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FINITE DIFFERENCES METHOD - part I 

Introduction (very short) 

Partial differential equations are widely used in mathematical modelling, many of them 

coming from different conservation law (particular properties of isolated physical system 

don’t change when the system evolves) 

 

Examples 

• conservation of mass (the mass of a closed system remains constant) 

• conservation of energy (the total amount of energy in an isolated system remains 

constant, first law of thermodynamics) 

• conservation of linear momentum (the total momentum of a closed system, which has 

no interactions with external sources – is constant) 

• conservation of electric charge (the total electric charge of an isolated system remains 

constant) 
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Consider the most general form for a 2D linear partial differential equation: 
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where ,...,, cba are constants, and g  a known function. PDE are classified by the main 

part of the operator: 
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in elliptic, parabolic and hyperbolic.  
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 Elliptic: 042  acb  
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where 1,0 A .  

Particular cases: Laplace ( 0A , 0g ), Poisson ( 0A , 0g ) 
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Helmholtz ( 1A , 0g ) 
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Parabolic: 042  acb  
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(diffusion or heat equation) 
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Hyperbolic: 042  acb   
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                                         (III.4) 

where 0B  or 1. ( 0B  - wave equation, 1B - Klein-Gordon linear equation) 

 
 

Different types of equations = Different numerical methods 

A non-periodic solitary 

wave traveling along x-axis 

to the right with constant 

speed v.  

At t = 0 the wave is given 

by the function f (x) of x,  

at t=t0 by f (x−vt0),  

etc. 
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Parabolic equations (one spatial variable) 

(K.W. Morton, D.F. Mayers, Numerical solution of PDE, 2nd ed, Cambridge University Press, New York, 2005) 

 

Heat equation 
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Difficulties: - infinite series, ka  can be determined for some particular cases 
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Explicit Scheme 

Domain: ]1,0[],0[ ft  divided in a mesh (grid)  

 

 

 

 

 

 

 

Grid: 

  txni NnNitntxix ,...,1,0,,...,1,0,,  )                   (III.10) 

Notation 

 ni
n
i txuU ,                                                     (III.11) 

 t 

(i,n) 

x 

t 

(i+1, n) 

(i, n-1) 

 x 



Introduction to Computational Fluid Dynamics 
 

 Lecture 4 –Finite Difference Method. Introduction. One spatial variable parabolic equations      9 

 
 

Derivatives approximation 
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Using the derivatives approximations we get: 
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Thus, we obtained an explicit method with finite differences.  
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Using the BC: 

  1,...,2,1,00  xi NixuU  

...,2,1,0,00  nUU n
N

n

x
 

It is possible to march in time:  

 

 

Example: For 
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Matlab program 

dt=0.0013; dx=0.05; 

Nx=1/(dx)+1; 

x=0:dx:1; 

tf=0.1; 

Nt=tf/dt; 

 

Uo=zeros(Nx,1); 

Un=zeros(Nx,1); 

 

%initialization 

for i=1:round(Nx/2) 

    Uo(i)=(i-1)*dx; 

end 

for i=round(Nx/2):Nx 

    Uo(i)=1-(i-1)*dx; 

end 

 

n=0; 

while (n<Nt)  

    n=n+1; 

    for i=2:Nx-1 

 Un(i)=Uo(i)+… 

dt/(dx*dx)*(Uo(i-1)-    

2*Uo(i)+Uo(i+1)); 

    end 

    Uo=Un; 

end 

 

plot(x,Uo,'.-r') 

hold on 

 

%analitical solution 

U=HeatAnalytic(x,tf); 

plot(x,U,'b') 

 

function rez=HeatAnalytic(x,t) 

rez=0; 

for k=1:100 

    rez=rez+4/(k*pi)^2*sin(k*pi/2)* 

         sin(k*pi*x)*exp(-k^2*pi^2*t); 

end
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Truncation error 

Notations: 

- forward differences: 
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- backward differences: 
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- central differences:  
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Using Taylor series we have: 
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We define the truncation error for the scheme:  
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We notice that the above relation is the difference between the left hand term and the right 

hand term of the numerical scheme where n
iU is replaced by  ni txu ,  and operator notation 

is used.  
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Using (*) we get: 
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It can be seen that   0, txT  when 0,  tx  for every      Fttx ,1,0,  . We say that 

the explicit scheme is unconditionally consistent and t  appears at the power one that 

the accuracy order is  tO   or the scheme is first order accurately.  

