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Fluid Mechanics and Heat Transfer. Basic equations. 

Continuity (Mass Conservation) 
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Momentum Equation (Navier-Stokes equations) 

Incompressible viscous fluid ( constant,constant   ) 
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Energy equation 
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where E is the internal energy of a fluid particle (viscous compressible fluid) 

- gas heating due to the compression 

vdivp
dt

d
p

equationcontinuity
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- mechanical work of the viscous forces transformation in heat  
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By taking into account that the enthalpy of a unit of mass is   


p
Ei   we 

obtain 

 Tgradkdiv
dt

dp

dt

di
   

But for a perfect gas we have 

dTcdi p  

and energy equation becomes 

   Tgradkdiv
dt
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Tc

dt

d
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is the substantial derivative. 
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Momentum Equation (for fluid saturated porous media) 

By a porous medium we mean a material consisting of a solid matrix 

with an interconnected void.  

 

Porous media are present almost always in the surrounding medium, very 

few materials excepting fluids being non-porous. 

              

heat exchanger                   processor cooler                   porous rock 
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Darcy’s (law) equation (momentum equation) 

gpgrad
K

v





  

where  

 v  is the average velocity (filtration velocity, superficial velocity, 

seepage velocity or Darcian velocity) 

 gkK   is the permeability of the porous medium 

 

Darcy’ law expresses a linear dependence between the pressure gradient 

and the filtration velocity. It was reported that this linear law is not valid 

for large values of the pressure gradient. 
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Darcy’s law extensions 

Forchheimer’s extension
 

vv
K

c
v

K
p F 




  

where Fc  is a dimensionless parameter depending on the porous medium 

 

Brinkman’s extension 

vv
K

p


 
 ~

 
where ~  is an effective viscosity

  

Brinkman-Forchheimer’s extension 
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Energy equation for porous media 

     TkTvc
t

T
c efluidpmp 



 


 

where  

      
solidpfluidpmp ccc   1  

  solidfluide kkk   1  
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Bouyancy driven flow1 

 

 There exists a large class of fluid flows in which the motion is caused by 

buoyancy in the fluid. 

 Buoyancy is the force experienced in a fluid due to a variation of density in 

the presence of a gravitational field. According to the definition of an 

incompressible fluid, variations in the density normally mean that the fluid is 

compressible, rather than incompressible. 

 For many of the fluid flows of the type mentioned above, the density variation 

is important only in the body-force term of the momentum equations. In all 

other places in which the density appears in the governing equations, the 

variation of density leads to an insignificant effect.  

 Buoyancy results in a force acting on the fluid, and the fluid would accelerate 

continuously if it were not for the existence of the viscous forces.  

 The situation depicted above occurs in natural convection. 

 
                                                           
1 I.G. Currie, Fundamental Mechanics of Fluids, 3rd ed., Marcel Dekker, New York, 2003 
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Generally, density is a function of temperature and concentration 

 cT ,   

 

 

 

 

 

 

 

 

 

Black Sea salinity, temperature 

and density 

(Ecological Modelling, 221, 

2010, p. 2287-2301) 
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Boussinesq’s approximation 

 

,    

Momentum 
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Dimensionless equations 
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We introduce further the dimensionless variables 
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into the governing equations 
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and we obtain the dimensionless equations 
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Dimensionless numbers 

A. Strouhal number 

The Strouhal number (St) is a dimensionless number describing oscillating flow 

mechanisms: 

velocityaverage

noscillatio

U

L

Ut

L
St 

000


 

B. Froude number  

The Froude number (Fr) is a dimensionless number defined as the ratio of the flow inertia 

to the external field (the latter in many applications simply due to gravity).  

In naval architecture the Froude number is a very significant figure used to determine the 

resistance of a partially submerged object moving through water, and permits the 

comparison of similar objects of different sizes, because the wave pattern generated is 

similar at the same Froude number only. 

gL

U
Fr 0  

 

https://en.wikipedia.org/wiki/Dimensionless_number
https://en.wikipedia.org/wiki/Gravity
https://en.wikipedia.org/wiki/Naval_architecture
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C. Euler number 

It expresses the relationship between a local pressure drop e.g. over a restriction and the 

kinetic energy per volume, and is used to characterize losses in the flow, where a perfect 

frictionless flow corresponds to an Euler number of 1. 

2
0

0

U

p
Eu


  

Usually, we take  
2

00 Up 
 
and we obtain Eu = 1. 

 

D. Reynolds number 







LULU 00Re   

The Reynolds number is defined as the ratio of inertial forces to viscous forces and 

consequently quantifies the relative importance of these two types of forces for given 

flow conditions. 

 laminar flow occurs at low Reynolds numbers, where viscous forces are dominant, 

and is characterized by smooth, constant fluid motion; 

 turbulent flow occurs at high Reynolds numbers and is dominated by inertial forces, 

which tend to produce chaotic eddies, vortices and other flow instabilities. 
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E. Prandtl number 



 


p

p

ckk

c
Pr

/

/
 

It is the ratio of momentum diffusivity to thermal diffusivity. The Prandtl number 

contains no such length scale in its definition and is dependent only on the fluid and the 

fluid state. As such, the Prandtl number is often found in property tables alongside other 

properties such as viscosity and thermal conductivity. 

•gases - Pr ranges 0.7 - 1.0                       •water - Pr ranges 1 - 10 

•liquid metals - Pr ranges 0.001 - 0.03      •oils - Pr ranges 50 - 2000 

 

E. Eckert number 

It expresses the relationship between a flow's kinetic energy and the boundary layer 

enthalpy difference, and is used to characterize heat dissipation. 

