annulus, etc.) and external (flow over surfaces) flows. In
comprehensive reviews of the heat transfer mechanisms in geothermal systems, Cheng
(1987,1985) and Bejan (1987) presented the work in this field with emphasis on its
applications in geothermal and energy systems research. Since then a very large number
of practical applications, both industrial and environmental, have caused a rapid
extension of the research, and a substantial number of papers, which relate the boundary-
layer flow past surfaces of various configurations, have been published. Nield and Bejan
(2006), Ingham and Pop (1998,2002), Pop and Ingham (2001), Vafai (2000,2005)
Ingham et al. (2004) and Bejan et al. (2004) gathered many applications which highlight
the directions where further theoretical and experimental developments are required.
Earlier studies of a uniform shear flow past a body embedded in a porous medium

in the Stokes flow were mainly concerned with the use of the Darcy model because the



dimensionless particle diameter (i.e., the ratio of particle diameter to the characteristic
length) is usually small. Flows in rocks, soil sand and other composite media encountered
in hydrology and geothermal problems are usually studied using the Darcy flow model.
Rudraiah (1984) and Rudraiah et al. (2003) have shown that in many practical
applications of flow in porous media which involve porous materials, such as foam
metals and fibrous media of high porosity, where dimensionless particle diameter is not
small, the Darcy law is not adequate and the non-Darcy equation is more accurate to
describe the flow. The non-Darcy equation which incorporates both boundary and inertia
effects in addition to the Darcy resistance may alter the characteristics of flow past a
body. Padmavathi et al. (1993), Masliyah et al. (1987) and Berman (1996) have studied
the Stokes flow past a sphere embedded in a porous medium using Stokes and Brinkmann
flow equations with specifying a uniform velocity far away from the sphere. Also,
Srivastava and Srivastava (2005) have recently discussed the steady flow of an
incompressible viscous fluid streaming past a porous sphere at small Reynolds number
with a uniform velocity by dividing the flow in three regions. The region -1 is the region
inside the porous sphere in which the flow is governed by Brinkman equation with the
effective viscosity different from that of the clear (non-porous) fluid. In regions Il1- and
I11- clear fluid flows and Stokes and Ossen solutions are respectively valid. In all the
three regions Stokes stream function is expressed in powers of Reynolds number. Further,
in a very recent paper, Rudraiah and Chandrashekhar (2005) have studied the two-
dimensional steady incompressible flow past an impermeable sphere embedded in a
porous medium using the Brinkman model with a uniform shear instead of a uniform
velocity away from the sphere. This problem occurs in a wide variety of technological
applications like removing impurities in the integrated circuits used in computers,
lubrication process in porous bearings, etc.. However, results of this paper are,
unfortunately, wrong because the authors have wrongly considered the expression for the
stream function of the flow outside the porous sphere. The existence and uniqueness of
the solution for the two-dimensional flow with porous inclusions based on Brinkman
equation has been studied by Kohr and Raja Sekar (2006).

The aim of this paper is to study the flow of a viscous fluid past a permeable
sphere embedded in another porous medium using the Brinkman equation model for the



flow inside and outside the sphere. A rigorous theoretical justification of Brinkman’s
equation was given by Tam (1969) and later by Lundgren (1972). It is important that we
succeed to present a closed form solutions of the non-dimensional governing equations
and the evolution of the flow field is demonstrated by plotting the streamlines, velocity
and shearing stress for the flow inside and outside the sphere. These quantities are
numerically computed and depicted graphically for various values of the porous medium

parameters o, and o,. By way of correspondence to a real physical phenomenon of such

a situation, one may well consider the application to pollutants flow at the interface
between two porous media or oil drilling in a porous medium having insertions with

others porous media.
2. Basic equations

Consider the steady forced convection flow of a viscous and incompressible fluid past a

permeable sphere of radius a with the constant velocity U_ away from the sphere. The
sphere is filled with a porous medium of permeability K, placed in a fluid-saturated
porous medium of permeability K,. The problem is discussed by dividing the flow area

in two zones. Zone | is the region inside the porous sphere and zone Il is the region

outside it. Let the index i in the subscript of any entity X, i =1, 2 indicate the zone in

which the entity is represented.
The continuity and Brinkman equations for this problem with inertial terms
omitted are of the form, see Nield and Bejan (2006):

V-v,=0 (1)
§5i =_Kivi +ﬁ§2 Vi (2)
where Ei is the pressure, Vv, is the superficial velocity vector, x is the dynamic

viscosity of the fluid, 4z is an effective or Brinkman viscosity. It is common practice for

4 to be taken equal with 4 for high porosity medium, i.e. z/u =1(see Nield and

Bejan, 2006). Further, we use a spherical coordinate system (r,,¢) with the origin at



the centre of the sphere and the axis & =0 along the direction of the undisturbed flow
U as it is shown in Fig. 1. Due to the symmetry of the problem we have 6/0¢ =0. Itis

convenient to non-dimensionalise all variable by writing

r=r/a, u=ui/U,, v,=vi/U,, p, =ap,/(uU,) 3)

1 oo ! 1

where u; and v; are the radial and transverse components of velocity.

Using the new non-dimensional variables (3), Egs. (1) and (3) can be written as

o , ., r o .
—(r‘u)+—————(.sin@d) =0 4
ar( ) sineae(' ) @

or: r or r? 062 r’ 060 r®> r?o06 r?

op, o*u, 20u, 10°u, cot@ du, 2u, 2 dv, 2v,cotd
ar  C Ui = t= T (5)

10p, o°v, 20v, 10°v; cotddv, 2 du, v, cosec’d

Y I 2t~ t o T t—7 - 2 (6)
r oo or ror r°oé r o6 r° o0 r

where o, =a/,/K, are the parameters of the porous media. Permeabilities K, of the

porous media are given by Carman-Kozeny relationship, see Nield (2002),

d,’g’

" 1800, )

where ¢, are the porosities and d;are the mean particles diameters for the two porous
media. Thus the parameters of the porous media are given by:

where y, =a/d,. In Egs. (4) — (6) variables r and & vary in zone | in the ranges

(8)

0<r<1 -180° <#<180° and in zone Il in the ranges 1<r <o, —180° < <180°.

The matching conditions at the surface of the sphere can be written as (see,
Merikh and Mohamad, 2002)



u,=u, at r=1

v,=v, at r=1
r=1 ©

Tery = Trry At r=1

Tro@ =Troe at

where 7, and 7, are the non-dimensional shear stresses on the surface of the sphere.

We introduce now the stream function y, defined in the usual way as

PR 7SV . 0o
resing oo rsing or
Outsideb the porous sphere the stream function y, is given by
1(, 1) ..,
z//z(r,e)zg[r _Fj sin“@ forall r>1 (11)

Using (10) and (11), the boundary conditions for the velocity components in zone |1 are

u, ~cosé, v,~-singd as r— o (12)

The expression of z,,; and 7, are given by

rr(i

10u; ov; Vv,
o0 "y o0 Tar v
(13)
Ty =—P; +2 ou
rr(i) i a r
3. Mathematical analysis
We introduce now the stream function y; defined in the usual way
ui — > 1 %’ Vi :_#% (14)
resin@ oé rsing or
and eliminate the pressure p, between Egs. (5) and (6). Then, using (14), we get
32 (32 -0y, =0 (15)
where the operator 3 is defined as
) :
52 = 82 +S|n249i .1 0 (16)
or r- 06{sinf oo



The boundary conditions far away from the sphere (12) in terms of y, become
r2
z//z(r,6’)~7sin20 as r—ow (17)

The boundary condition (17) suggests the following similarity solution to Eq. (15)
w,(r,0) = f.(r)sin’ 6 (18)

Substituting (18) into Eq. (15), we obtain the following ordinary differential equation

¢ iv_ifi..+£fi_ﬁ_aiz(fi--_izfijzo (19)

r r? r r

where primes denote differentiation with respect to r. If we make the transformation
o2
i f=ron (20)

the fourth order equation (19) reduces to the second order equation

r’g, "+ rg'—{@] +(o, F)Z}gizo (21)

This is the modified Bessel differential equation and hence his general solution is given
by

g;(r)=Al;,,(c;1r) + B, K;,,(o;1) (22)
where 1,,,(o, 1) and K,,,(o;r) are the modified Bessel functions of first and second
kind of order 3/2, respectively, and A, and B, are arbitrary constants of integration. Thus

on using (22), Eq. (20) becomes

fi" _ri2 fi = A l3,(0,1) + B Ky, (o7 1) (23)

and has the general solution

Ir

2

Jr
_zlslz(ai r)+ B,
o

f,(r) :%‘*‘ D, r’ + A Ky, (o) (24)

where C, and D, are also arbitrary constants of integration.



