Introduction to Computational Fluid Dynamics

FINITE VOLUME METHOD

(Jayathi Y. Murthy, Numerical Methods in Heat, Mass, and Momentum Transfer, Purdue University, Spring 2002)

Mesh terminology and types

(a)

Node
Vertex)
Fa nY /

Cell

[ Centroid
Cell

Face
re (b)

Mesh Terminology

Regular and Body-Fitted Meshes

(structured mesh - every interior vertex in the domain is connected to the same number of neighbour
vertices)

Lecture 11 —Finite Volume Method 1



Introduction to Computational Fluid Dynamics

Cell

Vertex \ \ \

Unstructured Mesh ' Non-Conformal Mesh

(non-conformal mesh - the vertices of a cell or element may fall on the faces of neighboring cells or
elements)
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(d)
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Oy
&

Cell Shapes: (a) Triangle, (b) Tetrahedron, (c) Quadrilateral, (d) Hexahe-
dron, (e) Prism, and (f) Pyramid
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Flow Triangles

——

Quadrilaterals
Boundary Layer

————————————

Hybrid Mesh in Boundary Layer

Finite Volume Discretization

Consider the 1D diffusion equation

d Fd('b +S5=0
dx dx o

Lecture 11 —Finite Volume Method 4



Introduction to Computational Fluid Dynamics

on the following control volume:

W
O

O m

P
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: Arrangement of Control Volumes

We focus on the cell associated with P. We start by integrating over

the cell P. This yields
€ d d¢ €
— ([ — ) d Sdx =0
/1(;' d./r ( d«r ) ' —|_ /1;,’ '
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One obtain

do d ¢
(130), = (r5) o+ [

We now make a profile assumption, 1.e., we make an assumption about how ¢ varies
between cell centroids. If we assume that ¢ varies linearly between cell centroids, we
may write

Lo (¢ —0p) _ Tw (dp— )

+SAx=0 (2.15)
(6xc) (6x)

Here S 1s the average value of S in the control volume. We note that the above equation
1s no longer exact because of the approximation in assuming that ¢ varies in a piece-
wise linear fashion between grid points.
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Collecting terms, we obtain

apPp = apPp + ay Oy, + 0

where
ap = T./(dx)
aIfV = FM,’ / ( 6.Xw)
dp = dptay
b = SAx

Similar equation may be derived for all cells in the domain, yielding a set of
algebraic equations, as before; these may be solved using a variety of direct or

Iterative methods.
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We note the following about the discretization process.

1. The process starts with the statement of conservation over the cell. We then find
cell values of ¢ which satisfy this conservation statement. Thus conservation 1s
guaranteed for each cell, regardless of mesh size.

2. Conservation does not guarantee accuracy, however. The solution for ¢ may be
1naccurate, but conservative.

(9]

. The quantity —(I'd¢/dx). 1s diffusion flux on the e face. The cell balance is
written 1n terms of face fluxes. The gradient of ¢ must therefore be evaluated at
the faces of the cell.

4. The profile assumptions for ¢ and S need not be the same.
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Two-Dimensional Diffusion in Rectangular Domain

Let us consider the steady two-dimensional diffusion of a scalar ¢ 1n a rectangular
domain. From Equation 1.10, the governing scalar transport equation may be written
as

vV J=38§ (3.1)

where J = J,i+ J,j 1s the diffusion flux vector and 1s given by
J==-IV¢ (3.2)
In Cartesian geometries, the gradient operator 1s given by

J Jd
V=—i+—j 33
dx 6yJ (33)

We note that Equation 3.1 1s written 1n conservative or divergence form. When I 1s
constant and S 1s zero, the equation defaults to the familiar Laplace equation. When I'
1s constant and S 1s non-zero, the Poisson equation 1s obtained.
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Figure 3.1: Two-Dimensional Control Volume
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We begin the process of discretization by integrating Equation 3.1 over the cell P:
/ V.-Jd¥ = Sdy (3.4)
AV AY
Next, we apply the divergence theorem to yield
/J +dA = Sd¥v (3.5)
A AY

The first integral represents the integral over the control surface A of the cell. We have
made no approximations thus far.

