Introduction to Computational Fluid Dynamics

FINITE DIFFERENCES METHOD - TYPICAL PROBLEMS (part V)

STEADY FREE CONVECTION IN A RECTANGULAR CAVITY FILLED
WITH A POROUS MEDIUM

Introduction

Natural convective heat transfer in fluid-saturated porous media has occupied the center
stage in many fundamental heat transfer analyses and has received a considerable
attention over the last several decades. This interest was estimated due to its wide range of
applications in, for example, packed sphere beds, high performance insulation for
buildings, chemical catalytic reactors, grain storage and such geophysical problems as
frost heave. Porous media are also of interest in relation to the underground spread of
pollutants, solar power collectors, and to geothermal energy systems.

(D.B. Ingham and I. Pop (eds.), Transport Phenomena in Porous Media, Pergamon, Oxford, Vol. 111, 2005)
(D.A. Nield and A. Bejan, Convection in Porous Media (3" edition), Springer, New York, 2006)
(K. Vafai (ed.), Handbook of Porous Media (2" edition), Taylor & Francis, New York, 2005)
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Natural convection in an enclosure in which internal heat generation is present is of
prime importance in certain technological applications. Examples are post-accident
heat removal in nuclear reactors and geophysical problems associated with the

underground storage of nuclear water, among others.
(J.-H. Lee and R.J. Goldstein, ASME J. Heat Transfer 110 (1988), 345-349)
(T. Fusegi, J.M. Hyun and K. Kuwahara, Numer. Heat Transper, Part A 21 (1992) 215-229)

Mathematical model A
Consider the steady natural convection flow in a rectangular oT/dy =0
cavity filled with a fluid-saturated porous medium and an
internal heat generation. The geometry and the Cartesian lg a0
coordinate system are schematically shown in Fig. 1, where

the dimensional coordinates x and y are measured along the 7, T, |h
horizontal bottom wall and normal to it along the left
vertical wall, respectively. The height of the cavity is v
denoted by h and the width by I, respectively. It is assumed I_”.
that the wvertical walls are maintained at a constant oT /oy =0 x
temperatureT,, while the horizontal walls are adiabatic. !

<
<

v

A\ 4
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We also bring into account the effect of a uniform heat generation in the flow region. The constant
volumetric rate of heat generation is g,"' [W/m®]. It is also assumed that the effect of

buoyancy is included through the well-known Boussinesg approximation.. The resulting
convective flow is governed by the combined mechanism of the driven buoyant force, and
Internal heat generation.

Under the above assumptions, the conservation equations for mass, Darcy, energy and
electric transfer are

V-V=0 (1)
v=2(vp+pg) (2)
Y7
(V-V)T = o, V2T + 0 (3)
PoCyp
PZPo[l—,B(T —To)] (4)

where V is the velocity vector, T is the fluid temperature, p is the pressure, g is the
acceleration vector, K is the permeability of the porous medium, « is the effective
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thermal diffusivity, p Is the density, » iIs the dynamic viscosity, B is the coefficient of
thermal expansion, c, is the specific heat at constant pressure, p, Is the reference density.

Eliminating the pressure term in Eqg. (2) in the usual way, the governing equations (1) to
(3) can be written as

uL Y (5)
ox oy
u_v_ grpar )
oy OX v oX
2 2
FECARFRVICLIRNPNE [CRISLCLE U (7)
OX oy OX oy PCy

and are subjected to the boundary conditions
u=0, T=T,, at x=0 and x=h
8
v=0, ﬂ=O, at y=0 and y=h (8)
oy
where v is the kinematic viscosity. Further, we introduce the following non-dimensional
variables
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x-X y2¥ y-h, v T-To

: —vV, 0= 9
| h o, o, lao™12 /k) ©)
where k is the thermal conductivity.