Using (18) and (24) we can describe the flow in the both zones I and Il with a

proper choice of the constants A, B;, C; and D,. For the flow in zone | where r <1 and
origin occurs, the constants C, =B, =0 and the expression for f,(r) can be written as
Jr
f(r)= D1r2 +A1?|3/2(O'1 r (25)
1

On the other hand, for the flow in zone Il where r >1 and f,(r) —>% r’asr— o, we

get D, =1/2 and A, =0 and the expression for f,(r) is given by

c, 1 Jr
f,(r) =24+ =r’+ Bz_gK3/z((72 r (26)
r 2 o,

To determine the constants A, B,, C, and D, we have to use the matching and

boundary conditions (9). To do it, we have to determine the expression for z ., and
T..qy 9iven by (13) and also the pressure p; . Substituting (14) and (18) into Egs. (5) and

(6), we get after some algebra

P, :(—ZaiZJ'rf_;dr+8'[:—Ldr+r£2fi'+;i3fijcose (27)

where the constant of integration has been taken to be zero. Thus, relations (13) become

r2| 3 1

2 ., 2 1..)..
TrH(i):(_f' —r—f —Ffi jﬂne

f 12 f 2 %)
2 i i '
Ty = (2 o j—rz dr = f; —8I—r4 dr + 2 f; jcose

Now, the four matching conditions (9) in terms of f,(r) can be written as

f,(D) = 1,0
f' @) =1,
f,m@=1,"Q) (29)
f, f, f, f,
(szr—zdr—4jr—4j :(O'lj‘r—zdr—4jr—4drj

r=1 r=1



These relations can be used to determine the values of the constants A, B,,C, and D,
for some values of the parameters o, and o,.
Thus, we have the stream functions y, (r, ) in the both zones | and 11 given by
w,(r,0) = f,(r)sin® 8, ,(r,0) = f,(r)sin’ @ (30)

From these equations we obtain the normal and tangential components of velocities in

zones | and 11, using (14) as

u, =2 fl(zr) cosé, v, = —wsin 0

r r

; fo (31)
u, =2 2(2") cosé, v, =—#sin9

r

The case when the sphere is impermeable corresponds to u, =0 and v, =0 at
the surface of the sphere. Thus, the values of B, and C, are given by f,(1)=0 and
f,')=0 from (29). On using (24) and the properties of the Bessel functions
(Abramowitz and Stegun, 1972) calculation gives the following expressions for B, and
C,

8 — 30, C _ 1 3Ky,(0,) (32)
2 = ' 2 =
2K, (o,) 2 20,Ky,(0,)

Thus, f,(r) is given by

fz(r) =

L _1[1+ e J1+ 3r Ky(0 1) )

2 2 o, Kip(o,) )1 20, Kyy(o,)

This expression is exactly the same with that reported by Pop and Ingham (1996) for the
problem of flow past an impermeable sphere embedded in a porous medium using the
Brinkman model if we change o, by 1/0,. Thus, using (28) and (33) we get that the
dimensionless shearing stress at any point on the surface of the sphere (i.e., r=1) is
given by

Tro) = —§(1+ c,)siné (34)

Also this expression is identical with that found by Pop and Ingham (1996) if we change

o, by 1/o,. Therefore, we can conclude that the present analysis is correct.



4. Results and discussion

Based on the governing equations of motion it is seen that the parameters affecting the
flow in the present problem are the porous media parameters o, and o, given by Eq. (8).
Values of the porosities for different porous materials can be found in the book by Nield
and Bejan (2006). For a high porosity porous media a typical value is ¢, = 0.8 so that Eq.
(8) reduces to:

o, =35y, (35)
In most physical problems of interest y, is large and hence o is large. In this paper
calculation have been carried out using the symbolic calculus software Mathematica and
it was found that for large values of the porous media parameters, except when o, = o,,
in all other cases, basically A, diminishes and B, takes a very large value. In an attempt
to understand, from the numerical point of view, this fact, we have to examine Eqg. (23).

Thus, we remark from this equation that as r increases towards r =1 and o, takes large

values, the weight of the second term becomes important, due to the behaviour of the

Bessel function 1;,,(o, r), which grows very fast to infinity. On the other hand, the
modified Bessel function K,,,(o,r) in Eq. (24) decreases to zero as r increases. For
example, K,,,(10) =1.9793e-005. Therefore, the effect of the B, coefficient, which has
a very large value, is damped, due to the above mentioned behavior of K,,,(c,r). In

order to have confidence in this analysis, we have determined both numerically and
analytically the values of the coefficients A;, B,, C; and D4, and it was found a very good

agreement for large values of the parameters o, and o,. However, in order to save space

we will not present here this comparison.
Figures 2 to 4 illustrate the streamlines computed from Eq. (30) are drawn for

some values of the parameters of the porous media o, ando,, namely the cases of
o, <0,,0, >0, and o, = o, have been considered. Figure 2 shows the streamlines for
o, =1 and o, =10, 100, Fig. 3 illustrates the streamlines for o, =10 and o, =1, 10,

100, and Fig. 4 show the streamlines foro, =100 and o, =1, 10. It is clearly seen from

10



these figures that there is a substantial difference between the cases considered when
o, <o, and o, >0o,, respectively. Thus, it is noticed that the meandering of the
streamlines near the surface of the sphere and approaching a constant value away from
the sphere for botho, <o, and o, > o,. In addition, in the case o, > o, a boundary
layer near the surface of the sphere can be observed, see Figs.3a, 4a and 4b. Further we
can notice from Figs. 2a, 2b and 3c that the streamlines are distorted towards the center of
the porous sphere in the case o, <o,. This is in accordance with the properties of the
porous media. In the special case of o, = o,, the flow is not perturbed by the presence of
the porous sphere. This is again in accordance with the properties of the porous media
that is because the two porous media have the same properties.

The variation of the dimensionless shearing stress r,,,, at any point on the
surface of the sphere (i.e., r =1) with & is illustrated in Figs. 5 to 7 for several values of
the porous parameterso, and o,. We can see that the absolute value of the shearing
increases with an increase in both o, and o,. It is also seen that at the front and rear
points of the sphere, # =0° and & =180°, the shearing stress vanishes, whereas it attains
the maximum value at 8 =+90°. It should also be pointed out that there is no flow

separation occurring for the flow past a sphere which is embedded in a constant porosity
medium based on the Brinkman equation model. The positive or negative value of the

shearing stress r,,,, depend on the velocity direction at the interface between the

interface of two porous media.

5. Conclusion

The flow of a viscous fluid past a permeable sphere embedded in another porous medium
has been investigated using the Brinkman equation model. An exact analytical solution of
the governing equations for the flow inside and outside the sphere has been calculated. It
has been found that for a particular porous medium outside the sphere, the dimensionless

shearing stress at any point on the surface of the sphere 7, ,, increases with the increase

11



of the parameter o, . It is shown that there is a substantial difference between the cases

when o, <o,, 0, =0, and o, > o,.
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Fig. 1 Physical model and coordinate system.
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Fig. 3. Streamlines for o, =10: a) o, =1;b)o, =10; c)o, =100.
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Fig. 4. Streamlines for o, =100: a) o, =1; b)o, =10.

17



OD 20 40 60 80 100 120 140 180 180

=}

Fig. 5. Variation of tangential shear stress along the surface of the sphere
for o, =1 ando, =1, 50, 100.
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Fig. 6. Variation of tangential shear stress along the surface of the sphere
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for o, =10 ando, =1, 50, 100.
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Fig. 7. Variation of tangential shear stress along the surface of the sphere
for o, =100 and o, =1, 10, 50.
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Magnetohydrodynamics oblique stagnation-point flow

T. Grosan - C. Revnic - I. Pop - D.B. Ingham

Abstract Laminar two-dimensional stagnation flow
of an incompressible viscous electrically conducting
fluid obliquely impinging on a flat plate is formulated
as a similarity solution of the Navier-Stokes
equations. The relative importance of this flow is
measured by the dimensionless strain rate » and

magnetohydrodynamic M parameters. The viscous
problem is reduced to a coupled pair of ordinary

differential equations governed by » andM . It is

found that the parameter M causes a shift in the
position of the point of zero skin friction along the
plate.

