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1. Introduction 
 
Heat transfer in channels occurs in many industrial processes and natural phenomena. It has been, therefore, the 
subject of many detailed, mostly numerical studies for different flow configurations. Most of the interest in this 
subject is due to its practical applications, for example, in the design of cooling systems for electronic devices 
and in the field of solar energy collection. Some of the published papers, such as by Aung [1], Aung et al. [2], 
Aung and Worku [3, 4], Barletta [5, 6], and Boulama and Galanis [7], are concerned with the evaluation of the 
temperature and velocity profiles for the vertical parallel-flow fully developed regime. As is well known, heat 
exchangers technology involves convective flows in vertical channels. In most cases, these flows imply 
conditions of uniform heating of a channel, which can be modelled either by uniform wall temperature (UWT) or 
uniform wall heat flux (UHF) thermal boundary conditions.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Geometry of the problem and co-ordinate system 

 
In the present paper, the effect of the non-linear density variation on the steady mixed convection flow in a long 
vertical channel is investigated. It is assumed that the density variation is a combination of the linear and 
quadratic terms of temperature, see Vajravelu and Sastri [8], that is 
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where β  and γ  are coefficients of thermal expansion, ρ  is the density and 0T  is the reference temperature. 
 The first term in this equation is the classical Boussinesq approximation, while the second term corresponds to 
water at 4oC. Under this assumption the governing equations are expressed in non-dimensional form and are 
solved both analytically and numerically.  
 
2. Basic equations 
 
Consider a viscous and incompressible fluid, which steadily flows between two infinite vertical and parallel 
plane walls. At the entrance of the channel the fluid has an entrance velocity 0U  parallel to the vertical axis of 
the channel and the fluid temperature is 0T . The geometry of the problem, the boundary conditions, and the 
coordinate system are shown in Fig. 1. The variation of density with temperature is given by eq. (1) and the fluid 
rises in the duct driven by buoyancy forces and initial velocity 0U . Hence, the flow is due to difference in 
temperature and in the pressure gradient.  
 
The flow being fully developed the following relations apply here: 

0=v , 0=∂∂ yv , 0=∂∂ yp , 
where v  is the velocity in the transversal direction and p is the pressure. Thus, from the continuity equation, we 
get  

/ 0u x∂ ∂ =  
so that  

( )u u y= . 
Based on the fact that the flow is fully developed we can assume that )(yTT = . Under these assumptions the 
momentum and energy equations for the flow and heat transfer have the following form:  
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subject to the boundary conditions 
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where  p is the pressure, g is the gravitational acceleration, ν is the kinematic viscosity, α  is the thermal 
diffusivity and cp is the specific heat at constant pressure. The closure of the system (2) – (3) subject to the 
boundary conditions (4) is given by the mass flux conservation equation 
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where L is the channel width. 
In order to solve equations (2) and (3), we introduce the following non-dimensional variables 
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where νLURe 0=  is the Reynolds number.  
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Using (6) in (2) and (3) we obtain: 
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where dXdP /  in equation (7) should be constant and where 
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is the Brinkman number, see [9], Pr is the Prandtl number, Ec  is the Eckert number and  
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are the mixed convection parameter and the modified mixed convection parameter, respectively. It is worth 
mentioning that * 0λ > , while 0λ >  if 20 TT < (i.e. the fluid is cooler than the right wall) and 0<λ  if 20 TT >  
(i.e. the fluid is hotter then the right wall because of the viscous dissipation), respectively. 
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Equations (7) and (8) are subject to the boundary conditions (4), which become in dimensionless form 
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and the conservation mass flux relation (5) takes the form 
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The physical quantities of interest in this problem are the skin friction coefficients fC and the Nusselt 

numbers Nu , which are defined as 
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Using (6) and (13), we obtain 
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It is worth mentioning that if the modified mixed parameter *λ  and the Brinkman number Br are zero (i.e. 

0,0* == Brλ ) equations (7), (8) and (11) reduce to those obtained in [4] and it is possible to obtain an 
analytical solution of this problem. 
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