We now make a profile assumption about the flux vector J. We assume that J varies
linearly over each face of the cell P, so that it may be represented by its value at the
face centroid. We also assume that the mean value of the source term S over the control

volume 1s S. Thus,

J-A),+J-A),+J-A), +J-A), =SAY (3.6)
or, more compactly _
f_z .Jf-Afzs*A'f/ (3.7)
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The face areas A, and A,, are given by

A, = Avi
A, = =Ayi (3.8)

The other area vectors may be written analogously. Further

d
Jp 'Ag — _F AV (_¢)
dx /,
d
Jo-A, = F“Av(—('b) (3.9)
ax /,,

The transport in the other directions may be written analogously.

In order to complete the discretization process, we make one more round of profile
assumptions. We assume that ¢ varies linearly between cell centroids. Thus, Equa-
tion 3.9 may be written as

¢E - ¢p
(0x)e

¢P ¢W

(0X)
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[et us assume that the source term S has the form

S =S+ Spp

(3.11)

with §, < 0. We say that S has been linearized. We will see later how general forms of
S can be written 1n this way. We write the volume-averaged source term S 1n the cell P

(3.12)

Substituting Equations 3.10, 3.8 and 3.12 into Equation 3.6 yields a discrete equa-

apPp = apPp + ay by + ay Py + agps+ 0

as
S=S.+S,0p
tion for ¢p:
where an
Ay
a -
E ( Sx . dg
FwAy aP
a —
W (0X)w b

I,,Ax

(5}’)11

I';Ax

(0¥)s

ap + ay + ay+ag— SpAxAy
S AxAy
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Equation 3.13 may be written 1n a more compact form as

dp ¢P = b ¢11b +0 (

no

{o9)

Here, the subscript nb denotes the cell neighbors E, W, N, and S.

We make the following important points about the discretization we have done so far:

1. The discrete equation expresses a balance of discrete flux (the J’s) and the source
term. Thus conservation over individual control volumes is guaranteed. How-
ever, overall conservation in the calculation domain is not guaranteed unless the
diffusion transfer from one cell enters the next cell. For example, in writing the
balance for cell E, we must ensure that the flux used on the face ¢ 1s J ., and that
it 1s discretized exactly as in Equation 3.10.

2. The coetficients a), and a , are all of the same sign. In our case they are all
positive. This has physical meaning. If the temperature at £ 1s increased, we
would expect the temperature at P to increase, not decrease. (The solution to our
elliptic partial differential equation also has this property). Many higher order
schemes do not have this property. This does not mean these schemes are wrong
— 1t means they do not have a property we would like to have 1if at all possible.
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3. Werequire that S, in Equation 3.11 be negative. This also has physical meaning.
If for example S 1s a temperature source, we do not want a situation where as
T increases, S increases indefinitely. We control this behavior in the numerical
scheme by msisting that S, be kept negative.

4. When S, =0, we have
dp = Db (3.16)

no

Equation 3.13 may then be written as

nb aP

where ¥ . (a,, /ap) = 1. Since ¢ is the weighted sum of its neighbor values, it is
always bounded by them. By extension, ¢, 1s always bounded by the boundary
values of ¢. We notice that this property 1s also shared by our canonical elliptic
equation.

When S#0, ¢ p need not be bounded 1n this manner, and can overshoot or under-
shoot its boundary values, but this 1s perfectly physical. The amount of overshoot
1s determined by the magnitude of S . and S, with respect to the a_;’s.
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5. It Sp=0and ap =3, a,.we notice that ¢ and ¢ + C are solutions to Equa-
tion 3.13. This 1s also true of the original differential equation, Equation 3.1.
The solution can be made unique by specifying boundary conditions on ¢ which
fix the value of ¢ at some point on the boundary.

Boundary Conditions

A typical boundary control volume 1s shown in Figure 3.2. A boundary control volume
1s one which has one or more faces on the boundary. Discrete values of ¢ are stored at
cell centroids, as before. In addition, we store discrete values of ¢ at the centroids of
boundary faces.

Ab = 6Xb -
b O E) P e @)

Figure 3.2: Boundary Control Volume
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Let us consider the discretization process for a near-boundary control volume cen-
tered about the cell centroid P with a face on the boundary. The boundary face centroid
1s denoted by b. The face area vector of the boundary face 1s A ;, and points outward
from the cell P as shown.

