Introduction to Computational Fluid Dynamics

Fluid Mechanics and Heat Transfer. Basic equations.
Continuity (Mass Conservation)

div(v)=0 %O+div(p 7)=0

incompressible

Momentum Equation (Navier-Stokes equations)
Incompressible viscous fluid (« = constant, p = constant)

p(%—er(v-V)vj:pr—grad P+ 1AV
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Energy equation

dE d(1 :
—=—pp—| — [+d+divikgrad T
P ppdt(pj ¢+div(kgradT)

where E is the internal energy of a fluid particle (viscous compressible fluid)

- gas heating due to the compression

~ ppd(lj = — pdivv
dt /0 ) continuity equation

- mechanical work of the viscous forces transformation in heat

Ju;  du; ]
| ——+
dx; dx;

D =

e | —

Lecture 2 —Basic equations. Dimensionless parameters



Introduction to Computational Fluid Dynamics

P

By taking into account that the enthalpy of a unit of massis 1=E +— we
Jo,
obtain
di dp
- —+ +divikgrad T
Py~ g To+divkgradT)
But for a perfect gas we have
di:cpdT
and energy equation becomes
d dp :
c,l)J=—+¢+divikgrad T
dt( )= o "o rdivkgradT)
where
di Df oOf Df _af | df af af
= = +(V-V)f : —
dt Dt 8'[ ( ) Df_ ] +fj.11L +d1‘112+f33_5L3

IS the substantial derivative.
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Momentum Equation (for fluid saturated porous media)

By a porous medium we mean a material consisting of a solid matrix
with an interconnected void.

Porous media are present almost always in the surrounding medium, very
few materials excepting fluids being non-porous.

- e
S

heat exchanger processor cooler porous rock
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Darcy’s (law) equation (momentum equation)

K
<\7>:—;grad P+p0

where
e (V) is the average velocity (filtration velocity, superficial velocity,
seepage velocity or Darcian velocity)

o K =ku/pg is the permeability of the porous medium

Darcy’ law expresses a linear dependence between the pressure gradient
and the filtration velocity. It was reported that this linear law is not valid

for large values of the pressure gradient.
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Darcy’s law extensions

Forchheimer’s extension

Vp=—§<\7> r‘ ‘

where c- Is a dimensionless parameter depending on the porous medium

Brinkman’s extension

Vp:—§@n+ﬁAw>
where z is an effective viscosity

Brinkman-Forchheimer’s extension

Vp=— ()~ T pl(9)(9)+ BAY)
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Energy equation for porous media

ofT)

(Pey), o+ (08y) y WVIT) = VIKV(T)

where

(pCp )m - ¢('0Cp )fluid +(1- ¢)('0Cp )solid
Ko = $K uig + (10— 8 )Koiig
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Bouyancy driven flow!

e There exists a large class of fluid flows in which the motion is caused by
buoyancy in the fluid.

e Buoyancy is the force experienced in a fluid due to a variation of density in
the presence of a gravitational field. According to the definition of an
incompressible fluid, variations in the density normally mean that the fluid is
compressible, rather than incompressible.

e For many of the fluid flows of the type mentioned above, the density variation
Is important only in the body-force term of the momentum equations. In all
other places in which the density appears in the governing equations, the
variation of density leads to an insignificant effect.

e Buoyancy results in a force acting on the fluid, and the fluid would accelerate
continuously if it were not for the existence of the viscous forces.

e The situation depicted above occurs in natural convection.

11.G. Currie, Fundamental Mechanics of Fluids, 3" ed., Marcel Dekker, New York, 2003
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Generally, density is a function of temperature and concentration

p=p(T.c)

Density

S,
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Boussinesq’s approximation

(p_laref) pﬁT( ref )+pﬁ5(cref_c)

- op  1(op
& £5T]p Ps =~ p(czC]

Momentum

0
ﬂ:I + plu-Viu= =Vp + uVu+ pgh(T — Ty)e.
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Dimensionless equations

ou ov oOw
+—4—=
oX oy oz
au 8_u+ 8_u+ M= oF _8_p+ 62u+82u+82u
ot ox oz ) T T M o oy’ oz°
N v op  (0°v o %
pl - tU_—+V_—+W_—|=pF ——+ >+ 5
ot X oy Z oy ox= oy° oz
W OW OW op  [0°w d*w 0w
Pl U +V_—+W— |=pF -+ 4 — 5 5
ot OX oy /4 0z 0 oy® oz
2 2 2
pc, 8T+U6T oT oT _k 62 az oT & +q(=0)
ot ox oy oz x> oy? oz
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We introduce further the dimensionless variables

