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Internal heat generation effects on the unsteady free  
convection in a square cavity filled with a porous medium 

 
 

1. Introduction 
 
Natural convective heat transfer in fluid-saturated porous media has occupied the centre stage in 
many fundamental heat transfer analyses and has received considerable attention over the last 
several decades. This interest has been due to its wide range of applications in, for example, 
packed sphere beds, high performance insulation for buildings, chemical catalytic reactors, grain 
storage and such geophysical problems as frost heave. Porous media are also of interest in 
relation to the underground spread of pollutants, solar power collectors, and to geothermal energy 
systems. Porous materials, such as sand and crushed rock, which when underground are saturated 
with water, which, under the influence of local pressure gradients, migrates and transports energy 
through the material. Literature concerning convective flow in porous media is abundant. 
Representative studies in this are may be found in the recent books by Nield and Bejan (2006), 
Ingham and Pop (2005), Vafai (2005), Bejan et al. (2004) and Pop and Ingham (2001).  
     Natural convection in an enclosure in which internal heat generation is present is of prime 
importance in certain technological applications. Examples are post-accident heat removal in 
nuclear reactors and geophysical problems associated with the underground storage of nuclear 
water, among others (Acharya and Goldstein, 1985; Ozoe and Maruo, 1987; Lee and Goldstein, 
1988; Fusegi et al., 1992; Venkatachalappa and Subbaraya, 1993; Shim and Hyun, 1997; Hossain 
and Wilson, 2002; Hossain and Rees, 2005). Natural convection heat transfer in a cavity saturated 
with porous media in the presence of a magnetic field is a new branch of thermo-fluid mechanics. 
The heat transport phenomenon can be described by means of the hydrodynamics, the convective 
heat transfer mechanism and the electromagnetic field as they have a symbiotic relationship.  
     The present study investigates the effects heat generation on the unsteady free convection in a 
square enclosure filled with a porous medium saturated by a viscous fluid.  
 
2.  Mathematical model 
Consider the unsteady natural convection flow in a rectangular cavity filled with an electrically, 
conducting fluid-saturated porous medium and internal heat generation. We assume that the 
enclosure is permeated by a uniform inclined magnetic field. The geometry and the Cartesian 
coordinate system, and the boundary conditions, are schematically shown in Fig. 1, where the 
dimensional coordinates x  and y  are measured along the horizontal bottom wall and normal to it 
along the left vertical wall, respectively.  
     The height of the cavity is denoted by L . It is assumed that the vertical walls are maintained 
at constant temperatures cT and hT , while the horizontal walls are adiabatic. We also take into 
account the effect of uniform heat generation in the flow region. The constant volumetric rate of 
heat generation is ]/[''' 3

0 mWq . It is also assumed that the effect of buoyancy is included 
through the well-known Boussinesq approximation. The resulting convective flow is governed by 
the combined mechanism of the driven buoyancy force and internal heat generation.  
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Figure 1.Geometry of the problem and the co-ordinate system, and the boundary conditions. 
 

     Under the above assumptions, the conservation equations for mass, Darcy and energy are 
given by 
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where V  is the velocity vector, T  is the fluid temperature, p  is the pressure, g  is the 
gravitational acceleration, K  is the permeability of the porous medium, mα  is the effective 
thermal diffusivity, ρ  is the density,µ  is the dynamic viscosity, β  is the coefficient of thermal 
expansion, pc  is the specific heat at constant pressure, 0ρ  is the reference density 

Eliminating the pressure term in Eq. (2) in the usual way, the governing equations (1) to 
(3) can be written as 
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and are subjected to the boundary conditions 
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where υ  is the kinematic viscosity. Further, we introduce the following non-dimensional 
variables  
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where 2/)(0 ch TTT +=  is the characteristic temperature. Introducing the stream function ψ   
defined as YU ∂∂= /ψ  and XV ∂−∂= /ψ , and using Eq. (11) in  Eqs. (7) - (9), we obtain the 
following partial differential equations in non-dimensional form: 
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subject to the boundary conditions 
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where ναβ mch LTTgKRa /)( −=  is the Rayleigh number and ναβ mI kLKgqRa /''' 3

0=  is the 
heat generation parameter. 
     Once we know the numerical values of the temperature function we may obtain the rate of 
heat flux from each of the vertical walls. The non-dimensional heat transfer rate, per unit length 
in the depth-wise direction for the left vertical wall is given by 
 

                                 (15) 
  
3 Results and discussion 
We use a non-uniform grid and in the absence of internal heat generation effect we obtain: 
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Fig. 2. Non-uniform grid. 

 
Fig. 3. Streamlines and isotherms for Ra = 10 and Q = 0 (steady state). 

 

 
Fig. 4. Streamlines and isotherms for Ra = 10 and Q = 1 (steady state). 
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Table 1. Mean Nusselt number uN  for different grids at 310=Ra  
Boundary layer 

thickness 
1x∆ - first 

step in b.l. 
blN  - number of 

nodes in b.l. 
N – total number 
of nodes 

uN  (Nusselt 
number) 

0.1 0.00123 10 56 13.4523 
0.1 0.00027 20 116 13.5982 
0.2 0.00054 20 67 13.5521 
0.2 0.00023 30 102 13.6027 
0.3 0.00035 30 77 13.5822 
0.3 0.00019 40 104 13.6085 
0.4 0.00026 40 87 13.5968 
0.4 0.00016 50 110 13.6131 

Table 2. Comparison of the mean Nusselt number uN  for different values  
of Ra  when the steady state is reached 

                                     
Ra  Authors 10 100 1000 10000 

Walker and Hosmy [20]  3.097 12.96 51 
Bejan [21]  4.2 15.8 50.80 
Beckerman et al. [22]  3.113  48.9 
Gross et al. [23]  3.141 13.448 42.583 
Manole and Lage [24]  3.118 13.637 48.117 
Moya et al. [25] 1.065 2.801   
Batas and Pop [26] 1.079 3.16 14.06 48.33 
Present results 
(110 x 110) 

1.079 3.108 13.613 48.208 
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