Keywords Magnetohydrodynamics; Oblique
stagnation-point flow; Similarity solution; Numerical
methods

1 Introduction

The steady two-dimensional stagnation-point flow of
an incompressible viscous fluid impinging obliquely
on a plane rigid wall has been studied by many
researchers. Stuart [1], Tamada [2], Dorrepaal [3,4],
Labropulu et al. [5], Liu [6] and Tittleyand Weidman
[7] have considered the case when the plane is fixed
while Reza and Gupta [8], Lok et al. [9] and
Mohapatra et al. [10] have considered the two-
dimensional oblique
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stagnation-point flow towards a surface which is
stretched with a velocity proportional to the distance
stagnation-point flow towards a surface which is
stretched with a velocity proportional to the distance
from a fixed point. The case of axisymmetric flow
stagnating obliquely on a circular cylinder has been
considered by Weidman and Putkaradze [11]. Dorrepaal
[3] and Labropolu et al.[5] have shown that for oblique
flow impinging on a flat rigid wall that the slope of the
dividing streamline at the wall divided by its slope at
infinity is independent of the angle of incidence.

Several aspects of steady and unsteady two-
dimensional stagnation-point flow of an electrically
conducting fluid in the presence of a uniform applied
magnetic field towards a fixed rigid plane wall or a
stretching surface has been discussed in recent years by
several authors, see for example Pavlov [12], Chakrabarti
and Gupta [13], Andersson [14], Chiam [15], Mohapatra
and Gupta [16], Ariel [17] and Xu et al.[18]. The study
of magnetohydrodynamic (MHD) flow of an electrically
conducting fluid caused by the deformation of the wall of
a vessel containing a fluid is of considerable interest in
modern metallurgical and metal-working processes.

The aim of the present paper is to discuss the steady
two-dimensional oblique flow of a viscous and
electrically conducting fluid impinging on a flat rigid
wall in the presence of a constant applied magnetic field.
It is found that the presence of the magnetic field causes
a shift in the stagnation point and that this shift depends
upon the magnetic parameter. To the best of our
knowledge this problem has not been studied before.

2 Basic equations

Consider the steady two-dimensional MHD flow of an
electrically conducting fluid near a stagnation point when
an incompressible viscous fluid impinges obliquely on a

rigid wall coinciding with the plane y =0 in the presence
of a uniform transverse magnetic field, see Fig. 1, where
x and Y are the Cartesian coordinates along the wall and

normal to it, respectively. It is assumed that the strength
of the magnetic field is B, and that the magnetic

Reynolds number is small. It is also assumed that the



induced magnetic field is negligible. Under these
assumptions the basic equations are given by

Vo (e, ve)
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Fig. 1. Physical model and coordinate system.
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where uand v are the velocity components along the
- x and - y directions, respectively, pis the
pressure, p is the density, v is the kinematic

viscosity, o is the electrical conductivity and Vs
the two-dimensional Laplacian. We consider an outer
(inviscid) flow consisting of a linear superposition of
an irrotational stagnation-point flow of strain rate a
(> 0) and a uniform shear flow parallel to the wall of
strain b. Thus, we assume that the boundary
conditions appropriate to Egs. (1) — (3) are given as

(4)

as y-—>ow

We introduce now the stream function 7 defined as

TR A4 5)
oy oxX

Substituting (5) into Egs. (2) and (3), and eliminating the
pressure p from the resulting equations, we obtain

5_%1(62;)_@_‘5&_(62;}

ox oy oy OX
T 2 52
+VV4I//—ﬂ8TVZ/=O (6)
P oy
and the boundary conditions (4) become
v=0Y%_0 a y=o0
oy )

g//:axy+b§2 as §—>oo

Further we define the following non-dimensional
variables

x=x/1. y=yA. v=y/@?) @
where | = (v/a)ll2 is a characteristic length.

Substituting (8) into (6), we obtain the following
equations, in non-dimensional form,

)
22
+VV41//—May—y2/=0 9)

and the boundary conditions (7) become
v=0Y_-0 at y=0
oy (10)
w=xy+yy’> as yoow
Where y is the shear parameter and M is the magnetic
parameter which are defined as
2
Y= E’ M — o By
a
A physical quantity of interest is the skin friction, or the

shear stress 7 at the wall, which is defined as

- 0%y oy
Tw= /‘[Tl/zj + TVZ/J (12)

(11)

or in non-dimensional form

621// 62;1/
TW = ,U[—z + —2 (13)
OX oy y=0

where z,, = 7w /(au).



3..Solution procedure

The boundary conditions (10) suggest that w(x,y)
has the form

w(x, y)=XxF(y) +G(y) (14)

Substituting (14) into Eq. (9), we obtain the following
ordinary differential equations

FF'-F'F'+F"Y -MF"=0 (15)
FG'"-G'F"+G"Y —-MG"=0 (16)

which have to be solved subject to the boundary
conditions

F(0)=F'(0)=0, G(0)=G'(0)=0

17
F'(w)=1 G"(®)=2y (17

where primes denote differentiation with respect to y.
Integrating Egs. (15) and (16) once, we obtain

F"+FF"-F'2_MF'=C, (18)
G"'+FG"-G'F'-MG'=C, (19)

where C; is a constant and C, = C,(y). Using the
boundary conditions (17) for F(y), we obtain

C, = -(1+ M) sothat Eq. (18) becomes
F'"+FF'"+1-F?-M(1-F')=0 (20)
This equation describes the classical MHD boundary
layer flow near a two-dimensional orthogonal
stagnation-point, see Ariel [17]. Equation (20) gives
F(yy~y+A a y—owo (22)
where A is a constant which depends on M. Further,

using (21) we obtain from Eq. (19) that
C, =2Ay —-2Myy and Eq.(19) becomes

G'+FG"-G'F+M(2yy-G)=2Ay  (22)

Finally, we have to solve Egs.(20) and (22) subject to
the boundary conditions

F(0)=F'(0)=0, G(0)=G'(0)=0

23
F'lo)=1 G"(w)=y 23)

Introducing the new variable

G'(y)=2y H(y) (24)
then Eq. (22) becomes
H"+FH —HF +M(y — H)= Ay (25)

which has to be solved subject to the boundary
conditions

H(@0)=0, H(w)=1 (26)
Further, from (24) we have

y
G(y) = 24 H(s)ds @7)
0

Integrating numerically Eg. (25) with the boundary
conditions (26), we obtain

H'(0)=C (28)

where C is a constant which depends on M.
The non-dimensional skin friction (13) can be
written as

7w =XF"(0)+2yH"'(0) (29)

The dimensionless velocity components (u,v) are

defined as u =G/(al) and v=§/(al)which give, from
(14)

u=xF'(y)+G'(y), v=-F(y) (30)

The streamline w =0meets the wall at the point
X = XoWwhere z,, =0 (point of zero skin friction), which
from (29) is given by

__2yH'(0)
°=TTE0) (31)

On the other hand, following Labropulu et al. [5], we
expand F(y) and G(y) in Taylor series about y ~ 0 (near

the wall) and Eq. (29) gives for z,, =0

ZBE"©+6 Oy +
%[ F'(0)+G"(0)y2+hot=0 (32)

where
F'"0)=-1+M)

F'"(0)=8B, G'"(0)=2yC,
and G'"'(0)=2Ay . Dividing



(31) by F"(0)=0and letting X =x+2yC/B, we
obtain

Blx 2| A CUMY ) hotl=0  (33)
21" "3 B B

From (33) we can see that the dividing streamline
meets the wall y=0at X =0or x=-2yC/Band its

slope m, near the wall is given by

_ 3B°
2y[AB+C(1+M)]

my = (34)

On the other hand, the dividing streamline which
comes into the wall from infinity is defined by
w(x,y) =0 and its slope at infinity is m_ given by

m, = —1 (35)

The ratio R = mg/m,, is found to be

3B?
R= A+ cam] (36)

which is independent of the parameter .

4 Results and discussion

Equations (20) and (22) subject to the boundary
conditions (23) have been solved numerically using
the Runge-Kutta method for several values of the
parameters y and M. Values of A, B and C are given

in Table 1 for y =0/ (orthogonal stagnation-point

flow) and different values of M. The corresponding
values reported by Labropulu et al. [5] and Ariel [17]
have also been included in this table. It is seen that
the present results are in very good agreement with
those determined by Labropulu et al. [5] and Ariel
[17]. We are therefore confident that the present
results are accurate. It is seen, as expected, that
F"(0) increases steadily as M increased from zero

and this appears to be more plausible physically.
Also some values of R given by (36) for several
values of M are given in Table 1. The value of R =
3.748513 for M = 0 reported by Dorrepaal [3] and
Labropulu et al. [5] has been also included in this
table.