T:l’X:é,Y:X’Z:E,U:i,V—_W_ﬂ Ifl:Eypziyng_To
ty L L L Ug Uy Ug g Po AT
into the governing equations
5_U__(U )8T:UO 5U’ au_ 8 (UUO)aX :UO 8U’
ot or ot t, or ox OX ox L oX
op 0O OX  po OP
rT_~ (P = ,
oX ax( pO)ax L X
o°u 8 (6uj_ 5 (UO auj_uO 0°U oX U, o°U
ox> ox\ox) ox\ L oX L oX?% OX L% oX?
& or ot t, Or X oX ox L oX

T @ (GTJ_Q(AT ae)_AT 0%0 OX AT 62U
ox2  ox\lox) ox\ L aX L oX2 ox L% oX?
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and we obtain the dimensionless equations

oy oV oW
+—+ =0
oX oY oz

L U oU v W gL _, p, 0P v [0°U 48U oW
+U + F'\— + + +
t\U, or oX oY 0Z U, pU,2 X Ugl{ox? oay? oz°

— 1%
C
L a0 89+V89+W8Q:[P '
tOUO or oX oY oz UoL/V

2 2 2
[a 0 ,% 0 e} Wy,

OX?* 0% 08zZ%) pCyLAT
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Dimensionless numbers

A. Strouhal number

The Strouhal number (St) is a dimensionless number describing oscillating flow
mechanisms:

L ol oscillation

St: ju— =
t.U, U, average velocity

B. Froude number

The Froude number (Fr) is a dimensionless number defined as the ratio of the flow inertia
to the external field (the latter in many applications simply due to gravity).

In naval architecture the Froude number is a very significant figure used to determine the
resistance of a partially submerged object moving through water, and permits the
comparison of similar objects of different sizes, because the wave pattern generated is
similar at the same Froude number only.

U
Fr=—2%
JoL
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C. Euler number

It expresses the relationship between a local pressure drop e.g. over a restriction and the
Kinetic energy per volume, and is used to characterize losses in the flow, where a perfect
frictionless flow corresponds to an Euler number of 1.

Eu — Po .
PYUq

Usually, we take pg = ,oUo2 and we obtain Eu = 1.

D. Reynolds number
UoL pUyL
v ou
The Reynolds number is defined as the ratio of inertial forces to viscous forces and
consequently quantifies the relative importance of these two types of forces for given
flow conditions.
e laminar flow occurs at low Reynolds numbers, where viscous forces are dominant,
and is characterized by smooth, constant fluid motion;
e turbulent flow occurs at high Reynolds numbers and is dominated by inertial forces,
which tend to produce chaotic eddies, vortices and other flow instabilities.

Re =
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E. Prandtl number

pr=PH _ ulp _v
k  kipc, «

It is the ratio of momentum diffusivity to thermal diffusivity. The Prandtl number
contains no such length scale in its definition and is dependent only on the fluid and the
fluid state. As such, the Prandtl number is often found in property tables alongside other

properties such as viscosity and thermal conductivity.

egases - Prranges 0.7 - 1.0 swater - Prranges 1 - 10

*liquid metals - Pr ranges 0.001 - 0.03  eoils - Pr ranges 50 - 2000

E. Eckert number
It expresses the relationship between a flow's kinetic energy and the boundary layer

enthalpy difference, and is used to characterize heat dissipation.
U,°

cpAT

Ec =
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Using the above dimensionless numbers we obtain:

oU N oV
oX oY
oU oU oV oW 1

St—+U +V —+W ==
ot oX oY oz Fr

St—+U —+V —+W

+6W =0

oz

F'.—Eu op + 1
oX Re

oo oo oo o0Q

o°U  0°U  o%U
2 v 2 T 2
oX? oY? oz

ot oX oY oL

or using differential operators

" RePr| ox 2

Re

V-V =0
st? (V.vV = X EEuvP+ 1 AV
ot Fr
060 (- 1
St—+(V-Vg=
oT ( )Q Re Pr
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Comments

e Dimensionless numbers allow for comparisons between very different systems and
tell you how the system will behave

e Many useful relationships exist between dimensionless numbers that tell you how
specific things influence the system

e When you need to solve a problem numerically, dimensionless groups help you to

scale your problem.
e Analytical studies can be performed for limiting values of the dimensionless

parameters

Express the governing equations in dimensionless form to:
(1) identify the governing parameters

(2) plan experiments
(3) guide in the presentation of experimental results and theoretical solutions

If the flow is not oscillatory, we take usually ty = L/U,and thus St =1. If t; — cowe have
St = 0 and the flow is steady.
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Numerical methods for initial values problems (I\VVP or cauchy problem)

Pendulum
Mathematical model:

d26 g . do
——+=s8in@=0, O(ty)=6,, —(ty) =6"
L g2 L (to) =69 dt(o) 0

Radioactive elements decay:

dm
—==Am, m(ty) =m
" (tg) = My

where m is the mass of the radioactive element and A is the decay constant.