Tc

U
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Using the above dimensionless numbers we obtain: 
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  or using differential operators 
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Comments 

 Dimensionless numbers allow for comparisons between very different systems and 

tell you how the system will behave 

 Many useful relationships exist between dimensionless numbers that tell you how 

specific things influence the system 

 When you need to solve a problem numerically, dimensionless groups help you to 

scale your problem. 

 Analytical studies can be performed for limiting values of the dimensionless 

parameters 

 

Express the governing equations in dimensionless form to: 

  (1) identify the governing parameters 

  (2) plan experiments 

  (3) guide in the presentation of experimental results and theoretical solutions 

 

If the flow is not oscillatory, we take usually 00 ULt  and thus St =1. If 0t we have 

St = 0 and the flow is steady.  
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Numerical methods for initial values problems (IVP or Cauchy problem) 

Pendulum  

 

Radioactive elements decay: 

m
dt

dm
 , 00)( mtm   

where m  is the mass of the radioactive element and   is the decay constant. 

L 

 

Mathematical model:   

0sin
2

2

 


L

g

dt

d
,  0000 ')(,)( 


  t

dt

d
t  
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Theoretical aspects 

 

The general Cauchy problem: 









ayay

btaytfty

)(

),,()('
 

Using numerical methods we obtain a discrete approximation of y  in 

some points, called nodes, which form a grid (mesh). 

 

A grid for the interval ],[ ba  having a constant step h is: 

bhNaihahahaa ,)1(,...,...,,2,,   

or 

Nihiati ...,,1,)1(   

where N  is the number of subintervals, and the step is constant: 

)1/()(  Nabh . 
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By using a numerical method we obtain the approximated discrete values 

Niyty i

not

i ...,,1,)(   
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yi-2 
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yi-1 yi 

yi+1 
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i-1 i i+1 i+2 
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One step methods 

An example: The Euler method (Leonhard Euler-(1707 – 1783)) 
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By using a Taylor expansion (y should be of 

class 
2C ) we have: 

),(),("
2

)(')()()( 1
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1   iiiiiiii tty
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        Thus, one get:                   

        ))(,()()( 1 iiii tytfhtyty )("
2

2
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By dropping the last term the Euler formula is obtained: 

1...,,1,0),,(1

0





 Niytfhyy
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Remark:   
1i

y  depends on iy , it  and h. 
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(Richard L. Burden and J. Douglas Faires , Numerical Analysis,Ninth Edition, 2011). 
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One may notice that the 

Euler method follow the 

tangent for the current 

node to approximate the 

value in the next node. 
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Same problem for h = 0.2 (11 nodes). Comparison with the 
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An one step method for the Cauchy problem is given by 
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Considering the exact solution (in the grid points) )(~
ity  we define the 

local truncation error as follow: 
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(the difference between the approximation increment and the exact increment for one step) 

A method   is consistent if 0),,( hytT  uniformly when 0h  for 
nbayt R ],[),( . 

(it is necessary that ),()0,,( ytfyt  ) 
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A method   is of order p  if  

pKhhytT ),,(  

 uniformly on nba R],[ , where  is a vector norm, and K  is constant. 

We may use the following notation: 

0),(),,(  hhOhytT p  

(for 1p  the method is consistent). 

It can be shown that Euler method is a method of order one, )(hO . 
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Improved Euler methods 

evaluation of the tangent is made in an intermediary point of the interval  1, ii tt  

 

 

 

 

 

 

 

 

 

ti ti+1 ti+1/2 

 

yEuler 

ymodified 

yexact 

y(t) 

t 

ti ti+1 

yi 

slope = f(ti, yi) 

slope = f(ti+1, yi+hf(ti, yi)) 

average slope 

Modified Euler 

Heun 
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-evaluation in the middle of  1, ii tt , htt i
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Runge-Kutta type methods 

evaluation in intermediary points of  1, ii tt  

        

Carl David Tolmé Runge   Martin Wilhelm Kutta 

(1856 – 1927)                       (1867 – 1944) 

 

 

Standard Runge-Kutta method
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Matlab solvers for Cauchy problems (ODE) 

Syntax 

 

[t,Y] = solver(odefun,tspan,y0,options, p1, p2, ...) 

or 

sol = solver(odefun,[t0 tf],y0...) 

where solver can be  

ode45, ode23, ode113, ode15s, ode23s, ode23t or ode23tb.  

 

Input parameters (selection) 

odefun – right hand member of the Cauchy problem 

tspan –integration interval.  

y0– initial value 

options – solver options.  
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Output parameters: 

 t – column vector of time points; 

y – solution array 

sol – solution structure 
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Example: Solve pendulum equation using ode45:   

0sin
2

2

 


L

g

dt

d
, 1.0)0(,0)0( 

dt

d
  

We note 1y  and rewrite the system in the form  

    1.00;00

sin

;

1
1

1
2

2
1







dt

dy
y

y
L

g

dt

dy

y
dt

dy

 

 

function dy=fPendul(t,y,flag,g,L) 

dy=[y(2);-g/L*sin(y(1))]; 

 



Introduction to Computational Fluid Dynamics 
 

Lecture 2 –Basic equations. Dimensionless parameters                                                                                          35 

%pendulum equation 

a=0;b=pi/2;%integration interval 

g=9.8;%accelaration due to the gravity 

L=0.1;%length of the pendulum 

y0=[0,0.1];%initial conditions 

options=odeset('RelTol',1e-8);%modify the options 

%use the solver 

[t,y]=ode45('fPendul',[a,b],y0,options,g,L) 

plot(t,y(:,1)); 

  

 