 

The convergence of the explicit scheme 

Suppose we obtain approximations of the exact solutions for the same initial data for 

different grids ( 0t  and 0x ) but with the same value for the parameter 

 2xt  .  

Will say that the scheme (o) is convergent if for every point      Fttx ,01,0, **   

** , ttxx ni     involve   ** , txuU n
i   

We introduce a superior limit for the truncation error: 

TT n
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and the error  
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Supposing 
2

1
  and considering the maximum of the error for one time step, 
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where in the triangle inequality the modulus notation was dropped. Eq. takes place for 

1,...,2,1  xNi  and thus: 
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From the initial condition we have 00 E  and it is possible to demonstrate by 

mathematical induction that tTnE n  .  
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A refinement path is a sequence of pairs of mesh sizes, Δx and Δt, each of which tends to 

zero: 

         0,0;...,,1,0,,  jjjj txjtxMR  

Theorem: If a refinement path satisfies 
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and if xxxxxxxx Mu   uniformly in    Ft,01,0   then the approximations jn
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generated by the explicit difference scheme (o) for ...,2,1,0j  converge to the 

solution  txu ,  of the differential equation uniformly in the region. 
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Such a convergence theorem is the least that one can expect of a numerical scheme; it 

shows that arbitrarily high accuracy can be attained by use of a sufficiently fine mesh. Of 

course, it is also somewhat impractical. As the mesh becomes finer, more and more steps 

of calculation are required, and the effect of rounding errors in the calculation would 

become significant and would eventually completely swamp the truncation error.  

 

Fourier analysis of the error 

We have already expressed the exact solution of the heat equation as a Fourier series; this 

expression is based on the observation that a particular set of Fourier modes are exact 

solutions. In order to study the stability of the scheme (14) we consider the numerical 

solution in a point xi  at the time step n  of the form: 

 xikInn
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where 1I .  
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Using this form in (o) and simplifying with  xikIne   we get: 
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where  k  is the amplification factor. By taking mk  , as in the exact solution we can 

therefore write our numerical approximation in the form 
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This equation gives a good approximation to the exact solution of the differential equation 

given by the Fourier series of the exact solution for small values of m .  
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In order to limit the truncation error propagation it is necessary that: 
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from where we have the condition:   
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The implicit scheme 

Eq. () is a very severe restriction, and implies that very many time steps will be 

necessary to follow the solution over a reasonably large time interval. If we need good 

approximations we need small steps in space and the amount of work involved increases 

very rapidly, since we shall also have to reduce the time step.  

In order to avoid this we introduce the scheme  
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It can be seen that in order to calculate the value of U at the time step 1nt it is necessary to 

march in time starting from the initial condition  

  1,...,2,1,00  xi NixuU  

and solving a tri-diagonal system of equations: 
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In this case we say that the method is implicit and the form of the system is given by:  

 

 

 

 

 
 

 

 

 



Introduction to Computational Fluid Dynamics 
 

 Lecture 4 –Finite Difference Method. Introduction. One spatial variable parabolic equations      24 

 
 

)(

1

1

)1(

1

1

0

0

...

...

0

...

...

1

21

21

21

1
n

Nx

i

n

Nx

Nx

i

U

U

U

U

U

U

U

U














































































































 

 

The system can be solved using a known method (e.g. the Thomas algorithm). 