Figure 2 shows the variation of the velocity profiles
u(x,y)with y at a fixed value of x = 1.0 for several
values of M and y . It is seen that at a given location (x =
1.0) the velocity (which is simply taken to represent a
typical result) increases with increasing M.

Figures 3 to 7 show the streamline pattern for
orthogonal (7 =0) and oblique (y = 0) flows for several

values of M. The location of the point of zero skin
friction on the axis, X, is also shown in these figures. It

can be seen that for a fixed value of y that these

locations are at a larger distance from the stagnation
point as the value of M increases. Further, it is clear from
these figures that for a fixed value of p that the
streamlines become more and more closer to the wall
with increasing M.

Further, for a given value of M the streamlines are
more and more oblique towards the left of the stagnation-
point with increasing . On the other hand, for a fixed
value of M the streamlines are more and more oblique
towards the right of the stagnation-point with increasing
y wheny <0. This is consistent with the fact that
increasing the shear in the » results in an increase in the
shearing motion which in turn leads to increased
obliquity of the flow towards the surface. However, it
should be noticed that the streamlines for negative values
of y are not shown in Figs. 5 to 7 because they are
almost mirror images in the plane y = 0 to the streamlines
for positive values of y .

5 Conclusions

A numerical solution of the steady oblique flow of a
viscous and electrically conducting fluid impinging on a
flat plate has been investigated. The governing partial
differential equations are reduced to a set of two ordinary
differentials equation which are solved numerically for
different values of the governing parameters M and y .
This solution provides useful information about the
MHD stagnation-point flow and, in limited cases that
have already been investigated when the magnetic field
is absent, there is quantitatively good agreement.
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F'(0) H'(0) A R
M
present Ariel [17] present Labropulu et | present Labropulu  |Present Labropulu
al. [5] etal. [5] etal. [5]
0.00 1.232588 1.232588| 1.406616 1.406544| -0.647900| -0.6479003.748069 |3.748513
0.16 1.295368 1.295368| 1.373280 -0.626277 3.219676
0.64 1.467976 1.467976| 1.300013 -0.572893 2.503764
1.00 1.585331 1.585331| 1.261685 -0.541007 2.263267
4.00 2.346663 2.346663| 1.127294 -0.393590 1.752707
25.00 5.147965 5.147965| 1.027863 -0.190725 1.544224
100.00| 10.074741| 10.074741| 1.007358 -0.098774 1.481927
Table 1. Values of F''(0), H'(0), A and R for several values of M.
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Fig. 2. Velocity profile for x = 1 and several values of M :
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Unsteady Boundary Layer Flow and Heat Transfer Over a
Stretching Sheet
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Abstract. Unsteady two-dimensional boundary layer flow and heat transfar atretching flat plate in a viscous and
incompressible fluid of uniform ambient temperature is investigated in tiisrplt is assumed that the plate is isothermal and
is stretched in its own plane. Using appropriate similarity variables, the basialifferential equations are transformed
into a set of two ordinary differential equations. These equations &edsaumerically for some values of the governing
parameters, using Rungge-Kutta method of fourth order. Flow artdraeafer characteristics are determined and represented
in some tables and figures. It is found that the structure of the boutalgey depends on the ratio of the velocity of the
potential flow near the stagnation point to that of the velocity of the stretchirigce. In addition, it is shown that the heat
transfer from the plate increases when the Prandtl number incréasesesults are shown to include the steady situation as
a special case considered by other authors. Comparison with knewlisris very good.

Keywords: heat transfer, stretching surface, the external invisoid, fstagnation-point flow, boundary layer.
PACS: 02.60Lj, 44.20+b, 44.27+g, 47,10Ad, 47.85-g

INTRODUCTION

The unsteady boundary layers are important in several phlysioblems in aero - nautics, missile dynamics, acoustics
etc. The work in this area was initiated by Moore [1], Lighitf] and Lin [3]. Critical reviews of unsteady boundary
layers were presented by Stuart [4], Riley [5], Telionis, [6]] and Pop [8]. In recent years certain aspects of the
unsteady flows were investigated by Ma and Hui [9] and Ludlowalg[10] using the classical method of Lie-group.
The essence of the Lie-group method is that each of the Vesiabthe initial equation is subjected to an infinitesimal
transformation and the demand that the equation is invauiader these transformations leads to the determination
of the possible symmetries (see Ludlow et al. [10]). The &amdntal governing equations for fluid mechanics are the
Navier-Stokes equations. This nonlinear set of partiédéhtial equations have no general solutions, and onlyadl sm
number of exact solutions have been found (see Wang [11§ctSolutions are important for the following reasons:
(i) the solutions represent fundamental fluid-dynamic flodso, owing to the uniform validity of exact solutions, the
basic phenomena described by the Navier-Stokes equatonsecmore closely studied. (ii) the exact solutions serve
as standards for checking the accuracies of the many appatximethods, whether they are numerical, asymptotic,
or empirical.

Flow of a viscous fluid over a stretching sheet has an impbtt@aring on several technological processes. In
particular in the extrusion of a polymer in a melt-spinningqess, the extruded from the die is generally drawn
and simultaneously stretched into a sheet which is thewliBel through quenching or gradual cooling by direct
contact with water. Further, glass blowing, continuougdingf metals and spinning of fibres involve the flow due to
a stretching surface, see Lakshmisha et al. [12]. In altlvases, a study of the flow field and heat transfer can be of
significant importance since the quality of the final prodidepends to a large extent on the skin friction coefficient
and the surface heat transfer rate. Crane [13] presentedpdestlosed form exponential solution of the steady two-
dimensional flow caused solely by a linearly stretching slie@n otherwise quiescent incompressible fluid. The
simplicity of the geometry and the possibility of obtainifigrther exact solutions through simple generalizations
have generated a lot of interest in extending it to more gdrsfiuations. Such extensions include consideration of
more general stretching velocity, application to non-Nevidn fluids, and inclusion of other physical effects such
as suction or blowing, magnetic fields, etc. Unsteady twoedlisional boundary layer flow over a stretching surface

1 Corresponding author: Tel.:-40-264594315; fax:+40-26486; E-mail adress: pop.ioan@yahoo.co.uk (Pop loan)



has been studied by Na and Pop [14], Wang et al. [15], Elba$iyband Badiz [16], Sharidan et al. [17] and Al
and Magyari [18], while Lakshmisha et al. [12], Devi et al9]\and Takhar et al. [20] have considered the unsteady
three-dimensional-flow due to the impulsive motion of atstiing surface. The aim of the present analysis is to
study the unsteady flow and heat transfer in the stagnatiort-flow on a heated stretched surface in a viscous
and incompressible fluid when both velocities of the strieiglsheet and of the external flow (inviscid flow) are
proportional to the distance from the stagnation-pointiamdrsely to time. The geometry is similar to that proposed
by Mahapatra and Gupta [21] for the steady two-dimensiot@gration-point flow towards a stretching sheet. The
parabolic partial differential equations governing thevfland heat transfer have been reduced to a system of two
ordinary differential equations which are solved using mplicit finite-difference scheme in combination with the
shooting method.

