Introduction to Computational Fluid Dynamics

FINITE DIFFERENCES METHOD - TYPICAL PROBLEMS (part I11)

NUMERICAL ALGORITHMS: PRIMITIVE VARIABLES

The dimensionless incompressible Navier Stokes equations are:

Ou Ov

Ox + Oy
ou J 2 Y — 1 62“ 32’&) 8-57
e Gl s EE(W) = Re (3_,,,2 * 52 (8-57)
v 8 8,5, _ 1 (0% &% 8-58
Fm + b;(u”) + 5‘5(” +p)= Re (6:!72 + dy? ( )

Obviously, the system of equations given by (8-56) through (8-58) includes three
unknowns: u, v, and p. If one considers a simple explicit formulation, it would seem
logical to use Equation (8-57) to solve for u (where p and v are lagged), whereas
one would solve Equation (8-58) for v. Now, one is left with Equation (8-56) to
solve for the pressure, but unfortunately pressure does not appear in that equa,tion!
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;I;his difﬁcult;r is overbome, however, by manipulation of the continuity equation to
include the pressure term. Two procedures have been introduced for this purpo.se.
One procedure involves the manipulation of the momentum equation along w?th
the continuity equation. The mathematical details were described previously which
resulted in the Poisson equation for pressure. A second procedure incorporates
the addition of a time-dependent pressure term to the continuity equation, i:e.. . .to
Equation (8-56). This approach is generally known as the artificial compressibility
method which is investigated in the following section.

(See Course 7) Poisson equation for pressure:

p &p oD &, , 02 * ., 1 [ §? &?
0x? + &2 8t 6:1:2(“ ) - zaxay(“”) - ;9?(” )+ Re @(D) + @(D)J

(8-46)

where

du Ov

D=55+a—y

is known as dilatation.
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Boundary condition for Poisson equation for pressure:

(Janos Benk, How to Solve The Navier-Stokes Equation, Joint Advanced Student School (JASS), St. Petersburg - Sunday,
March 25 through Wednesday, April 4, 2007, http://wwwmayr.informatik.tu-muenchen.de/konferenzen/Jass07/courses/2/)

First we choose the normal component: (Neumann)

1
n-VPsaP/E?n:R—Vzun—((aun/at)+u-Vun) ont
€
The BC with the tangential component (Dirichlet):

1 onI’
r-VPz&P/@rzR—VzuT—((auflét)+u-VuT)
e

It has been proven that these 2 conditions are equivalent.

We can calculate the pressure up to an arbitrary additive constant!!!
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How it works:
(Benjamin Seibold, A compact and fast Matlab code solving the incompressible Navier-Stokes equations on rectangular

domains, www-math.mit.edu/~seibold)
We consider the incompressible Navier-Stokes equations in two space dimensions

1
ur + pr = —(u?)z — (uv), + E(um + Uy ) (1)
1
v+ py = —(uv), — (v, + E(’sz + Vyy) (2)
Uy +Vy = 0 (3)

on a rectangular domain Q = |0, ;] x[0,{,]. The four domain boundaries are denoted North,
South, West, and FEast. The domain is fixed in time, and we consider no-slip boundary

conditions on each wall, i.e.

w(z, ly) = un(x) v(x,l,) =0 (4)
u(x,0) = ug(x) v(z,0)=0 (5)
u(0.y) =0 v(0,y) = vw (y) (6)
u(le,y) =0 v(le,y) = vE(Y) (7)
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Solve by projection approach:

In each tume step
[. Solve u, + (u-V)u =
o —un
At
Note: V- U* # 0
II. Project on divergence-free velocity field
[l
At
What is p: 0=V - U™ = V. U* — A{V2P

o

| 1
— (U". V) U™ + — VU™
( ) o

=—Vp

1
= V?p = EV -U*  Poisson equation for pressure
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Discretization:

Solution:

.‘—--""_-.‘7

u=1uv=>0, Ea

p = constant

A

Boundary conditions u=0=v

But: Central differences
on grid allow solution

L‘Tij = I’;j = [).