Introducing the stream function  definedas U =ow /oY and V = -0y /0 X, and using (9)

In Egs. (5) - (8), we obtain the following partial differential equations in non-dimensional
form:

2 2
OW a2V _ _pa9Y (10)
X4 oY *® X
2 2
0 ‘9+a2ﬁ+1:a(a‘/’59—8‘/’59j (1)
X 2 oY 2 oY oX X oY
subject to the boundary conditions
U=0, w=0, =0, at X=0 and X =1
12
V=0 w=0, 25:0, at Y=0 and Y =1 (12)

where a =1/h is the aspect ratio of the cavity and Ra is the Rayleigh number.
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Once we know the numerical values of the temperature function we may obtain the rate of
heat flux from each of the vertical walls. The non-dimensional heat transfer rate, q,,, per
unit length in the depthwise direction for the left vertical wall is given by

. 1 .
. el . F o .
Nuy = — (f’-‘f)x_n Nu=— | ('&_}‘-)x-nd}

0

(13)
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",i./ \J J e P "
I | A i, Y ¢y, _\,\‘J.' e W ¥ ~ 4’)‘ {’_)I'_ '
'\ P e e LSS e
| ‘VA\—, \| ﬁ-d 2“ L‘A»‘t
' \ g v
|
( A
p o + = 5 ¢ R
-f B R S )’JJ 2 B Tt +yi =
Ay ) P
|I e -
\
0\ \")]J IA,.}‘ ’ {_)4'4 | 4)' d{," ‘QJIJJ _Olil 4
\ " [_5¥é A% YNy _”77;7 AN
I\ = .Z, Hx -4
)=2 Ny -4
“ 'avs
Lecture 10 —Finite Difference Method. Convection in Porous Media 6



Introduction to Computational Fluid Dynamics

et ~
- , ~ . o G AR s
2 J“QL\— 4 g ) “") B} N, \‘/ ;Ei— ( Vi -01-1,3\
i T T = \2- | \Y’ e 2 LS. + ( R > "' e & .
" po I} - A= ) ) 1) .jAX /
03 X fBnes™ (AT BTN Y () L - 2
~n -~ Q‘)_ > o~ \
L o RS- e \ )I g\ .L:) \ _6\‘ \
=Sl LB S S
%\xk ST {MJ\ PR s RGP O |
o
't o~ P s feae 2 (\J \,r\/ -’\[\i.. ';‘j
[ { \ W\ _[\ > S \ .': \ Vi --1]
Gk S(\_{/ ’“‘-\ri -_1$(~‘:)U_£; - {)&‘.1"33 \.\h{‘“—‘} \&%'J/K A kL b6 G
hax by L' R 1 i N |

where “~” means the value from the previous iteration.
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Matlab program

format long

sCavity

Sparameters

a=2;

Ra=100;

%discretization and initialization$%$%%%%%%%%
N=51; %number of nodes 1in x- direction

M= (N-1) *a+1; $%number of nodes in y- direction
h=1/(N-1);

k=1/(M-1);

0 : : 000000000000000000
Fcoeffl1cients%3%5%5%5%5%%%5%5%53%53%5%39535303053%5%35%5%%

t1l=2/ (h*h) ;

t2=2/ (k*k) *a*a;
cl=tl/(tl+t2)/2;
c2=t2/(tl+t2)/2;

cd4=Ra/2/h/ (t1+t2);
cb=k*k/2/ (a*a*h*h+k*k) ;
cb=a*a*h*h/2/ (a*a*h*h+k*k) ;
c7=-a*h*k/8/ (a*a*h*h+k*k) ;
c8=h*h*k*k/2/ (a*a*h*h+k*k) ;
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Pttt ettt ettt ittt ittt ettt e

while (stop~=1)
nr it=nr it+l;
err u=0;err T=0;
for 1=2:N-1
for j=2:M-1

u new(i,j)=cl*(u(i+l,Jj)+u(i-1,3))+c2* (u(i,j+1)+u(i,j-1))+
cd* (T (i+1,3)-T(1i-1,3));
T new(i,Jj)=c5*(T(1i+1,3)+T(i-1,3J))+c6*(T(1i,3+1)+T(1,J-1))+
c7*((u(i,J+1)-u(i,J-1))*(T(1+1,3)-T(i-1,3))-
(u(i+l,3J)-u(i-1,3))*(T(1,J+1)-T(i,J-1)))+c8;
1if abs(u(i, )

end

1f abs(T(i,3J)-T new(i,j))>err T
err T=abs(T(1i,3)-T new(i,J));

end

u(i,Jj)=u new(i,Jj)