PROBLEM FORMULATION

We consider the unsteady two-dimensional forced convedkiov and heat transfer of a viscous and incompressible
fluid near a stagnation point on a surface coinciding withplaény = 0, the flow being confined tp > 0. Two equal
and opposite forces are applied along theaxis at the initial tima = 0, so that the surface is stretched keeping the
origin fixed as shown in Fig.1. It is assumed that the unifoemperature of the plane %, , while the temperature

of the ambient fluid isl.,, whereTy, > T, (heated plate). It is also assumed that the viscous digmipaffects are
neglected. Under these assumptions, the system of boulagaryequations are given by

Jdu ov

du du Jdu  Oue due %

ﬁ+u5+vo‘Ty = thueWJrva—y2 2
or + u‘LT +vd—T = orﬂ 3)
ot ox oy 0y?

subject to the initial and boundary conditions are of therfor

t <0:u=0,v=0,T=T, for any y>0
t >0:u=uw(tx),v=0T=Ty for y=0 (4)
t =0:u=uws(X),v=0T=Ty

Uu—uUe(t,x), T—>Tew as y— o

Ay

u,(1,x)

X

.
+“—— 44— 4— ] —» —» —»
u,(tx)

FIGURE 1. Physical model and coordinate system.



whereu andv are the velocity components along tke andy— axis, T is the fluid temperature; is the kinematic
viscosity, uys = cX (C is a positive constant) aral is the thermal diffusivity. Following Surma Devi [19] et alve
assumed thaiy(t,x) andug(t,X) are given by

CX u (t X)— ax
(I—yt)” =7 (1-yt)

wherea s a positive constant. The momentum and energy equationisecaansformed to the corresponding ordinary
differential equations by the following substitutions:

g = (cv/(1-yt)Yxf(n),
0(n) = (T-Tu)/(Tw—Tw), (6)
n (c/v(1—yt)Y?y

wherey is the stream function which is defined in the usual way asd/dy andv = —dy/dx.
Substituting (6) into Egs. (2) and (3), we obtain the follogitwo ordinary differential equations:

Uw(t,X) =

(®)

aZ y/a
m " 2 nen / 7
f f c? f C (C 2f f ) 0 ( )
1 " / y /
f _
Pre +f0 Cr]6 0 (8)

subject to the boundary conditions (4) which become

f(0)=0,f(0)=1,6(0)=1 9)
f/(es) = 2,6(c0) =0 (10)
wherePr is the Prandtl number and primes denote differentiatioh vaspect ta).

The physical quantities of interest are the skin frictioefficientC; and the local Nusselt numbétu,, which are
defined as

Tw XCw
Ci=—, Nly= ———, 11
f PU ux K(Tw —Two) (1)
whererty, is the skin friction andy, is the heat transfer from the plate which are given by
Jdu oT
w=U|— , Qw=—k( —=— 12
w=H (ay>y0 o (0y>y0 ( )

with u andk being the dynamic viscosity and thermal conductivity, eggpely. Using (6), we get
(1-yt)¥?Re/%Cr = £7(0), (13)
(1-yt)Y2Rg Y*Nu = —6'(0)

WhereRe= (cx)x/v is the low Reynolds number. It is important to notice thattfer steady-state case,Eqgs. (7) and
(8) reduced to

U U TN (14)
2

%Q’Urf 8 =0 (15)

with the boundary conditions (9)-(10). Equations (14) ab8) (with the boundary conditions (9)-(10) where estab-
lished by Mahapatra and Gupta [21].



TABLE 1. Values off”(0) for some values of/c when the
flow is steady. () values reported by Mahapatra and Gupta [21].

alc 0.10 0.20 0.50 2.00

f/(0) -0.9696  -0.9182  -0.6673  2.0175
(-0.9694) (-0.9181) (-0.6673) (2.0175)

TABLE 2. Values of9’(0) for some values oé/c andPr
when the flow is steady. () values reported by Mahapatra and

Gupta [21].
a/c/Pr 0.05 0.5 1 15
0.1 -0.081 -0.381 -0.603 -0.777
(-0.081) (-0.383) (-0.603) (-0.777)
05 -0.137 -0.472 -0.691 -0.863
(-0.136) (-0.473) (-0.692) (-0.863)
2 -0.248 -0.711 -0.978 -1.171

(-0.241) (-0.709) (-0.974) (-1.171)

SOLUTION

The systems of ordinary differential equations (7)-(8) &b4)-(15) subject to the boundary condition (9)-(10) have
been solved numerically for some values of the parameférg andPr using Rungge-Kutta method of fourth order
combined with the shooting technique. For the physical icle@sation we takg/ = —1. Some values of”(0) and
6’(0) are given in Tables 1 and 2 for the case of the steady flow.

We can see from these tables that there is a very good agredma@veen our results and those obtained by
Mahapatra and Gupta [21]. Therefor, we are confident thatethats obtained using the present method are accurate.

Figures 2 - 5 show the velocities profilésand f’ along with the corresponding streamlines patterns for #se of
unsteady flow, Egs. (7) and (8). The values of the parameters-a 0.1, c =1 andt = 0,1,2,3. It is interesting to
notice that the solution of Eq. (7) is not unique. Thus, tleeetwo solutions, one Fig. 2 representing an attached flow
and the other one Fig. 4 the reversed flow. These is in agrdemittrthe results obtained by Ma and Hui [9] for the
unsteady two-dimensional boundary layer flow near a stagnpbint of a fixed plat plate.

14

fand f’

FIGURE 2. The first solution off (n) andf’(n) for a/c=0.1.
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FIGURE 4. The second solution of(n) and f/(n) for a/c = 0.1.

Fig. 6 illustrates the dimensionless temperature profd¢g) for some values oPr whena/c = 2. We notice that
temperature profile increase whendecreases. Further, Fig. 7 shows the variation of the hexasfer from the wall
— 0'(0) with a/c and different values dPr. It is evident from Fig. 7 that an increasefn result in a decrease in the
thermal boundary layer thickness and as a consequenceahgdesfer from the wall increases wig.
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CONCLUSION

The unsteady two-dimensional stagnation-point flow and traasfer of a viscous and incompressible fluid over an
isothermal stretching flat plate in its own plane has beenemigally analyzed in detailed. Following Surma Devi et
al. [19] similarity variables where used to reduced the govey partial differential equations to ordinary diffetizh
equations. Solving numerically these equations, we haga bble to determine the velocity and temperature profiles,
skin friction and heat transfer from the plate. For the cdsstendy-state flow, we have compared our present results
with those of Mahapatra and Gupta [21]. The agreement betwreeresults is excelent. Effects afc andPr on

the flow and heat transfer characteristic have been exanakdiscussed in detail. It is shown that for small values
of a/c the solution of the ordinary differential equation is noique. One solution represents an attached flow and
the other one a reversed flow. It shoud be noticed that we hetezrdined solutions of the problem for more values
of the governing parameters but in order to save space, guetesl results are limited only to some values of these

parameters.
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Magnetic field and internal heat generation
effects on the free convection in a rectangular
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Abstract

A numerical investigation of the steady magnetohydrodynamics free convection
in a rectangular cavity filled with a fluid-saturated porous medium and with internal
heat generation has been performed. A uniform magnetic field, inclined at an angle
~v with respect to the horizontal plane, is externally imposed. The values of the
governing parameters are the inclined angle v = 0,7/6,7/4 and 7/2, Hartmann
number Ha = 0,1,5,10 and 50, Rayleigh number Ra = 10,103 and 10°, and the
aspect ratio a = 0.01,0.2,0.5 and 1(square cavity). It is shown that the intensity
of the core convection is considerably affected by the considered parameters. It is
also found that the local Nusselt number Nuy decreases on the bottom wall as
v increases (magnetic field changes its direction from the horizontal to the vertical
direction) and vice-versa for the top wall of the cavity. The reported results are in
good agreement with all the available published work in the literature.

Key words: Porous media, Natural convection, Heat generation, MHD
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Nomenclature \% velocity vector, m - 571

a aspect ratio T temperature of the vertical wall, K
B applied magnetic field, Wb - m =2 x dimensional Cartesian
cp specific heat at constant pressure, coordinate along the bottom wall, m
KJ- kgt Kt Y dimensional Cartesian coordinate
g gravitational acceleration vector, m - 72 along the left vertical wall, m
Ha  Hartmann number X,Y dimensionless Cartesian coordinates
h height of the cavity, m Greek symbols
k thermal conductivity, W -m=!. K~! a,,  effective thermal diffusivity, m? - s~!
K permeability of the porous medium, m? f3 coefficient of thermal expansion, K !
l width of the cavity, m 0 angle of inclination to the horizontal
Nu  mean Nusselt number of applied magnetic field, radians
Nu, local Nusselt number L dynamic viscosity, kg-m=!- st
q’ heat generation, W -m™3 0 dimensionless temperature
Ra  Rayleigh number p fluid density, kg - m=3
u,v  velocity components along the 00 reference density, kg - m=3
x and y directions, respectively m - s o electrical conductivity, Q! -m™!