P I+ J eve
P . 3 j even
Py ¢t + 7 odd
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Fix: Staggered grid

® @ L] o] @ (-]
@ @ @ @
X pressure p
. G RO o velocity wu
~ o velocity v
kol o @ @ o (e

Boundary Conditions:

u=uy
(g;_;;._ {@;) U 13 = U
4 i
U] 1'/ T@” [ Un + Y =g = Uy + Ugp = 2uy,
%/ 2
u,e \@/ o
$
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Numerical Method:

[. a) Treat Nonlinear Terms

uty, + vu, = (u?), + (uwv),
vy + vuy, = (uv), + (v?),  (use u, + v, = 0)

T T
U)Wy — WUigy)? 0| FE
0. B Ar ij | ————
- g | A R R (.
O(UV)] UigstViger —Ugyo1Vijg
dy |.. Ay
L - ij ; " X
; [T 111
— T
IUV)] _ YagsVirs, = VitV Uiges | { l { 1 1
| Oz y Ax
a(V?) (Vijj+ )2_“/”—%)2 _ J| ! -
TR Ay ACAON I o o o
) N dy | -
| )
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where UH%,;; B Ui i —|-2L“;'—|—1,jf {"ri;j-l—% B Ui —|—2Ui.j+1
U;; — UY; Ut [owv)|”
Vigm = Vig" [a(W)r B [3(1”2)];@

At dr |, Y |;;

[. b) Implicit Diffusion

Ut —Ur 1
_ TH* Tk
[ 1 T k% 7k
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[I. Pressure Correction

We correct the intermediate velocity field (U**,V**) by the gradient of a pressure
P to enforce incompressibility.

Un—l—l _ [J**

= (P, (16)
v’n—l—l o V’**

= (P, (17)

The pressure is denoted P**+1, since it is only given implicitly. It is obtained by solving
a linear system. In vector notation the correction equations read as
Ly L
At At

Applying the divergence to both sides yields the linear system

U" = -yvprtl (18)

1
APV - —y.yn 19
Atv (19)

Hence. the pressure correction step is

U if{) (:)‘ ('}‘; } <J) | ) U X X | X | X | X
*’l‘\ S l‘) ! ) @) . X X
O ) D ( ( @ —> X
o I
! FI O T | :
Q Q Q) ) Q X X X X X
| | [ | [ |
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(a) Compute F" =V .U"

(b) Solve Poisson equation —AP" ! = —ﬁF "

(c) Compute G"*+1 = v pntl

(d) Update velocity field U™l = U" — AtG"+1
The question, which boundary conditions are appropriate for the Poisson equation
for the pressure P, is complicated. A standard approach is to prescribe homoge-
neous Neumann boundary conditions for P wherever no-slip boundary conditions are
prescribed for the velocity field. For the lid driven cavity problem this means that
homogeneous Neumann boundary conditions are prescribed everywhere. This implies
in particular that the pressure P is only defined up to a constant, which is fine, since
only the gradient of P enters the momentum equation.

In addition to the solution steps, we have the visualization step, in which the stream function
Q™ is computed. Similarly to the pressure is is obtained by the following steps

1 r T
1. Compute F™ = (V") — (U"),
2. Solve Poisson equation —AQ"™ = —F™"
We prescribe homogeneous Dirichlet boundary conditions.
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Spacial Discretization

The spacial discretization is performed on a staggered grid with the pressure P in the cell
midpoints, the velocities U placed on the vertical cell interfaces, and the velocities V' placed
on the horizontal cell interfaces. The stream function @ is defined on the cell corners.

Counsider to have ng x n, cells. Figure 1 shows a staggered grid with n, = 5 and n, = 3.
When speaking of the fields P, U and V (and @), care has to be taken about interior and
boundary points. Any point truly inside the domain is an interior point. while points on or
outside boundaries are boundary points. Dark markers in Figure 1 stand for interior points,
while light markers represent boundary points. The fields have the following sizes:

interior resolution

field quantity

resolution with boundary points

pressure P

Mg X Ty

(g +2) x (ny +2)

velocity component U (ng — 1) x ny (714 + l) (ny +2)
velocity component V/ Ng X (Ny — 1) (ng +2) x (ny + 1)
stream function @ | (ny — 1) < (ny — 1) (ng +1) x (ny +1)

The values at boundary points are no unknown variables. For Dirichlet boundary conditions
they are prescribed. and for Neumann boundry conditions they can be expressed in term
of interior points. However. boundary points of U and V' are used for the finite difference
approximation of the nonlinear advection terms. Note that the boundary points in the four
corner are never used.
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®
()]