T (i,j)=T_new(i,j) ’

end
end;

e

T new(:,1)=T new(:,2);T new(:,M)=T new(:,M-1); % adiabatic condition;
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$%error evaluation
1f (err u<le-9 & err T<le-9)
stop=1;
end

u=u_new;
T=T_new;
$%sprint intermediate values of the error
if mod(nr it,500)==
fprintf('nr it=%g err u=%g err T=%g\n', nr it, err u, err T);
end

o

end %$%while

nr it

max (max (T) )
max (max (u) )
x=0:h: (N-1)*h;y=0:k: (M-1) *k;
figure (1) ;

contour (x,y,u',40)

axis equal

figure(2);
contour(x,y,T',40)

axis equal
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Linii de current si izoterme pentru Ra = 100, a=2

Table 1

Aceuracy test for Ra = 10%, and a =1

Nodes (0.24,0.24) £(0.24,0.24)
26 = 26 2.6368 (.0380

51 = 51 2.5087 0.0E384

101 = 101 2.5800 0.0382

201 = 201 2.5707 0.0381
Richardon extrapolation 2.5614 0.0380
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Table 2
Comparison o Bonar for Ha =0 and a =05
Fa Haajizadeh et al. [27] Present (Richardson extrapolation )
Vmax Prmax Umax Pmax
10 0.078 (1.130 0.079 0.127
10° 4.880 0.11% 4.833(4.832) 0.116(0.116)

(M. Haajizadeh, A.F. Ozguc, C.L. Tien, Natural convection in a vertical porous enclosure with internal heat
generation, Int. J. Heat Mass Transfer 27 (1984) 1893-1902)
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FINITE DIFFERENCE METHOD. NON-UNIFORM GRID

. foap
AXy A A A }(’ : A X,
\ | { sl , e
dic. S A X l 1 A 4¥+L
f‘ /
) ‘;L [} {f
= i AR £ 55
L, '1 L A, FRA -4
3N e ool (AN 0% ) F 2 A Ji-t
g 7" A : 2 e B e —————————————— e —————————
e '/ = i o ,,
et OB e
A.)(\ A?(Cl_,i ( /\\~>{( - {\ "(l"i/

Lecture 10 —Finite Difference Method. Curvilinear boundaries 14



Introduction to Computational Fluid Dynamics

How to obtain a non-uniform grid?

xnon—uniform = f(xuniform)

0.8F

0.6

0.4

0.2r

0 0.2 0.4 0.6 0.8 1
X

Xnon-uniform = xuniformpr p=2,3;
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function [x,y,N]=BLGrid(bl, N bl)

o\©

%X,y grid
SN total number of nodes
% bl boundary layer thickness
SN bl the number of nodes in the boundary layer region
xl=zeros (N bl,1);
hunif=(bl1”(1/2))/ (N bl-1);
for 1=1:N bl
x1(i)=((i-1)*hunif) *2;
end
hmin=x1(2)-x1 (1) ;
hmax=(x1 (N bl)-x1(N bl-1));
Nm=floor (((1l-bl-(bl))/hmax))-1;
N=Nm+2*N bl-1;
h=(1-bl-(bl)) /Nm;
x2=zeros (Nm-1,1);
for i=1:Nm-1
x2 (1)=bl+i*h;
end

x3=zeros (N bl,1);
hunif=(17(1/2)-(1-b1)"(1/2))/(N_bl-1);
x3 (N _bl)=1;
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for 1=N bl-1:-1:1

x3(i)= 1-x1(N bl-i+1);
end
xunif=0:1/(N-1) :1;

x=[x1;x2;x3];
Y=X7
[N,M]=size (X);

figure (1)
plot (xunif,x,'.")

figure (3)

hold on

for i=1:N

plot (x,ones (N, 1) *y(i));
end

for 1i=1:N

plot (ones (N, 1)*x(i),vy);
end

axis equal

axis off
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Internal heat generation effects on the unsteady free
convection in a square cavity filled with a porous medium

