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FINITE DIFFERENCES METHOD - TYPICAL PROBLEMS (part II) 
 

FREE CONVECTIVE FLOW IN A DIFFERENTIALLY HEATED SQUARE CAVITY 
 

1. Introduction 

With many industrial and environmental 

applications, the natural convection of enclosed 

fluids has been an important subject due to its 

particular transition to turbulence mechanism by 

destabilizing the buoyancy-driven flow and its 

high numerical computational requirements. A 

large section of the previous research done on 

this topic has been reviewed by Bejan [1]. 

Extensive work was done by De Vahl Davis [2] 

who presented the final form of the problem and 

computational results for high Rayleigh 

numbers.  

Fig. 1. Physical model and coordinate system. 
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2.  Mathematical model 

We consider the natural convection of a fluid in a rectangular cavity. The coordinate system is 

chosen such that the origin is set in the cavity’s bottom left corner and the y -axis is parallel and of 

opposite direction with the gravitational acceleration vector g . In this paper the cavity is considered 

to be square hence the height is denoted by L  (see Figure 1). The left hand wall is at given uniform 

temperature hT , while the right hand one is subjected to a uniform temperature cT , where ch TT > . 

Considering all the fluid properties except density in the buoyancy term (Boussinesq 

approximation) constant the governing equations written in Cartesian coordinates yx,  are given by 
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The boundary conditions of these equations are  
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Here u  and v  are the two dimensional fluid velocity components, p  is the dynamic pressure, which 

is equal to the total pressure minus the hydrostatic component, T  is the fluid temperature  

       Further, we introduce the following non-dimensional variables  
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where 0U  is defined as LU /0  and 0T  is the characteristic temperature given by   2=0 ch TTT   
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Using the dimensionless stream function   and vorticity function  , which are defined as usual 

 2222and, YXXVYU   , we obtain the following 

dimensionless system of equations:  
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and the boundary conditions (5) become 
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Here the parameters Ra and Pr  are defined as  
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The physical quantity of interest is the mean Nusselt number Nu  given by                 
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     John William Strutt,  3rd Baron Rayleigh                                       Ludwig Prandtl 

(1842 –1919),                                                             (1875 – 1953) 
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Rayleigh number (Ra) for a fluid is a dimensionless number associated with buoyancy-driven 

flow, also known as free convection or natural convection. When the Rayleigh number is below a 

critical value for that fluid, heat transfer is primarily in the form of conduction; when it exceeds the 

critical value, heat transfer is primarily in the form of convection. 

 

The Prandtl number (Pr) or Prandtl group is a dimensionless number, named after the German 

physicist Ludwig Prandtl, defined as the ratio of momentum diffusivity to thermal diffusivity 

 

The Nusselt number (Nu) is the ratio of convective to conductive heat transfer across (normal to) 

the boundary. In this context, convection includes both advection and diffusion. Named after 

Wilhelm Nusselt, it is a dimensionless number. 
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3 Numerical method 

The numerical solution of system (7)-(9) was obtained using a central finite-difference scheme 

together with a Gauss-Seidel iteration technique. The unknowns  ,   and   were iteratively 

computed until the following convergence criteria was fulfilled    ),(),(max jifjif oldnew , 

where f represents the temperature, stream function or vorticity and  (=10e-8) is the convergence 

criteria.  

 

  

 

 

 

    

 

 



Introduction to Computational Fluid Dynamics 

 Lecture 8 –Finite Difference Method. Differentially heated cavity      11 
 

 

 

 



Introduction to Computational Fluid Dynamics 

 Lecture 8 –Finite Difference Method. Differentially heated cavity      12 
 

 

 

 

 

 

 

 

format long g; 

tic 

N=101; h=1/(N-1); 

xplot=0:h:1; yplot=0:h:1; 

  

Ra=10000;Pr=0.71;  
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u=zeros(N,N);O=zeros(N,N); 

uo=zeros(N,N);Oo=zeros(N,N); 

T=zeros(N,N); To=zeros(N,N); 

To(1,:)=0.5;To(N,:)=-0.5; 

 

stop=1; 

nr_it=0; 

 

while stop==1 

      nr_it=nr_it+1; 

      for i=2:N-1 

       for j=2:N-1 

        T(i,j)=0.0625*((To(i,j+1)-T(i,j-1))*(uo(i+1,j)-u(i-1,j))-(To(i+1,j)- 

             T(i-1,j))*(uo(i,j+1)-u(i,j-1)))+0.25*(To(i+1,j)+T(i-1,j)+ 

             To(i,j+1)+T(i,j-1)); 

        O(i,j)=0.0625/Pr*((Oo(i,j+1)-O(i,j-1))*(uo(i+1,j)-u(i-1,j))-(Oo(i+1,j)- 

              O(i-1,j))*(uo(i,j+1)-u(i,j-1)))+0.25*(Oo(i+1,j)+O(i1,j)+Oo(i,j+1)+ 

              O(i,j-1))+0.125*Ra*h*(To(i+1,j)-T(i-1,j)); 

        u(i,j)=0.25*(uo(i+1,j)+u(i-1,j)+uo(i,j+1)+u(i,j-1))+0.25*h*h*O(i,j); 

       end; 

      end; 

        O(1,:)=-2*(u(2,:)-u(1,:))/h/h; 

        O(N,:)=2*(u(N,:)-u(N-1,:))/h/h; 

        O(:,1)=-2*(u(:,2)-u(:,1))/h/h; 

        O(:,N)=2*(u(:,N)-u(:,N-1))/h/h; 

        T(1,:)=0.5;T(N,:)=-0.5; 

        T(:,1)=T(:,2);T(:,N)=T(:,N-1);%adiabatic 
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      errU=norm(u-uo);errO=norm(O-Oo);errT=norm(T-To); 

      if mod(nr_it,1000)==0 

         fprintf('nr_it=%d  errU=%g  errO=%g errT=%g\n', nr_it, errU, errO,errT); 

         if (errU<1e-8)&(errO<1e-8)&(errT<1e-8) 

             stop=0; 

         end 

      end 

      uo=u;Oo=O;To=T; 

end; 

 

figure(1) 

 contour(xplot,yplot,u',50); 

axis equal 

 figure(2) 

 contour(xplot,yplot,O',50); 

 axis equal 

figure(3) 

 contour(xplot,yplot,T',50); 

 axis equal 

 

max(max(abs(u))) 

Nu_loc=-(T(2,:)-T(1,:))/h; 

Nu=trapz(yplot,Nu_loc) 

toc 
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Table 1. Grid dependence study for 71.0Pr,1000 Ra  

Nodes Nu CPU 
time 

(seconds) 

26x26 1.124468 3.53 

51x51 1.121141 38.73 

76x76 1.120023 179.55 

101x101 1.119464 541.16 

126x126 1.119128 1247.27 

151x151 1.118905 3033.25 

176x176 1.118746 5194.78 

201x201 1.118626 9138.46 

 

In order to determine the proper mesh size Table 2 clearly shows a good agreement for the mesh 

size 151x151 which was later on used in all our computations. Comparison results of other 

published paper (see De Vahl Davis [2]) are shown in Table 2. It is seen that the present results are 

in very good agreement with those determined in the paper mentioned above. Therefore we are 

confident that the present results are accurate. 
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Table 2. Validation of the code for Nu  when  71.0Pr   

 Ra  
De Vahl 

Davis [2] 

Present 

results 

1000 1.116 1.11852 

10000 2.243 2.25579 

(101 x 101) 

  

Streamlines and Isotherms for Ra = 1000 
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Streamlines and Isotherms for Ra = 10000 
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