1 Introduction

Natural convective heat transfer in viscous fluids and fluid-saturated porous
media has occupied the central stage in many fundamental heat transfer analy-
ses and has received considerable attention over the last few decades. This
interest is due to its wide range of applications in, for example, packed sphere
beds, high performance insulation for buildings, chemical catalytic reactors,
grain storage and such geophysical problems as frost heave. Porous media are
also of interest in relation to the underground spread of pollutants, solar power
collectors, and to geothermal energy systems. The literature concerning con-
vective flow in porous media is abundant and representative studies in this
may be found in the recent books by Nield and Bejan [1], Ingham and Pop [2],
Vafai [3], Bejan et al. [4], Pop and Ingham [5], de Lemos [6] and Vadasz [7].
Further, a valuable reference on convective fluids in cavities filled with viscous
fluids can be found in the recent book by Martynenko and Khramtsov [8].
Natural convection in enclosures in which internal heat generation is present



is of prime importance in certain technological applications. Examples are
post-accident heat removal in nuclear reactors and geophysical problems asso-
ciated with the underground storage of nuclear waste, among others (Acharya
and Goldstein [9], Ozoe and Maruo [10], Lee and Goldstein [11], Fusegi et al.
[12], Venkatachalappa and Subbaraya, [13], Shim and Hyun, [14] , Hossain and
Wilson [15]).

The present paper investigates the effect of a magnetic field on the steady
free convection in a rectangular cavity filled with a porous medium saturated
with an electrically conducting fluid. This type of problem arises in geophysics
when a fluid saturates the earth’s mantle in the presence of a geomagnetic field.
Natural convection flow in the presence of a magnetic field in an enclosure filled
with a viscous and incompressible fluid has been studied by Garandet et al.
[16], Alchaar et al. [17], Kanafer and Chamka [18], Chamkha and Al-Naser
[19], Mahmud et al. [20], Hossain and Ress [21], Hossain et al. [22], and Ece
and Biiyiik [23]. However, there are very few studies on the natural convection
of a conducting fluid saturating a porous medium in the presence of a magnetic
field in an enclosure. To the best of our knowledge, the first investigation of
this problem is due to Alchar et al. [17] who considered the stability of a
conducting fluid saturating a porous medium in the presence of a uniform
magnetic field using the Brinkman model. However, some comments on the
MHD convection in a porous medium have been done very recently by Nield
[24]. Also a very recent paper by Barletta et al. [25] has studied the mixed
convection with heated effect in a vertical porous annulus with the radially
varying magnetic field.

2 Mathematical model

In this paper we consider the steady natural convection flow in a rectangu-
lar cavity filled with an electrically conducting fluid-saturated porous medium
with internal heat generation. We assume that the enclosure is permeated by
a uniform inclined magnetic field. The geometry and the Cartesian coordinate
system are schematically shown in Fig. 1, where the dimensional coordinates
x and y are measured along the horizontal bottom wall and normal to it along
the left vertical wall, respectively. The height of the cavity is denoted by h
and the width by [. Further, the angle of inclination of the magnetic field B
from the horizontal plane, and measured positively in the counterclockwise
direction is denoted by . It is assumed that the vertical walls are maintained
at a constant temperature T , while the horizontal walls are adiabatic. A uni-
form source of heat generation in the flow region with a constant volumetric
rate of ¢)'[W -m™3] is also considered. Further, it is assumed that the effect of
buoyancy is included through the well-known Boussinesq approximation. The



viscous, radiation and Joule heating effects are neglected. The resulting con-
vective flow is governed by the combined mechanism of the driven buoyancy
force, internal heat generation and the retarding effect of the magnetic field.
The magnetic Reynolds number is assumed to be small so that the induced
magnetic field can be neglected compared to the applied magnetic field.

Under the above assumptions, the conservation equations for mass, mo-
mentum under the Darcy approximation, energy and electric transfer are give

by

V.V=0 (1)
Vf?f@*@+pg+le) (2)
(V)T = a,, V?T + pqoocp (3)
VI=0 (4)
I=0(-Vé+VxB) (5)
p=poll = (T — Tp)] (6)

where V is the fluid velocity vector, T is the fluid temperature, p is the pres-
sure, B is the external magnetic field, I is the electric current, ¢ is the electric
potential, g is the gravitational acceleration vector, K is the permeability of
the porous medium, «,, is the effective thermal diffusivity, p is the density,
i is the dynamic viscosity, 3 is the coefficient of thermal expansion, ¢, is
the specific heat at constant pressure, o is the electrical conductivity, pg is
the reference density and -V¢ is the associated electric field. As discussed by
Garandet et al. [16], Egs. (4) and (5) reduce to V2¢ = 0. The unique solution
is V¢ = 0 since there is always an electrically insulating boundary around
the enclosure. Thus, it follows that the electric field vanishes everywhere (see,
Alchaar et al., [17]).

Eliminating the pressure term in Eq. (2) in the usual way, the governing
equations (1) to (3) can be written as

ou Ov
5;+5§—0 (7)



ou Ov

v 8
Jdy Ox (®)
gKBIT + OKBg Ou sin? v + 2a sin -y cos 7y + v cos?
_ el i it i
v o T p \ gy Sy TG, sy cosy o cosTy
oT 0T 82T 9*°T q(’)”

which has to be solved subject to the boundary conditions

u=0T=Ty) at =0 and z =1, 0<y<h (10)
T

U—O,g—O at y=0 and y=h, 0<z<]
Y

where By is the magnitude of B and v is the kinematic viscosity of the fluid.
Further, we introduce the following non-dimensional variables
h l T—T,

,Y:%JEE—MV:—wﬁ:

A Um (Q(/)//ZQ/k) (11)

where k is the thermal conductivity. Introducing the stream function v defined
as U = 0¢/0Y and V =-0¢/0X, and using expressions (11) in Egs. (7) - (9),
we obtain the following partial differential equations in non-dimensional form:

g:,g —l—aZSQ;,g = —Ra aaf( Ha? (a 8;1/; sin®y + 2aa§;§Y sin 7y cos y
—l—;:,é cos’ 7)(12)
v+ ar 1= (5o~ way) 13
which have to be solved subject to the boundary conditions
Yv=0,=0, at X=0 and X =1, 0<Y <1 (14)
w—O,g;i—O 319/—0 at Y =0 and VY =1 0<X<1

where a = [/h is the aspect ratio of the cavity, Ra is the Rayleigh number and
Ha = 0 KB2/u is the Hartmann number for the porous medium. It should



mentioned that v = 0 corresponds to a horizontal magnetic field and v = 7/2
corresponds to a vertical magnetic field, respectively.

Once we know the temperature we can obtain the rate of heat transfer
from each of the vertical walls, which are given in terms of the local Nusselt
number Nuy and the mean Nusselt number Nu which are defined as

1
00 06

Nuy = — <> ,Nu=— <> ay (15)
X ) x o 0/ 9X ) x—o

3 Numerical method and validation

To obtain the numerical solution of Eqgs (12) and (13) a central finite-
difference scheme was used and the system of discretized equations has been
solved using a Gauss-Seidel iteration technique. The unknowns 6 and v were
calculated iteratively until the following criteria of convergence was fulfilled:

lmax[Xnew (i, J) — Xota(i, j)|| < € (16)

where y represents the temperature or the stream function and ¢ is the con-
vergence criteria. In all the results presented in this paper, ¢ = 1077 was found
be sufficiently small such that any smaller value produced results which were
graphically the same. In order to choose the size of the grid, accuracy tests
using the finite different method and Richardson extrapolation [26] for mesh
sensitivity analysis were perform for Ra = 10°, Ha = 0, and aspect ratio
a = 1, using three sets of grids: 26 x 26,51 x 51, 101 x 101 and 201 x 201 as
shown in Table 1. Reasonably good agreement was found between the 51 x 51
and 101 x 101 grids and therefore the grid used in this problem was 101 x 101
and these give accurate results for Ra < 103. We have also found that 201 x 201
grids give accurate results for Ra < 10°.

Table 1

Accuracy test for Ra = 103, Ha=0 and a =1

Nodes 1(0.24,0.24) 6(0.24,0.24)
26 x 26 2.6368 0.0389

51 x 51 2.5987 0.0384

101 x 101 2.5800 0.0382

201 x 201 2.5707 0.0381
Richardon extrapolation 2.5614 0.0380




Further, in order to verify the accuracy of the code we compared the ob-
tained results for the case when the magnetic field is absent (Ha = 0), a = 0.5
and Ra = 10 and 103, respectively, with those obtained by Haajizadeh et al.
[27]. These results are shown in Table 2. It can be concluded from this ta-
ble that the results are in good agreement and we can be confident that the
present analysis and the code used are correct.