Mathematical model

Consider the unsteady natural convection flow in a rectangular cavity filled with a porous
medium and internal heat generation.
It is assumed that the vertical walls are maintained at constant temperaturesT.andT,,

while the horizontal walls are adiabatic. We also take into account the effect of uniform

heat generation in the flow region. The constant volumetric rate of heat generation is
go'" W /m?]. It is also assumed that the effect of buoyancy is included through the

well-known Boussinesq approximation. The resulting convective flow is governed by the

combined mechanism of the driven buoyancy force and internal heat generation.
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Under the above assumptions, the conservation equations for mass, Darcy and energy

are given by
V-V=0 (1)
K
V="(-Vp+pg) (2)
y7;
M (VYT = v2T + %0 (3)
ot' pOCp
p=poll-p(T-To)] (4)
u=0, T =T, at x=0, O<y<L
u=0, T =T, at x=1L, O<y<lL (5)

v =0, %:O, at y=0 and y=L, O<x<L
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Eliminating the pressure, introducing the following non-dimensional variables

t_arznt X:i’ Y:X’ U:Lu’ V:LV’ e:T—TO
L L L O Onm Th_TC

()

where Ty = (T, + T;)/ 2 is the characteristic temperature and using the stream function

(U=0w /oY andV =—-0w /0 X) we obtain the dimensionless differential equations:

2
v OV _pa? ©)
X2 a2 X

00 0y 06 0oy 06 _ 0°0 aze Ra,

+ (7)
ot 6Y OX X oY px?2 aYZ Ra
w=0 6=1/2, at X=0, 0<Y«<l
w=0 6=-1/2, at X=1 0<Y¥«<l (8)
w =0, 25 0, at Y=0 and Y =1 0< X<l
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where Ra = gKg(T,, —T.)L/ v is the Rayleigh number and Ra; = gqy'"'KS L3/kamv IS

the heat generation parameter.

The non-dimensional heat transfer rate, per unit length in the depth-wise direction for the

left vertical wall is given by

1 .
ali r o
Nuy = — (—) Nu=— (—_) dy
3 O S EII' ER A
(9)
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Discretization
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Implicit in Oy
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Algorithm

1. Solve (b)
2.So0lve (c)
3.Solve (a) . Verify if [ — 4l < €

4. Next time step.

clear all

format long g

tic

sCavity
Sparameters

A=1; %aspect ratio
Ra=10;

RaI=0;

RaE=1;

O=RalI/RaE;

Ha=0;

g=0;
$discretization and 1initialization%%%%%%%%%%
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oo

Tdiscretization3s33%%%%%%%
[x,y,N]=BLGrid(0.2,15);
for i=1:N-1

dx (1)=x(1+1)-x(1);

dy (1) =y (i+1) -y (1)

end

dx (1)

N $%number of nodes in x- direction
M=N; $%number of nodes in y- direction
dt=dx (1) /5;

uo=zeros (N, M) ;un=zeros (N,M) ; 5u old,u new
uo (2:N-1,2:M-1)=ones (N-2,M-2) ;

yM) ; Tn=zeros (N,M) ;3T old,T intermediar, T new

scoefficients in energy discretized equation
scoefficients in momentum and energy discretized equations
for i=2:N-1

cl(i)=2/dx (1) /dx(1i-1);
c2(i)=2/dy(i)/dy(i-1);
c3(1)=2/dx(1)/ (dx (1) +dx(1i-1));
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cd (1)=2/dx(1-1)/(dx (i) +dx (1-1)) ;
c5(1i)=2/dy (1) /(dy(1i)+dy(i-1));
c6(i)=2/dy(i- l)/(dy( i)+dy (i-1));
c7(i)=Ra/ (dx(1)+dx(i-1));
c8(1)=(dx(1)+dx(i-1));
c9(1)=(dy(1i)+dy(i-1));

end;

al=cd4/2;a3=cl/2;ad4=c3/2;ab=A*A*al;a6=A*A*a3;a7=A*A*ad4;

for i=2:N-1
for jJ=2:N-1
Kul (i,3)=c3(i)* (1+Ha*cos (g)*cos(g))/(cl(i)* (1+Ha*cos(g)*cos(g))+c2(]j)* (A*A+Ha*sin (g) *s

