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Steady free convection in a rectangular cavity filled with a porous medium 
 

1. Introduction 
Natural convective heat transfer in fluid-saturated porous media has occupied the center stage in many fundamental 
heat transfer analyses and has received a considerable attention over the last several decades. This interest was 
estimated due to its wide range of applications in, for example, packed sphere beds, high performance insulation for 
buildings, chemical catalytic reactors, grain storage and such geophysical problems as frost heave. Porous media are 
also of interest in relation to the underground spread of pollutants, solar power collectors, and to geothermal energy 
systems. Literature concerning convective flow in porous media is abundant. Representative studies in this are may 
be found in the recent books by Nield and Bejan (2006), Ingham and Pop (2005), Vafai (2005), Bejan et al. (2004) 
and Pop and Ingham (2001).  
     Natural convection in an enclosure in which internal heat generation is present is of prime importance in certain 
technological applications. Examples are post-accident heat removal in nuclear reactors and geophysical problems 
associated with the underground storage of nuclear water, among others (Acharya and Goldstein, 1985; Ozoe and 
Maruo, 1987; Lee and Goldstein, 1988; Fusegi et al., 1992; Venkatachalappa and Subbaraya, 1993; Shim and Hyun, 
1997; Hossain and Wilson, 2002; Hossain and Rees, 2005). 
     
2.  Mathematical model 
Consider the steady natural convection flow in a rectangular cavity filled with a fluid-saturated porous medium and 
an internal heat generation. The geometry and the Cartesian coordinate system are schematically shown in Fig. 1, 
where the dimensional coordinates x  and y  are measured along the horizontal bottom wall and normal to it along 
the left vertical wall, respectively. The height of the cavity is denoted by h  and the width by l , respectively. It is 
assumed that the vertical walls are maintained at a constant temperature 0T , while the horizontal walls are adiabatic. 
We also bring into account the effect of a uniform heat generation in the flow region. The constant volumetric rate of 
heat generation is ]/[''' 3

0 mWq . It is also assumed that the effect of buoyancy is included through the well-
known Boussinesq approximation.. The resulting convective flow is governed by the combined mechanism of the 
driven buoyant force, and internal heat generation.      Under the above assumptions, the conservation equations for 
mass, Darcy, energy and electric transfer are 
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where V  is the velocity vector, T  is the fluid temperature, p  is the pressure, g  is the acceleration vector, K  is 

the permeability of the porous medium, mα  is the effective thermal diffusivity, ρ  is the density,µ  is the dynamic 

viscosity, β  is the coefficient of thermal expansion, pc  is the specific heat at constant pressure, 0ρ  is the reference 
density.  
Eliminating the pressure term in Eq. (2) in the usual way, the governing equations (1) to (3) can be written as 
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and are subjected to the boundary conditions 
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where υ  is the kinematic viscosity. Further, we introduce the following non-dimensional variables  
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where k  is the thermal conductivity.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.Geometry of the problem and co-ordinate system 
 

 
Introducing the stream function ψ   defined as YU ∂∂= /ψ  and XV ∂−∂= /ψ , and using (9) in  Eqs. (5) - 
(8), we obtain the following partial differential equations in non-dimensional form: 
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subject to the boundary conditions 

1and0at,0,0,0

1and0at,0,0,0

===
∂
∂

==

=====

YY
Y

V

XXU
θψ

θψ
                          (12) 

where hla =  is the aspect ratio of the cavity and Ra is the Rayleigh number. 
     Once we know the numerical values of the temperature function we may obtain the rate of heat flux from each of 
the vertical walls. The non-dimensional heat transfer rate, wq , per unit length in the depthwise direction for the left 
vertical wall is given by 
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Linii de current si izoterme pentru Ra = 100, a=1 

 
Linii de current si izoterme pentru Ra = 100, a=0.5 

 
Linii de current si izoterme pentru Ra = 100, a=2 

 
 



 

 4

 

 
 
References 

   
A. Bejan, I. Dincer, S. Lorente, A.F. Miguel and A.H. Reis, Porous and Complex Flow Structures in Modern 

Technologies, Springer, New York, 2004. 
D.B. Ingham and I. Pop (eds.), Transport Phenomena in Porous Media, Pergamon, Oxford, Vol. III, 2005. 
D.A. Nield and A. Bejan, Convection in Porous Media (3rd edition), Springer, New York, 2006. 
I. Pop and D.B. Ingham, Convective Heat Transfer: Mathematical and Computational Modelling of Viscous Fluids 

and Porous Media, Pergamon, Oxford, 2001. 
K. Vafai (ed.), Handbook of Porous Media (2nd edition), Taylor & Francis, New York, 2005. 
S. Acharya and Goldstein, Natural convection in an externally heated vertical or inclined square box containing 

internal energy sources, ASME J. Heat Transfer 107 (1985), 855-866. 
J.-H. Lee and R.J. Goldstein, An experimental study on natural convection heat transfer in an inclined square 

enclosure containing internal energy sources, ASME J. Heat Transfer 110 (1988), 345-349. 
T. Fusegi, J.M. Hyun and K. Kuwahara, Natural convection in a differentially heated square cavity with internal 

heat generation, Numer. Heat Transper, Part A 21 (1992) 215-229. 
Y.M. Shim and J.M. Hyun, Transient confined natural convection with internal heat  generation, Int. J. Heat Fluid 

Flow 18 (1997) 328-333. 
M. Haajizadeh, A.F. Ozguc, C.L. Tien, Natural convection in a vertical porous enclosure with internal heat 

generation, Int. J. Heat Mass Transfer 27 (1984) 1893-1902. 
M.A. Hossain and M. Wilson, Natural convection flow in a fluid-saturated porous medium enclosed by non-

isothermal walls with heat generation, Int. J. Thermal Sci. 41 (2002), 447-454. 
M.A. Hossain and D.A.S. Rees, Natural convection flow of water near its density maximum in a rectangular 

enclosure having isothermal walls with heat generation, Heat Mass Transfer 41 (2005) 367-374. 
S. Alchaar, P. Vasseur and E. Bilgen, The effect of a magnetic field on natural convection in a shallow cavity heated 

from below, Chem. Engng. Comm. 134 (1995), 195-209. 