Integrating the governing transport equation over the cell P as before yields

The fluxes on the interior faces are discretized as before. The boundary area vector A
1s given by
A, =—Ayi (3.19)

Let us assume that the boundary flux J, 1s given by the boundary face centroid value.
Thus
J, =1V, (3.20)

Jy Ay =AM, Ve, (321)

Assuming that ¢ varies linearly between b and P, we write

J, A, =AMyl (¢é) 5:)?)) (3.22)
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3.2.1 Dirichlet Boundary Condition
The boundary condition 1s given by

¢b = ¢b,give11 (3 -23)

Using qﬁb,,}iven in Equation 3.22, and including J, - A, in Equation 3.18 yields the fol-
lowing discrete equation for boundary cell P:

QP¢P = aE¢E +a1 rqﬁi\r—l_asqag—l—b (324)
where
Ay
a =
E (0x)e F Aw-*
a _ I Ax a, = (gr)"
N ),
FSJA{: dp = aE+aAr—|—aS—|—ab—SPAxAy
dg = (5};)5 b = ab¢b —|—SCAXA}_: (325)
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Neumann Boundary Condition

Here, we are given the normal gradient of ¢ at the boundary:

o (FV¢)b = qb,given (3.26)
We are in effect given the flux J, at Neumann boundaries:
Jp Ay = =4 given DY (3.27)

We may thus include (—qb Uivenﬁy) directly in Equation 3.18 to yield the following
discrete equation for the boundary cell P:

apPp = ApPp + ay Py +agps+0 (3.28)
where
I':Ay ~ IiAx
R CTy N OO}
~ iAx ap = agp+ay+aq— SpAxAy
T (03)n b = G gienDY+ScAXAY (3.29)

Lecture 11 —Finite Volume Method 19



Introduction to Computational Fluid Dynamics

Once ¢p 1s computed, the boundary value, ¢, may be computed using Equa-

tion 3.22:
qb,given + (rb/ 6“rb)¢P
¢, = . : (3.30)
(I',/0x,)
Mixed Boundary Condition
The mixed boundary condition is given by
—(TV), -i=h, (¢ — ) (3.31)
Since A, = Ayi, we are given that
Jp Ay = =Ny, (¢ — @) Ay (3.32)
Using Equation 3.22 we may write
(90— )
b n = —hy, (9= — ) (333)
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We may thus write ¢, as

¢+ (L', /0
= 1y + (I,/ 0X,) dp (3.34)
h, 4 (I, /0x,)
Using Equation 3.34 to eliminate ¢, from Equation 3.33 we may write
Jp Ay = —Req(d — dp)Ay (3.35)
where
h,(I', /0
1,(Ly/0x,) (336)

eq —
hy+(I,/0x,)
We are now ready to write the discretization equation for the boundary control volume
P. Substituting the boundary flux from Equation 3.35 into Equation 3.18 given the

following discrete equation for ¢p:

aApPp = ApPr +ay gy + agpg+ D (3.37)
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where
LAy
€T (6x),
ay = 8’3: a, = RegAy
[ Ax ap = daptaytagta,—SpAxAy
S = By, b = RegAyvgu+ S AxAy (3.38)

The boundary value, ¢,, may be computed from Equation 3.34 once a solution
has been obtained. It 1s bounded by ¢, and ¢.., as shown by Equation 3.34.
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Unsteady Conduction

Let us now consider the unsteady counterpart of Equation 3.1:

d
E(pqﬁ)—l—V-JzS (3.39)

We are given initial conditions ¢(x,y,0). As we saw in a previous chapter, time is
a “marching” coordmate. By knowing the initial condition, and taking discrete time
steps Az, we wish to obtain the solution for ¢ at a each discrete time 1nstant.

In order to discretize Equation 3.39, we integrate it over the control volume as
usual. We also integrate 1t over the time step Az, 1.e., from 7 to 7 + Af.

/ / 9 (pg)d¥di+ / / V. Jd¥di = / / savdi  (340)
At JAY 0T At JAY At JAY

Applying the divergence theorem as before, we obtain

/A‘%’ ((pd)' = (p9)°) d”f/—l—/N/AJ-dAdl = Ar/A‘fdeﬂf/dl (3.41)
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The superscripts 1 and O 1n the first integral denote the values at the times 7 4+ Af and ¢
respectively. Let us consider each term 1n turn. If we assume that

/A PodY = (pg)p AV (3.42)

we may write the unsteady term as

AY ((p9)p = (P$)p) (3.43)

We now turn to the flux term. If we assume as before that the flux on a face 1s
represented by its centroid value, we may write the term as