)) )
Ku2 (i,3)=c4 (i) * (1+Ha*cos (g)*cos(g))/ (cl(i)* (1+Ha*cos(g)*cos(g))+c2(j)* (A*A+Ha*sin (g) *s
in(g)));
Ku3(i,3j)=c5(j) * (A*A+Ha*sin(g) *sin(g))/ (cl (i) * (1+Ha*cos (g) *cos (g))+c2(J) * (A*A+Ha*sin (q)
*sin(g)));
Kud (i,3)=c6 (J) * (A*A+Ha*sin(g) *sin(g))/ (cl (i) * (1+Ha*cos (g) *cos (g))+c2(J) * (A*A+Ha*sin (q)
*sin(qg)));
Kub (i, 3)=c7(i)/ (cl(i)* (1+Ha* cos(g) cos (g )) c2 ( ) (A*A+Ha*sin (g) *sin(qg))) ;
Kub6 (1, j)=2*A*Ha*sin (g) *cos (g) /c8 (i) /c9(J)/ (cl * (1+Ha*cos (g) *cos (g) ) +c2 (J) * (A*A+Ha*si
n(g)*sin(g)));
a2 (i, J)=0.5*A/ (dx (1) +dx (1-1))/(dy(J)+dy(j-1));

end
end
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kk=0;

t=0;

tf=0.5;

titer=1;
steady=1;

errT=1;

ur=1.8;

1 Nu=0;

while (errT>le-0)

t=t+dt;
clear Ax bx
$solve temperature
Fimplicit 1n x direction
for j=2:M-1
$%5%%%%%5s0lve system for each fixed ] $%%%%5%%5%%%5%%5%5%%%

Ax=zeros (N,N) ;bx=zeros (N, 1) ;

$boundary conditions for x=0
Ax(1,1)=1;
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Ax(i,1-1)=-al(i)-a2(i,3)*(uo(i,J+1)-uo(i,3-1));
Ax (i,1i)=1/dt+a3(i); Ax(i,i+l)=-ad(i)+a2(i,3)*(uo(i,J+1)~-

U.O(i,j_l) ) ;

bx(i)=To(i,j-1)*(a5(j)-a2(i,]j)*(uo(i+l,3j)-uo(i-1,3)))+To(i,3)*

(1/dt-a6(3))+To (i,3+1)* (a7 (3)+a2(i,3)* (uo (i+l,5)-uo (i-1,

end

sboundary conditions for x=1
Ax (N,N)=1;

$bx (N)=0;

bx (N)=-0.5;

Ti(:,7)=Ax\bx;
end;

clear Ax bx
$implicit in y direction
for 1=2:N-1

0 0 0 0 0o 0o

$%5%%%%%s0lve system for each fixed 1 $%%%%%%%%%%%%%

+a2 (i, ) * (uo (i+1, ) -uo(i-1,7))
(uo (1i+1,3)-uo(i-1,3));
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*

bx(j)=Ti(i—l,j)*(al(')+a2(1 j)*(uo(i,J+1l)-uo(i,J-1)))+Ti(1,7])
4(1) )))+0.5%Q;

(
(1/dt-a3(i))+Ti(i+1,3) *(a -a2(i,3)*(uo(i,j+1)-uo(i,j-1
end
Sboundary conditions for x=0
Ax(M,M-1)=-1;Ax(M,M)=1;bx (M) =0;
Tn (i, :)=(Ax\bx) ';
end;
™n(l,:)=0.5;Tn (N, :)=-0.5;
errT= norm(To Tn) ;
% steady=abs (max (max (To-Tn) ) /max (max (Tn))) ;
To=Tn;

r3J
))