()]
()]
()]
()]
()]

UXP.X.XIX.X

e Second derivatives
Finite differences can approximate second derivatives in a grid point by a centered
stencil. At an interior point U; j; we approximate the Laplace operator by

L"Tz'_l’j — QITIJ -+ '[-'Ii—l—l,j n [-"T-i,j—l — 2[,:-_}. + [."'Tf,-'_!j_|_1

QU?;J = (le:rjzj + ((’ryy)iej ~ h2 h2
2 Y

e First derivatives
A first derivative in a grid point can be approximated by a centered stencil.
Uit1j — Ui—1j
2h,

(Uz)ij ~
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This, however, can yield instabilities, as shown in many textbooks on numerical anal-
vsis. Here the staggered erid comes into play. Assume, we are not interested in the
value of Uy in the position of U; j, but instead we want the value in the middle between
the points U; 41 ; and U; ;. Then the approximation

Uir1,j — Uiy

oy

is a stable centered approximation to U, in the middle between the two points. In
the staggered grid this position happens to be the position of F; ;.

See more details:
(http://math.mit.edu/~gs/cse/codes/mit18086 navierstokes.pdf)
(http://math.mit.edu/~gs/cse/codes/mit18086 navierstokes.m)
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Artificial compressibility method:

Ou , v _ 0
dz Oy
u O a 1 [ Bzu)
5 + B-E(u2+ p) + %(uv) = e (332 + ¥
v 8 3, ., 1 (& B
a’i‘ﬁ(uv)-f'éa(v +p)_Re(6:v”+3y2
‘Artificial Compressibility

The application of the scheme to the steady incompressible Navier-Stokes equa-
tions was introduced by Chorin (Ref. [8-5]). The continuity equation is modified by
inclusion of a time-dependent term and is given by

gp 1 (0u .‘?3):0
5t-+;(63+6y

where 7 can be interpreted as the “artificial compressibility” of the fluid. Following
the equation of state the compressibility can be related to a pseudo-speed of sound
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and to an artificial density by the following relations

__l
TT@
a2 ="

p

where all the quantities are in nondimensional form.

Thus, the steady incompressible Navier-Stokes equations {two-dimensional Carte-
sian coordinates) are expressed in a pseudotransient form as

Op ou Ov
E-I-a (Bz+3y) 0

du @8, , 0 1 [fPu O
ot + E(“ +p)+ 8—(110) " Re (3:::2 + 3y2)

b un) + (P p) = o (a4 2
ot dy P Re 6:1:3 oy?
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' Solution on Regular Grid

To facilitate the application of the finite difference formulations, the conservative
form of the governing equations from Equations (8-60) through (8-62) are written
in a flux vector form as

80 8E OF 1.,
5 Tz Ty "RV A

where

D a’u a’v
Q=|uv| , E=|uv*+p| , F=| w
v Uuv vi4+p
and
0 00
N=]0120
0 01
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Liniarization
n+1 3E 2
EM! = E* + ——AQ + O(At)
oQ
AQ=Q-Qr
OF ) \ . .
Terms such as -3_@ are known as flux Jacobian matrices. The Jacobian matrices
oF oF

30 and 30 will be denoted by A and B, respectively. The Jacobian matrix A is

" 0F; OE, O8E;
0@y 0Q: 0Qs
OB, E,E | 0E, 0B, OB
T 0[Q1,Q:,Qs] | 0Q1 9Q: 9Qs
O0E; O8E3; OE;
| 0Q1 0Q, 0Qs |

A
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Recall that the vectors Q and E are

p Q1 a’u a*Q; E,
Q o u = Qg and EF = U2 + r| = Qg + Ql = E2
v Q@3 uv Q202 Ej
Thus,
8E1 _ 3(a2Q2) -0
o0, aQ,
OF, _ (a’Q,) =g
0Q2 0Q;
6E1 — 8((12623) -0
0Qs 03

The remaining elements are determined in a similar fashion resulting in

0 (12 0 0 0 @2
A = 1 2“ 0 B — 0 v U
0 v u 1 0 2v
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Crank-Nicolson Implicit

Recall that the Crank-Nicolson formulation requires an averaging of the terms

at time levels of n and n + 1.
?E n N _6_£_?_ n+1 ‘a;F— n N ?_F_ n+1
Or oz ay Oy
— 2N b gr ey
" 2Re oz = Oy?