/ > Jp-Adl (3.44)
At f=e,w,n,s

We are now required to make a profile assumption about how the flux J varies with
time. Let us assume that it can be interpolated between time 1nstants 7 + Af and 7 using
a factor / between zero and one:

J-Adt = (fJ'-A+(1-1)1°-A) Ar (3.45)
Ar
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Proceeding as before, making linear profile assumptions for ¢ between grid points, we
may write

| 1
l'A — —_T.A _,¢E_¢P
Jg e e } ((3.,Y)e
I 9p — by
J,-Ay = T m ( ) . (3.46)
VA, = —TLA b = 97
Jo Ao AY——— (510
0
I -Ay = TuAy ( M)‘PW (347)

Let us now examine the source term. Linearizing S as S -+ S,¢ and further assum-
ing that

A,,, (Sc+Spp)d¥ = (Sc+Sppp) AV (3.48)

we have

Sd¥vd 2/ S~+S AYVd 3.49
A,A,,, 1= | (Sc+Spgp) AV di (3.49)
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Again, interpolating S between  + Af and 7 using a weighting factor f between zero
and one:

/A (Sc+Sp0p) AV dt = [ (Sc+Spp) AV AL+ (1= 1) (Se+ Sptp) A¥ AL (3.50)

For simplicity, let us drop the superscript 1 and let the un-superscripted value represent
the value at time 7 4+ Af. The values at time ¢ are represented as before with the super-
script 0. Collecting terms and dividing through by A, we obtain the following discrete
equation for ¢:

no n

aP¢P = i (f(‘bnb + (1 _f)¢1?b) +b+ (a% — (1 _f) zanb) ¢-g (3.51)

where nb denotes E,W, N and S. Further

' Ax
0 = R4 = Gy
9. o
1Ay ay = aidl
dy = (“ )” d At (3-52)
" OX )y
— — S AY +d°
o _ DA Ki fg’a“b IopaT
N — )
(d]”)n b = (fSC + (l —f)S?j+ (1 _f)qub}g) AV
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The Explicit Scheme

If we set / = 0, we obtain the explicit scheme. This means that the flux and source
terms are evaluated using values exclusively from the previous time step. In this limit,
we obtain the following discrete equations:

aP(pP = a11b¢l?b +b+ (a?’ — Zanb) Qb}D) (353)
np n
O A I[\Ax
Ay dg =
= - é )
“E ) (83)s
Loy o) = P2
vy, = v dp = A
W (dr)w 0
a, = da
F A P P
ay = — : bo— (504 5040) AY
(53, = (S +Spop) A (3.54)
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3.3.2 The Fully-Implicit Scheme

The fully-implicit scheme 1s obtained by setting /' = 1 in Equation 3.51. In this limit,
we obtain the following discrete equation for ¢ .

I',Ay

a

(6.x),

| BYANY

(6.X)w

I',,Ax

(OX)n
I'\Ax

(0¥)s

dp ¢P — E anb ¢11b + b + aoP ¢g

nb

PAY
At
— E Ay — SPAV + aoP
nb

S AV
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The Crank-Nicholson Scheme

apPp =

Ay

(6x).

WAy

(6X)
I',,Ax

(5}’):1
I';Ax

(6y)s

no

b (0'5¢11b + 0'5¢1?b) +o+ (a% —0.5 Zanb)

0.5 a,, —0.55,AY +a}

0.5 ((S+S2) + Spop) AV

Lecture 11 —Finite Volume Method
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3.6.1 Interpolation of I

We notice 1n our discretization that the diffusion flux 1s evaluated at the face of the
control volume. As a result, we must specify the face value of the diffusion coefficient
I'. Since we store I" at cell centroids, we must find a way to interpolate I" to the face.

Referring to the notation 1n Figure 3.5, it 1s possible to simple interpolate I linearly
as:

I'.= ferp + (1 _fe)FE (3.79)
where
0.5Ax
f{?: ((SY)E (380)

As long as I', 1s smoothly varying, this 1s a perfectly adequate interpolation. When
¢ 1s used to represent energy or temperature, step jumps in I' may be encountered at

conjugate boundaries. It 1s useful to devise an interpolation procedure which accounts
for these jumps.
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Our desire 1s to represent the interface flux correctly. Let J, be the magnitude of
the flux vector J.. Let us assume locally one-dimensional diffusion. In this limit, we
may write