$solve stream
nr it=0;err u=l;
while (err u>le-06)
nr _it=nr it+1;
err u=0;
for 1=2:N-1
for j=2:M-1

n(i,j)=Kul(i,])*uo(i+l,3)+Ku2(i,])*uo(i-1,73)+

Ku3(1,j)*uo(1 j+1)+Ku4(1,j)*uo(1,j—1)+

Kub (i,3J)*(To(i+1,3)-To(i-1,3))+

Ku6 (i, 7J) * (uo (i+1, j+1) -uo (i+1,3-1)-uo(i-1,J+1)+uo(i-1,3-1))
n(i,j)=uo(i,Jj)+ur*(un(i,j)-uo(i,J));
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1f abs(uo(i,J)-un(i,Jj))>err u
err u=abs(uo(i,3J)-un(i,Jj));
ends1f
o(i,j)=un(i,Jj);
end%for ]
end; $for 1

uo=un;

o\

1f mod(nr it,10)==0

o\

end
end %while stream

o\

titer=titer+1;
if mod(titer,10)==
kk=kk+1;
1 Nu=i Nu+l;
timp (i Nu)=t;
Nuloc=(Tn (2, :)-Tn (1, :))
Nu (i Nu) trapz(y,NulOC)
fprintf ('\nt=%g errT=
end

/dx (1) ;

end%while main

Lecture 10 —Finite Difference Method. Curvilinear boundaries

fprintf ('nr it=%g err u=%g err T=%g\n'
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Nuloc=(Tn (2, :)-Tn(l,:))/dx (1) ;

1 Nu=i Nu+l;

timp (1 Nu)=t;

Nuloc=(Tn (2, :)-Tn (1, :))/dx (1) ;

Nu (1 Nu)=trapz(y,Nuloc); %using trapezoildal rule

figure (1)

contour (x,y,To',20)
axls equal
axis([0,1,0,17)

figure (2)
contour (x,y,uo',20)
axls equal
axis([0,1,0,11)
toc
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Grid dependence

Table 1. Mean Nusselt number Nu for different grids at Ra =10°

Boundary layer | Ax;- first Np; - number of | N — total number | Nu (Nusselt
thickness  |stepinb.l. |nodesinb.l.  |of nodes number)

0.1 0.00123 10 56 13.4523

0.1 0.00027 20 116 13.5982

0.2 0.00054 20 67 13.5521

0.2 0.00023 30 102 13.6027

0.3 0.00035 30 7 13.5822

0.3 0.00019 40 104 13.6085

0.4 0.00026 40 87 13.5968

0.4 0.00016 50 110 13.6131
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Validation

We use a non-uniform grid and in the absence of internal heat generation effect we obtain:

Table 2. Comparison of the mean Nusselt number Nu for different values
of Ra when the steady state is reached

Authors Ra

10 100 1000 10000
Walker and Hosmy [20] 3.097 12.96 51
Bejan [21] 4.2 15.8 50.80
Beckerman et al. [22] 3.113 48.9
Gross et al. [23] 3.141 13.448  42.583
Manole and Lage [24] 3.118 13.637  48.117
Moya et al. [25] 1.065 2.801
Batas and Pop [26] 1.079 3.16 14.06 48.33
Present results 1.079 3.108 13.613  48.208

(110 x 110)
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Results and discussion
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Streamlines and isotherms for Ra = 10 and Q = 0 (steady state).

1 1

09F j» 09
0ar H 08
0.7 H H 07
0.6H H 0B
0.5H H 05
0.4H H 0.4
03H 1 0.3
0.2H H 0.2
0.1 L J- 0.1
DD EI.IZ D.Ifl EI.IE D.IB 1 DD 0z 0.4 06 na 1

Streamlines and isotherms for Ra = 10 and Q = 1 (steady state).
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Curvilinear boundaries
Domain transformation

Physical Domain

|
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Computational domain with constant stepsizes A§ and An.
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§ = &(z,v)
n = n(z,y)

The chain rule for partial differentiation yields the following expré;;sion:
0 0 8 on o

——  — e——

oz~ 0z O ' Bz on

Or “TO¢ "“37;

8 _ 8 o
5y~ *ag t oy
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Now consider a model PDE, such as
oz + Jy

d

which may be rearranged as

(Ez aEy + (7?:1: -+ any)