 

We will apply the implicit scheme to the above example, and we will compare the result 

with the explicit method and with the analytic solution.  
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%Matlab progam: 

dt=0.0013;dx=0.05; 

niu=dt/(dx*dx); 

Nx=1/(dx)+1; 

x=0:dx:1; 

tf=0.1; 

Nt=tf/dt; 

 

Uo=zeros(Nx,1); Un=zeros(Nx,1); 

%initialization 

for i=1:round(Nx/2) 

    Uo(i)=(i-1)*dx; 

end 

for i=round(Nx/2):Nx 

    Uo(i)=1-(i-1)*dx; 

End 

 

A=zeros(Nx,Nx);b=zeros(Nx,1); 

 

n=0; 

while (n<Nt)  

    n=n+1; 

        A(1,1)=1;b(1)=0; 

    for i=2:Nx-1 

       A(i,i-1)=-niu;     

       A(i,i)=1+2*niu; 

       A(i,i+1)=-niu; 

       b(i)=Uo(i); 

    end 

    A(Nx,Nx)=1;b(Nx)=0; 

    Un=A\b; 

    Uo=Un; 

end 

 

plot(x,Uo,'o:k') 

hold on
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We used 0013.0t  and 05.0 x , and the analytic solution (full line), the explicit 

solution („”) and the implicit solution („o”) are given. We observe that the implicit 

solution is stable. 

  

05.0t                             1.0t  
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Using again the Fourier mode in the implicit scheme we get: 
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We notice that, we have 10    and thus, the implicit method is unconditionatelly 

stable.  
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Crank-Nicolson method 

                                               

John Crank (1916-2006)                                   Phyllis Nicolson (1917-1968) 

Another method was proposed by Crank and Nicolson in 1947. They use the trapezoidal rule and a 

central finite difference in space and obtain a scheme of order two:  
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The scheme  reduces to the following tri-diagonal system of linear equations: 
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along with the initial and boundary conditions. 

 

 

 

 

 

 

 

We will apply the Crank -Nicolson scheme to the heat equation and we will compare the 

solution with the analytic solution and that obtained using the implicit scheme.  
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Matlab program: 

 

dt=0.0013;dx=0.05; 

niu=dt/(dx*dx); 

Nx=1/(dx)+1; 

x=0:dx:1; 

tf=0.1; 

Nt=tf/dt; 

 

Uo=zeros(Nx,1); Un=zeros(Nx,1); 

%initialization 

for i=1:round(Nx/2) 

    Uo(i)=(i-1)*dx; 

end 

for i=round(Nx/2):Nx 

    Uo(i)=1-(i-1)*dx; 

end 

 

A=zeros(Nx,Nx);b=zeros(Nx,1); 

 

 

 

 

n=0; 

while (n<Nt)  

    n=n+1; 

        A(1,1)=1;b(1)=0; 

    for i=2:Nx-1 

    A(i,i-1)=-niu; 

    A(i,i)=2+2*niu; 

    A(i,i+1)=-niu; 

    b(i)=niu*Uo(i-1)+ 

       (2-2*niu)*Uo(i)+niu*Uo(i+1); 

    end 

    A(Nx,Nx)=1;b(Nx)=0; 

     

    Un=A\b; 

    Uo=Un; 

end 

plot(x,Uo,'o:k') 

hold on
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Time implicitexact UU   NicolsonCrankexact UU   

0.00 0 0 

0.05 0.000732 0.002992 

0.10 0.004491 0.001476 

0.20 0.002990 0.000734 

0.30 0.001609 0.000342 

0.40 0.000785 0.000153 

0.50 0.000362 0.000066 

 

We notice that the Crank – Nicolson solution is “better” than the implicit solution. 
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  method  

 

Following the above described methods we can give a general method: 

 
 

 2
11

2

1
1

11
1

1 2
1

2

x

UUU

x

UUU

t

UU n
i

n
i

n
i

n
i

n
i

n
i

n
i

n
i













 








  

where usually 10  .  

For 0  the general method reduces to the implicit scheme, for 
2

1
  to the Crank-

Nicolson scheme, while for 1  the implicit scheme is obtained.  

 

Using the   scheme leads like in implicit and Crank-Nicolson schemes to tri-diagonal 

systems of linear equations.  
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Using the Fourier analysis for the   scheme we get: 
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Because 0  and 10   we always have 1 . Thus, the scheme will be unstable for  
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Using this equation the stability condition is deduced: 
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It is possible to show that the truncation error on the node  2/1, ni  is given by (see 

Morton and Meyers, 2005): 
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For 
2

1
  (Crank-Nicolson case) the truncation error is of the order    22 xOtO  , thus 

the scheme is always second order accurate. 