__ (9 — ¢p) |
Je= (0.5Ax,) /T p+ (0.5Ax.) /T (3-81)

Thus, an equivalent interface diffusion coefficient may be defined as

0Xe _ O-SAXP + O'SAXE (3.82)

— s —

J
P e E
O — O
c
-— A Xp T AXp——— Figure 3.5: Diffusion Transport at Conjugate Boundaries
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The term 0.x, / I, may be seen as a resistance to the diffusion transfer between P and
E. We may write I', as

I'p I'g

- —1
Ibz(l_ﬂ%‘ﬂ) (3.83)

Equation 3.83 represents a harmonic mean interpolation for I'. The properties of this
iterpolation may be better understood if we consider the case f, = 0.5, 1.e., the face e
lies midway between P and . In this case,

p) 8

P E 3.84
T,1T, (3.84)

€:

Lecture 11 —Finite Volume Method 32



Introduction to Computational Fluid Dynamics

Source Linearization and Treatment of Non-Linearity

Our goal 1s to reduce our differential equation to a set of algebraic equations in the
discrete values of ¢. When the scalar transport is non-linear, the resulting algebraic set
1s also non-linear. Non-linearity can arise from a number of different sources. For ex-
ample, 1n diffusion problems, the diffusion coefficient may be a function of ¢, such as
in the case of temperature-dependent thermal conductivity. The source term § may also
be a function of ¢. In radiative heat transfer in participating media, for example, the
source term in the energy equation contains fourth powers of the temperature. There
are many ways to treat non-linearities. Here, we will treat non-linearities through Pi-
card 1teration. In this method, the coetficients a,, a,, S~ and S, are evaluated using
prevailing values of ¢. They are updated as ¢ 1s updated by iteration.
We said previously that the source term S could be written in the form

S=S.+5Spp (3.85)

We now examine how this can be done when S 1s a non-linear function of ¢.
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Let the prevailing value of ¢ be called ¢*. This i1s the value that exists at the
current iteration. We write a Taylor series expansion for S about its prevailing value

S* = S(qﬁ*)I
S = S* —|- (_C?S)* (Qb — ¢*) (g 86)
do .

IS\ *
1 51'* _ _ %
c (a¢) ¢

IS\ *
(%) (3.87)

so that

A
|

Here, (dS/d$)* is the gradient evaluated at the prevailing value ¢ *. For most problems
of interest to us, dS/d¢ is negative, resulting in a negative S ,. This ensures that the
source tends to decrease as ¢ increases, providing a stabilizing effect. However, this
type of dependence is not always guaranteed.
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Under-Relaxation

When using iterative methods for obtaining solutions or when iterating to resolve non-
linearities, it 1s frequently necessary to control the rate at which variables are changing
during iterations. When we have a strong non-linearity in a temperature source term,
for example, and our 1nitial guess 1s far from the solution, we may get large oscillations
in the temperature computed during the first few iterations, making 1t difficult for the
iteration to proceed. In such cases, we often employ under-relaxation.

Let the current iterate of ¢ be ¢5. We know that ¢, satisfies

aP(le = Ann ¢11b +0b (3.88)

no

so that after the system has been solved for the current iteration, we expect to compute
a value of ¢, of

— Enb anb qbnb + b

dp

¢p (3.89)
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We do not, however, want ¢, to change as much as Equation 3.89 implies. The change
In ¢, from one 1teration to the next 1s given by

Enb b ¢11b +b _

dp

o7 (3.90)

We wish to make ¢, change only by a fraction o of this change. Thus

b
qﬁp = (f); + a (Enb 11b¢11b + ¢;) (3.91)

dp

Collecting terms, we may write

a l—«a
Ep(le = E 11b¢11b +o+—— aP(pP (3.92)
nb
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When the 1terations converge to a solution, 1.e., when ¢, = ¢, the original dis-
crete equation 1s recovered. So we are assured that under-relaxation 1s only a
change 1n the path to solution, and not in the discretization itself. Thus, both
under-relaxed and un-underrelaxed equations yield the same final solution.

Though over-relaxation (¢ > 1) 1s a possibility, we will for the most part be using

a <1.With a <1,we are assured thata,/a > ¥ . a_. . This allows us to satisfy
the Scarborough criterion.

(the matrix is diagonally dominant)

We note the similarity of under-relaxation to time-stepping. The 1nitial guess
acts as the initial condition. The terms a,/a and ((1 — )/ a)a, ¢p represent the
effect of the unsteady terms.
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