Lecture 2 —Basic equations. Dimensionless parameters 19



Introduction to Computational Fluid Dynamics

Theoretical aspects

The general Cauchy problem:
{ y'(®)="f(ty), a<t<b
y(@) =Y,

Using numerical methods we obtain a discrete approximation of y in
some points, called nodes, which form a grid (mesh).

A grid for the interval [a,b] having a constant step h is:
a,a+h,a+2h,...,a+ih,..,a+(N-21)h,b

or
t. =a+(-1)h, 1=1..,N
where N is the number of subintervals, and the step is constant:
h=(b-a)/(N-1).
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By using a numerical method we obtain the approximated discrete values

not

yt;)=v;,1=1...,N

A
.‘.’ ....................... .
y(t) AT
e Vi+2
¢ yi+1
........... . yi—l y,'
...................... yl_z i
t
8 . . i o R
2 f i1 42
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One step methods
An example: The Euler method (Leonhard Euler-(1707 — 1783))

{ y'(t)=f(t,y), a<t<b
Y(a):ya

By using a Taylor expansion (y should be of

class C?) we have:
2

Vt.2) = Y M) = YO) Y6+ Y (E)4 €ty

Thus, one get:
2

L
Y(tia) =y(G) +h TG, y(t) +=-y*(si)
By dropping the last term the Euler formula is obtained:
Yo=Ya
Via=Yi+hf(t,y), 1=01..,N-1

Remark: y;,, dependson y;, t; and h.
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(Richard L. Burden and J. Douglas Faires , Numerical Analysis,Ninth Edition, 2011).

In Example 1 we will use an algorithm for Euler’s method to approximate the solution to
V=y—1"+1, 0<tr<2, v0)=0.5,

at t = 2. Here we will simply illustrate the steps in the technique when we have h = 0.5.

For this problem f(t.y) =y — >+ 1,50
wy = y(0) = 0.5;
wy = wo + 0.5 (wo — (0.0)” +1) = 0.5+ 0.5(1.5) = 1.25;
wy = wy 4+ 0.5 (w; — (0.5 +1) = 1.25+ 0.5(2.0) = 2.25:
ws = wy + 0.5 (wy — (1.0)" + 1) = 2.25 4 0.5(2.25) = 3.375:
and

¥(2) & wy = w3 + 0.5 (w3 — (1.5)" + 1) = 3.375 + 0.5(2.125) = 4.4375.
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y(b) -

One may notice that the
Euler method follow the
tangent for the current
node to approximate the
value in the next node.

Lecture 2 —Basic equations. Dimensionless parameters
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Same problem for h = 0.2 (11 nodes). Comparison with the

exact values given by y(f) = (t + 1)* — 0.5¢".

I wy; yi = yii;) i — wil
0.0 0.5000000 0. 5000000 0.0000000
0.2 0.8000000 0.8202086 0.0202086
0.4 1.1520000 1.2140877 0.0620877
0.6 1.5504000 1.6489406 0.0985406
0.8 1.9884800 2.12722095 0.1387495
1.0 24581760 2.6408591] 0.1826831
1.2 29498112 3.1799415 0.2301303
1.4 34517734 3.7324000 0.2806266
1.6 3.9501281 4. 2834838 0.3333557
1.8 4.4281538 48151763 0.3870225
2.0 4.8657845 5.3054720 0.4396874
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An one step method for the Cauchy problem is given by
Vi =Y +he(t,y,h), [t,yle[a,b]xR", h>0
¢:[a,b]xR™ > R"

Considering the exact solution (in the grid points) y(t;) we define the
local truncation error as follow:

T(t,yi,h) = y”lh_ Yi _ y(J[i+1)h_ y(t) = (L., v, h) — Y(ti+1)h_ y(t)

(the difference between the approximation increment and the exact increment for one step)

A method ¢ is consistent if T(t,y,h) — 0 uniformly when h— 0 for
(t,y) e[a,b]xR".
(it is necessary that ¢(t, y,0) = f (t,y))
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A method ¢ is of order p if
T (t,y,h)| < Kh?

uniformly on [a,b]x R", where | | is a vector norm, and K is constant.
We may use the following notation:
T(t,y,h)=0(h?), h—>0
(for p > 1 the method is consistent).