Table 2
Comparison of ¥4, and 6,4, for Ha =0 and a = 0.5

Ra Haajizadeh et al. [27] Present (Richardson extrapolation)

wmax Hmax wmax emax
10 0.078  0.130 0.079 0.127
103 4830  0.118 4.833(4.832)  0.116(0.116)

4 Analytical solution

For small values of a(< 1), the solution of Egs. (12) and (13) is given by
the leading order terms, 1) = ¢y(z) and 6 = 6y(x), see Mandar et al. [28]

0*y 00,

2 2 o_ _p 9%

(1+ Ha*cos 7)8X2 = Ra@X (17)
026,

ox> P10 (18)

with the boundary conditions

o =0 =0 at X=0 and X=1 (19)

On solving Eqs. (17) and (18) with the boundary conditions (19), we obtain

Oo(X) ="~ (20)

Ra 1 1 1
X)= X - oX? X3>
Yo(X) 2(1+ Ha?cos?7) (6 2 T 3




5 Results and discussions

In this section we present numerical results for the streamlines, isotherms
and velocity profiles on the left wall, for various values of the magnetic field
parameter Ha, inclination angle v of the magnetic field and the Rayleigh
number Ra. In addition, the local Nusselt numbers Nuy have been calculated.
Figures (2) -(6) show plots of the streamlines and isotherms for an aspect
ration a = 1, Rayleigh number Ra = 10% and 10°, magnetic field parameter
Ha =0,1,10 and 50 and values of the inclined angle v = 0,7/6,7/4 and /2.
It is seen from these figures that the intensity of the convection in the core is
considerable affected by the magnetic field. A weak convective motion with a
bicellular structure is induced, see Figs. 2 to 5. The two cells are symmetrical
with respect to the central plane according to the value of v. It is also observed
that these two cells rotate for v = 7/6 and /4. It is seen from Fig. 2 that
the pattern of the streamlines and isotherms are similar to those predicted by
Haajizadeh et al. [27]. On the other hand, Fig. 3 illustrates that for relative
small values of Ha (Ha = 1) the maximum stream function increases and the
maximum temperature decreases as v increases. However, for larger values of
Ha (Ha >> 1) the maximum of both the stream function and the temperature
increase as 7 increases. Therefore, the presence of the magnetic force tends
to accelerate the fluid motion inside the cavity when the direction of the
magnetic field changes from the horizontal to the vertical direction. Further,
for Ra = 10% and higher values of Ha, the isotherms are almost parallel and
this implies that conduction is dominant, see Figures 4 and 5. Also, these
figures show that when the magnetic field is horizontal (v = 0) and Ra = 103
the core vortex is elongated vertically as the Hartmann number increase. For
the value of Ra and 7 considered, the core streamlines start to flatten at
the top and bottom of the cavity, while the isotherms are almost parallel.
This indicates that conduction is dominated, see Fig. 5. For high Rayleigh
numbers, the flow and heat transfer regime is characterized by a thermally
stratified core region and two thin boundary layers on the vertical walls, see
Fig. 6(a). Also, as the Raigleigh number and magnetic field increase (Ra = 10°
and Ha = 10, 50), stronger convective motion takes place and the core vortex
breaks up into three cells. There is also a weak distortion of the isotherms,
as indicated in Figs. 6(b)-(c). This occurs at smaller inclination angles of the
magnetic field (y = 7/6). This is in agreement with the results reported by
Al-Najem et al. [29] for the case of natural convection in a two-dimensional
square cavity filled with a viscous fluid with a transverse magnetic field.

Typical velocity profiles at the vertical walls, U,, for Ra = 103 and differ-
ent values of v and Ha are shown in Fig. 7. We observe that for a fixed value
of Ha that the minimum of the wall velocity is attained when the magnetic
field is in the vertical direction (7 = 7w/2). On the other hand, for v = 7/4 the
wall velocity decreases as Ha increases. We observe that for all the values of



Ra considered, the maximum temperature profiles do not overshoot the limit
prescribed by the analytical solution (O = 1/8), see Fig. 8. Numerical and
analytical solutions for the streamlines on the horizontal centerline plane of
the cavity are shown in Figs. 9 for a small value of the aspect ratio, namely
a = 0.01 and for Ra = 10* when Ha = 0,1,5 and v = 0 (Fig. 9a) and when
Ha =1 and v = 0,7/4,7/2 (Fig. 9b). We observe from these figures that
there is very good agreement between the analytical and numerical solution.

Figure 10 shows the variation of the local Nusselt number Nuy with Y
for Ra = 100 and v = 0. In order to compare the present results with those
obtained by Haajizadeh et al. [27] when the magnetic field is absent(Ha = 0)
the value of 2Nuy for a = 0.2 is presented in this figure. It is observed that
the results are in very good agreement and therefore we are confident that the
present results are accurate. Finally, Fig. 11 presents the variations of the local
Nusselt number Nuy with Y for Ra = 100, Ha = 1 and for several values of
v when a = 1. It is also found that the local Nusselt number Nuy decreases
at the bottom wall as v increases (magnetic field changes its direction from
the horizontal to the vertical direction) and vice-versa for the top wall of the
cavity.

6 Conclusion

The present numerical study exhibits many interesting features concerning
the effect of the inclined magnetic fields on the free convection flow and heat
transfer characteristics in a rectangular cavity filled with a porous medium.
Detailed numerical results for the temperature distribution and heat transfer
have been presented in graphical and tabular form. The main conclusions of
the present analysis are as follows:

e In general, it has been found that the effect of the magnetic field is to reduce
the convective heat transfer inside the cavity.

e The convection modes within the cavity were found to depend upon both
the strength and the inclination of the magnetic field. The applied magnetic
field in the horizontal direction was found to be most effective in suppressing
the convection flow for a stronger magnetic field in comparison with the
vertical direction.

e [t is found that strong boundary layers are formed near the vertical walls
for Ra = 10° and v = 7/6 and the intensity increases as Ha increases.
The flat isotherms in the core region indicate that there is negligible lateral
heat conduction and the equal spacing of the streamlines implies a uniform
vertical velocity in this region, as predicted by boundary layer theory, see
Fig. 6(a).



e The magnetic field has a negligible effect on the heat transfer mechanism for
small values of v and Ha >> 1. This is true since pure conduction becomes
dominant when the magnetic field is applied in the horizontal direction
(v = 0). However, for Ra = 10° the the parabolic profile is distroyed.

e For Rayleigh number Ra = 103, and small Hartmann numbers, the flow and
heat transfer are characterized by a parallel flow structure in the central
region of the cavity. The conduction is the dominant mode of heat transfer
and vertical velocity profiles and temperatures are almost parabolic.

e It should be pointed out that the general analysis described in this work
can represent a useful starting point to treat more complex problems, such
as, for example, time-dependent flows.
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The effect of radiation on the free convection from a vertical plate embedded in a power-law fluid saturated
porous media has been considered. Similarity equations have been obtained and solved numerically. It was found
that there is an increase in the boundary layer thickness with an increase in the radiation parameter N and a
decrease in the power-law index n was observed.

Key words: porous media, non-Darcy law, boundary layer, radiation.
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Rotating Flow of Power-Law Fluids over a Stretching Surface

M. Kumari, T. Grosan , I. Pop

The steady flow of a non-Newtonian power-law fluid due to a stretching surface in a rotating fluid has been
investigated in this paper. After a similarity transformation, the set of non-linear ordinary differential equations
have been solved numerically using the Keller-box method for some values of the parameter A which is the
ratio of the rotation rate to the stretching rate and the power-law index n. It is found that both the skin frictions
coefficients in the x and y directions decrease with the increase of the parameter 1. However, for smaller values
of A the skin friction coefficients are higher for the dilatant fluid and smaller for the pseudoplastic fluid
respectively.
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| THERMAL RADIATION EFFECT ON FULLY DEVELOPED
: FREE CONVECTION IN A VERTICAL RECTANGULAR DUCT

T. GROSAN, T. MAHMOOD, AND I, POP

Dedicated to Professor Gheorghe Coman at his 70th anniversary

Abstract. The effect of radiation on the steady free convection flow, i.e.
the case of purely buoyancy-driven flow, in a vertical rectangular duct is in-
z ) vestigated for laminar and fully developed regime. The Rosseland approxi-

mation is considered and temperatures of the walls are assumed constants,

EYY

The governing equations are expressed in non-dimensional form and are
-solved both analytically and numerically. It was found that the govern-

ing parameters have a significant effect on the velocity and temperature

: ;;9' profiles.
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NON-LINEAR DENSITY VARIATION EFF ECTS
ON THE FULLY DEVELOPED MIXED
CONVECTION FLOW IN A VERTICAL
CHANNEL

T. GROSAN" I POP*

i ) 5 Abstract: The effect of the quadratic term of density variation with femperature
on the steady mixed convection flow in a vertical chanmel is investigated Jor
= ' laminar and fully developed flow regime .In the modelling of the heat transfer the
viscous dissipation term was considered and temperatures of the walls are
assumed constants. The governing equations are expressed in non-dimensional
Jorm and are solved both analytically and mumerically. It was Sound that there is
a decrease in reversal flow with an increase in the mixed convection parameters,

Keywords: fully developed flow, mixed convection, viscous dissipation



Mixed convection flow along a thin vertical cylinder with
localized heating or cooling in a porous medium

M. Kumari
Department of Mathematics, Indian Institute of Bangalore, Bangalore, India

C. Bercea and I. Pop*
Faculty of Mathematics University of Cluj, Cluj CP 253, Romania

The effects of localized cooling/heating on the steady mixed convection boundary
layer flow over a thin vertical cylinder embedded in a fluid saturated porous medium
under the assumption of Darcy law has been theoretically studied. The localized
cooling/heating introduces a finite discontinuity in the mathematical formulation of the
problem, which increases its complexity. In order to overcome this difficulty, a non-
uniform distribution of the wall temperature is considered at certain sections of the
cylinder. The nonlinear coupled parabolic partial differential equations have been

solved numerically by using an implicit finite-difference scheme similar to that
proposed by Blottner [23].