The obtained equation for the computational domain is more complicated!
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Boundary discretization

COMMUNICATIONS IN MATH ScCI (©) 2003 International Press
Vol. 1, No. 1, pp. 181-197

A FAST FINITE DIFFERENCE METHOD FOR SOLVING
NAVIER-STOKES EQUATIONS ON IRREGULAR DOMAINS*

ZHILIN LIT AND CHENG WANGH#

4.1. A Review of Local Vorticity Boundary Formula in a Rectangu-
lar Domain Let us assume that €2 is a rectangle for the moment. The Dirichlet
boundary condition v» = 0 on 9 is used to solve the stream-function via the vor-
ticity obtained from (2.10). Yet the normal boundary condition, % = 0, cannot

be enforced directly. The way to overcome this difficulty is to convert it into the
o
the vorticity on the boundary. Take the bottom part of d€2, where the subscript j

boundary condition for the vorticity. We use ¢|so = 0 and = 0 to approximate

is zero, for example, we use the central finite difference scheme to approximate the
Laplacian, which is simply Df,u since D21 = 0 from the boundary condition 1 = 0.
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The second-order finite difference approximation yields

N D20 Vil + Vi1 =200 2051 20 — Y
0= Do = = - = :
" yre h? h? h 2h

where 1; o = 0 and (i, —1) refers to a “ghost” grid point outside of the computational

(4.1)

domain. Since
Vi1 — i1 O 9 9
' ~ O(h) = O(h>).
it a2l o) = on?),

we have ¢; 1 =, 1 + O(hS) which leads to Thom’s formula

294

w.iro = h2 (42)

The vorticity on the boundary can also be determined by other approximations
to v; _1. For example, using a third-order one-sided finite difference scheme to ap-

proximate the normal boundary condition 3—,;‘1 = 0, we can write
. —i 1 4 31 — S 3
D), = — — 2 2 — 0+ O(h?). which leads to
( Y )3»-.0 Bh ( ) (43)
Vi1 = 31— %@5132 + O(h4)-
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| . |
Plugging this back to the difference vorticity formula w; ¢ = 72 (i1 + "'l;")-i,_1) in (4.1),
we have Wilkes-Pearson’s formula
1 ,, 1
Wi.0 = ﬁ(él”#-@,l - 5%2) : (4-4)

This formula is second-order accurate for the vorticity on the boundary.

4.2. The Extension to a Curved Domain  The extension of the above
methodology to a domain with a curved boundary is similar but a little more compli-

cated.
B
e
) E A
Fig. 4.1 ‘,F
.G \
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We use F1c. 4.1 as an illustration. F1G. 4.1 shows several grid points near the
boundary 9€2. In Fia. 4.1, D, E. F, G are regular grid points, AB is an arc section on
the boundary. Special attention is needed at the grid points close to the boundary,
such as the point C. We denote a = |AC|/h, b = |BC|/h. Note that 0 < a,b < 1.

The combination of the Dirichlet boundary condition v loo= 0 and the Neumann

oY

boundary condition == = 0 implies that

V=0, at A. (4.5)

In other words, the partial derivative of the stream function along any direction is
zero on the boundary. This can also be seen by the fact that both v = —d,7 and

v = d,1 vanish on the boundary.

The local Taylor expansion at the boundary point A gives

_2h2 3h3
Vo = (0204) — T (DPba) + O(hY). (4.6)
. 1 2h2 , 1 Sh3
vp = T gy - BT o) o). (4.7

where the information of v» = 0 and 0,v = 0 at point A was used in the derivation
for (4.6) and (4.7).
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The Taylor expansion (4.6) gives a first order approximation to 92¢ at the bound-

ary point A

2

— e +0(h), (4.8)

(O7)a =

which corresponds to the Thom’s formula (4.2). Or the combination of (4.6) and (4.7)
gives a second-order approximation to d%u at point A

2 a’

(D7) A = oy ((1 + a)e — muD) + O(h?)., (4.9)

which corresponds to the Wilkes” formula (4.4).
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