It can be shown that Euler method is a method of order one, O(h).
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Improved Euler methods

evaluation of the tangent is made in an intermediary point of the interval [t.,t; ., |

> Yexact

/

>ymodified

yEu er

Vi

v

ti ti2 tin t

Modified Euler

slope = f(t;.1, yi+hf(t;, yi))

[

\ slope = f{t;, yi)

. average slope

ti
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ti+1
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.. : not 1
-evaluation in the middle of [t;,t.., ], ti.;/ =1, +oh

1 1
y(ti,1) = y(t;) +h 1E(ti+1/2’ Yi+1/2)ZY(ti)+ hflt, "‘Eh’ Yi +§hf (t, y;)

Euler
1 1
y(ti.) =y(G) +h f[ti +§h,Yi +2hf(ti,Yi)J
— 7
Ky (G, Yi) /
KZ(t;jyi1h)
Kot yi) =Tt yi) Ky (G, yi) = T(t,yi)
K, (t;, Vi, h) = f(ti +1h’yi +1hK1j Ko (ti, Y h)=T(t +h,y; +hKy)
S Lh(k, + K
Vi = Vi + hK, Yi+1—Yi"‘§ (K +K,)
modified Euler method Heun’s method (trapezoidal rule)
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Runge-Kutta type methods

evaluation in intermediary points of [ti ,ti+1]

Standard Runge-Kutta method

h
YH1:Yi+6(KI+2K2+2K3+K4)

Ky =1(t,Yi)

1 1
Ko =f|t; +=h,y: + = hK1
2 I 2 Y| 2 )

1 1
Ky=f|t;+=hy; +=hK
3 i Yi 5 2)

K4 = f(tl +h, Yi +hK3)

Carl David Tolmeé Runge Martin Wilhelm Kutta

(1856 — 1927) (1867 — 1944)
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Matlab solvers for Cauchy problems (ODE)

Syntax

[t,Y] = solver (odefun, tspan,y0,options, pl, p2Z,
or

sol = solver (odefun, [t0 tf],vy0...)

where solver can be

odedb5, ode23,0dell3, odelbs, ode23s, 0de23t Oor ode23tbh.

Input parameters (selection)

odefun -right hand member of the Cauchy problem
tspan -—integration interval.

y0—initial value

options -—solver options.

Lecture 2 —Basic equations. Dimensionless parameters
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Output parameters:
t — column vector of time points;
y — solution array

sol —solution structure

sol.x Steps chosen by the solver.
sol.y Each column sol.y (:,1) contains the solutionat sol.x (1).
sol.solver Solver name.
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oded5

ode23

odell3

odelSs

ode23s

ode23t

ode23thb

Nonstiff

Nonstiff

Nonstiff

Stiff

Stiff

Moderately Stiff

Stiff

Medium

Low

Low to high

Low to medium

Low

Low

Low
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Most of the time. This should be the first solver you try.

For problems with crude error tolerances or for solving
moderately stiff problems.

For problems with stringent error tolerances or for
solving computationally intensive problems.

If oded5 is slow because the problem is stiff.

If using crude error tolerances to solve stiff systems
and the mass matrix is constant.

For moderately stiff problems if you need a solution
without numerical damping.

If using crude error tolerances to solve stiff systems.
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Example: Solve pendulum equation using ode45:

d%0 g . do
—+>sing=0, 0(0)=0, —(0)=0.1
w2 L (0) dt()

We note y; =& and rewrite the system in the form

dy; . .
gt =%
dy, g ..
=2 = _Zgjn
g Lo
d
y1(0)=0; %(O)=0-1

function dy=fPendul (t,vy,flag,qg,L)
dy=[y(2);-g/L*sin(y (1)) ]1;

Lecture 2 —Basic equations. Dimensionless parameters
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$prendulum equation

=0;b=pi/2;%integration interval
9.8;%accelaration due to the gravity

1L=0.1;%1length of the pendulum

yvO0=[0,0.1];%initial conditions

options=odeset ('RelTol',1e-8);%modify the options

suse the solver

[t,y]=0ded5 (' fPendul', [a,b],y0,0options, g, L)

plot(t,y(:,1));

001

0005}

-0.005

-0.01F

0 0.5 1 1.5
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