» &
At[dA OB N (8°Q &°Q _
{I+ > [a:ﬁ 5 _Re(3m2+ ayz)]}ﬁQ—RHS

AQ 1
A T3

1
2

or
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Boundary Conditions

Faﬁfﬁdd ';;7

-

Inflow
Outflow

/

e e i

iy ,

/

y ? —_—
/ —
? B C
/

i i e iy
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Generally speaking, the Neumann-type boundary
condition is imposed for the pressure. For this purpose a relation involving the
normal pressure gradient is obtained from the appropriate momentum equation.
For example, the following expression can be utilized along the solid boundary
aligned parallel to the y-coordinate:

dp 1 Fu
8  Re8z?
This pressure boundary condition may be specified along the boundary AB of the
classical steady flow over step Similarly, the condition
ap 1 0%
dy  Re 8y

would be imposed along the boundary BC. These boundary conditions are imple-
mented in the solution of the Poisson equation for pressure.
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Far-Field

Specification of boundary conditions on the far-field boundary is very much
problem dependent. If the boundary is located far away such that the flow proper-
ties on the boundary are not influenced by the interior solution, then it is indeed
far-field and usually the freestream conditions are imposed. On the other hand,
if the boundary is located relatively close to the “action,” the boundary can no
longer be considered as far-field and must be dealt with as an inflow and/or outflow
boundary. Whether the boundary is considered as an outflow boundary or an inflow
boundary depends on the sign of the velocity component normal to the boundary.
If the velocity is into the domain, that portion is considered as inflow boundary;
otherwise it is considered as an outflow and appropriate boundary conditions must
be incorporated.
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- Symmetry

For applications where the configuration and the domain of solution are sym-
metrical, the axis of symmetry (or surface of symmetry) may be used as a boundary.
The boundary location may be defined in two fashions. First, the boundary is set
on the axis of symmetry as shown in Fig. 8-3.

S
;
;
e i R
i

Figure 8-3. Illustration of boundary set on the axis of symmetry.

In this case the net flow across the symmetry line is zero. Therefore, the component
of the velocity normal to the boundary is set to zero. Furthermore, the shear stress
along the axis of symmetry may be zero in some applications. Thus, the velocity
gradient is set to zero. Second, the boundary may be set below the axis of symmetry
as shown in Fig. 8-4, in which case the symmetry of flow variables are used as the
required boundary conditions.
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Inflow

Usually two boundary conditions are required at the inflow. For most appli-
cations, pressure and one component of the velocity are provided. Typically then
u(y) = u, and p are provided. The y-component of the velocity may be set to zero
or may be determined by setting the velocity gradient Ov/0z to zero. If one uses
a first-order approximation, then n; = V2. Higher order approximations can be
used as well; for example a second-order approximation yields

Vg = 21.!2,_’ — U3

Outflow

Generally speaking the value of the velocity and/or pressure are not known at
the outflow boundary. Therefore, for most applications Neumann type boundary
conditions are imposed. The specification of zero velocity gradient at the outflow
may be appropriate for most applications.
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Example for BC y
L |
El 1D
‘““"'[———"‘**"—“‘”—"———————"r
I
| |
| .
| [
H2 I :
| | H
! |
'F_ |
7 })//H//I/N!/HUH:; [ |
il |
H, 7

4B C/

{‘ 4 d":’;/;/l_ﬂ / ;-;I/;:H;N;H-fj/;;U;h‘;ﬂ;;!/;h;;;ﬂﬂ / X
o 1

L, L,
Boundary EF (Inflow):
(U= Uy
—_— 0 av J—
Hi<y<H v=nor 5=
dp 1 &u
| P= P O 52 = Redg?
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Boundary F'A (Solid surface):

u =
O<z<« L $ v=
Op 1 8%
| 8y Redy?
Boundary AB (Solid surface): ! Y
f u=0
0< v < H 4 v=_0
Op 1 &u
\ " Redr?
Boundary BC (Solid surface): 0z Reds
(u=0 Boundary CD (Outflow):
Li<z<L ¢ U= r guE =0
dp 1 6% | 0
—_— —— 0< H ...3 —
dp
| P =Py Or 'é"
Boundary ED (Far-Field): §
U= Ugy
0<z< L v=20
D = Poo
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