Key words: mixed convection, vertical cylinder, porous medium, boundary layer
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FORCED CONVECTION BOUNDARY LAYER
FLOW OVER A FLAT PLATE WITH
VARIABLE THERMAL CONDUCTIVITY
EMBEDDED IN A POROUS MEDIUM

C.BERCEA' 1. POP*

Abstract: The effect of variable thermal diffusivity on
the steady forced convection boundary layer flow past a
Slat plate which is embedded in a fluid-saturated porous
medium has been studied in this paper. The basic
partial differential equations of continuity, Darcy law
and the energy are transformed into a single ordinary
differential equation wusing a simple similarity
transformation. This equation is solved analytically and
numerically.

Keywords: forced convection, boundary layer flow,
variable thermal conductivity, Keller - box method



TECHNISCHE MECHANIK, Band 27, Heft 1, (2007), 37 — 47
Manuskripteingang: 6. Juli 2006

Thermal Radiation Effect on Fully Developed Mixed Convection
Flow in a Vertical Channel

T. Grosan, I. Pop

The effect of radiation on the steady mixed convection flow in a vertical channel is investigated for laminar and

Jully developed flow regime. The Rosseland approximation is considered in the modelling of the conduction-
radiatiop heat transfer and temperatures of the walls are assumed constants, The governing equations are
expressed in non-dimensional form and are solved both analytically and numerically. It was found that there is a
decrease in reversal flow with an increase in the radiation parameters.

Effect of non-uniform suction or injection on mixed convection flow over a vertical

cylinder embedded in a porous medium

M. Kumari', C. Bercea and 1. Pop®
!Department of Mathematics, Indian Institute of Bangalore, Bangalore, India

*Faculty of Mathematics University of Clyj, R-3400 Cluj, Clyj CP 253, Romania

Abstract. The effect of steady non-uniform suction or injection on mixed convection boundary
layer flow over a vertical heated or cooled permeable cylinder, which is embedded in a fluid-
saturated porous medium, is studied numerically using the Darcy law approximation. Both
assisting and opposing flow cases are considered. Using suitable transformations, the coupled
governing boundary layer equations are transformed into a form suitable for a numerical
solution. The effects of the suction or injection, transverse curvature and mixed convection
parameters on the local Nusselt number and temperature profiles are studied. The obtained
results are presented graphically and discussed in details.

Keywords boundary layer, heat transfer, mixed convection, porous medium suction/injection,

vertical cylinder
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BOUNDARY LAYERS GROWTH ON A MOVING SURFACE DUE TO AN
IMPULSIVE MOTION AND A SUDDEN INCREASE OF WALL
HEAT FLUX

M.KUMARI
Department of Mathematics
Indian Institute of Bangalore

Bangalore, INDIA

T. GROSAN and I. POP’
Faculty of Mathematics
- University of Cluj
R-3400 Cluj, CP 253, ROMANIA
e-mail: pop.ioan@yahoo.co.uk

7/

In this paper we investigate the development of the momentum and thermal boundary layers over a
continuous moving semi-infinite flat plate when the external stream starts impulsively from rest at
time r=0 with a constant velocity u,, . It is assumed that the plate starts to supply heat to the fluid at
a constant rate g,, at time ¢=0 and maintained at this rate, The problem has been formulated in a

new system of scaled coordinates such that for #* =0 it reduces to Rayleigh type of equation and for
t* — oo (large time) it reduces to Blasius or Sakiadis type of equation. A new scale of dimensionless
time £ has been used which reduces the region of time integration from an infinite region (0 <7< )
to a finite time region (0 <&<7) which reduces the computational time considerably. The governing
partial differential equations are transformed into a singular parabolic partial differential equations
which have been solved numerically for a range of values of the governing parameters using an
implicit finite-difference scheme. The results show that there is a smooth transition from Rayleigh
solution to Blasius or Sakiadis solution as the dimensionless time ¢ increases from zero to one.

Key words: continuously moving plate, unsteady boundary layer, heat flux rate, numerical solution.

STUDIA UNIV. “BABES-BOLYATI", MATHEMATICA, Volume XXX, Number 1, March xcxx

Radiation and variable viscosity effects in forced convection from a
horizontal plate embedded in a porous medium

T. GROSAN, 1. POP, 8.R. POP

Abstract. Radiation and temperature dependent viscosity effects on forced
convection boundary layer flow over a horizontal plate embedded in a fluid-
saturated porous media is studied in this paper. Darcy’s law model, Rosse-
land model for radiation and an inverse proportional law for temperature
dependent viscosity have been considered. The transformed ordinary dif-
ferential equations are solved numerically, and a very good agreement be-

tween the present results and those reported for particular situations were
found.
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MIXED CONVECTION ALONG A VERTICAL WAVY SURFACE
WITH A DISCONTINUOUS TEMPERATURE PROFILE IN A
POROUS MEDIUM

M. Kumari®, C.Bercea®” and 1. Pop'™’
“Department of Mathematics, Indian Institutc of Bangalore, Bangalore, India
®Faculty of Mathematics, University of Cluj, R-3400 Cluj, CP 253, Romania

ABSTRACT

The steady mixed convection boundary layer flow along a vawy vertical wall with a discontinuous
temperature profile and embedded in a fluid-saturated porous medium is considered in this paper.
The overall surface is equally divided into a heated section succeeded by an unheated section
alternately. The basic continuity equation, the Darcy law and the energy equation are transformed
using a simple coordinate transformation which transforms the irregular surface into a flat surface.
These equations are solved numerically using a very efficient implicit finite-difference method. The
influence of the mixed convection and wavy geometry parameters on the skin friction coefficient.
local Nusselt number and velocity and temperature profiles have been studied in details. The
numerical results demonstrate that values of the local Nusselt number are positive (heat 1s
transferred from the wall to the fluid) in the heated regions and it is negative (heat is transferred
from the fluid to the wall) in the unheated regions. respectively. The obtained results for the heat
transfer from the wall are also compared with the corresponding results for a vertical flat plate

embedded in a porous medium with a uniform temperature distribution.
1
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HEAT TRANSFER IN . AXISYMMETRIC STAGNATION FLOW
ON A THIN CYLINDER

CORNELIA REVNIC, TEODOR GRO§AN, AND IOAN POP

. iy
af : . FERER N

Abstract. The steady axisymetric stagnation flow and heat transfer on .
a thin infinite cylinder of radius ¢ is studied in this peper. Both cases
w of constant wall temperatmi'e and constant wall hea.tl_f?ux are considered.
Using similarity variables the governing partial differential equations are
transformed into ordinary differéntial equatibﬁs. The' 13esultmg set of
- two ‘equations is solved numerically sing Runge-Kutta method combined
with a shooting technique. For the special case of the Reynolds number -
Re >> 1 (houndary layer approximation), we obtained an asymptotic solu-
*/ tion which include the‘ Hiemenz solution. The present results are compared o
’ in some particular cases with ex:stmg results from the ope;1 litérature and
with the as'ympt‘otic‘ épprdximati'on‘, and we found a very good agreement.
It is showh that the Nusselt number and the skin friction increase and the -
boundary layer thickness decreases with the increase of the Reynolds num-
ber. Some graphs for the velocity and temperature profiles are presented.
Also, tables with values related to the skin friction and Nusselt-number
are given.
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