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FINITE DIFFERENCES METHOD - TYPICAL PROBLEMS (part IV) 
 

STEADY FREE CONVECTION IN A RECTANGULAR CAVITY FILLED 

WITH A POROUS MEDIUM 

 

Introduction 

 

Natural convective heat transfer in fluid-saturated porous media has occupied the center 

stage in many fundamental heat transfer analyses and has received a considerable 

attention over the last several decades. This interest was estimated due to its wide range of 

applications in, for example, packed sphere beds, high performance insulation for 

buildings, chemical catalytic reactors, grain storage and such geophysical problems as 

frost heave. Porous media are also of interest in relation to the underground spread of 

pollutants, solar power collectors, and to geothermal energy systems.  

 
(D.B. Ingham and I. Pop (eds.), Transport Phenomena in Porous Media, Pergamon, Oxford, Vol. III, 2005) 

(D.A. Nield and A. Bejan, Convection in Porous Media (3rd edition), Springer, New York, 2006) 

(K. Vafai (ed.), Handbook of Porous Media (2nd edition), Taylor & Francis, New York, 2005) 
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Natural convection in an enclosure in which internal heat generation is present is of 

prime importance in certain technological applications. Examples are post-accident 

heat removal in nuclear reactors and geophysical problems associated with the 

underground storage of nuclear water, among others. 
(J.-H. Lee and R.J. Goldstein, ASME J. Heat Transfer 110 (1988), 345-349) 

(T. Fusegi, J.M. Hyun and K. Kuwahara, Numer. Heat Transper, Part A 21 (1992) 215-229) 

 

    

 Mathematical model 

Consider the steady natural convection flow in a rectangular 

cavity filled with a fluid-saturated porous medium and an 

internal heat generation. The geometry and the Cartesian 

coordinate system are schematically shown in Fig. 1, where 

the dimensional coordinates x  and y  are measured along the 

horizontal bottom wall and normal to it along the left 

vertical wall, respectively. The height of the cavity is 

denoted by h  and the width by l , respectively. It is assumed 

that the vertical walls are maintained at a constant 

temperature 0T , while the horizontal walls are adiabatic. 

 

*  
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We also bring into account the effect of a uniform heat generation in the flow region. The constant 

volumetric rate of heat generation is ]/[''' 3
0 mWq . It is also assumed that the effect of 

buoyancy is included through the well-known Boussinesq approximation.. The resulting 

convective flow is governed by the combined mechanism of the driven buoyant force, and 

internal heat generation.  

Under the above assumptions, the conservation equations for mass, Darcy, energy and 

electric transfer are 
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where V  is the velocity vector, T  is the fluid temperature, p  is the pressure, g  is the 

acceleration vector, K  is the permeability of the porous medium, m  is the effective 
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thermal diffusivity,   is the density,  is the dynamic viscosity,  is the coefficient of 

thermal expansion, pc  is the specific heat at constant pressure, 0  is the reference density.  

 

Eliminating the pressure term in Eq. (2) in the usual way, the governing equations (1) to 

(3) can be written as 
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and are subjected to the boundary conditions 
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where   is the kinematic viscosity. Further, we introduce the following non-dimensional 

variables  


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where k  is the thermal conductivity.  

 

Introducing the stream function    defined as YU  /  and XV  / , and using (9) 

in  Eqs. (5) - (8), we obtain the following partial differential equations in non-dimensional 

form: 
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subject to the boundary conditions 
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where hla   is the aspect ratio of the cavity and Ra is the Rayleigh number. 



Introduction to Computational Fluid Dynamics 

 Lecture 10 –Finite Difference Method. Convection in Porous Media      6 
 

Once we know the numerical values of the temperature function we may obtain the rate of 

heat flux from each of the vertical walls. The non-dimensional heat transfer rate, wq , per 

unit length in the depthwise direction for the left vertical wall is given by 

                                                                                    (13) 

Discretization 
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where “~” means the value from the previous iteration.  
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Matlab program 

 

format long 

%Cavity 

%parameters 

a=2; 

Ra=100; 

%discretization and initialization%%%%%%%%%% 

N=51; %number of nodes in x- direction 

M=(N-1)*a+1;%%number of nodes in y- direction 

h=1/(N-1); 

k=1/(M-1); 

u=zeros(N,M);u_new=u; 

T=zeros(N,M);T_new=T; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%coefficients%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

t1=2/(h*h); 

t2=2/(k*k)*a*a; 

c1=t1/(t1+t2)/2; 

c2=t2/(t1+t2)/2; 

c4=Ra/2/h/(t1+t2); 

c5=k*k/2/(a*a*h*h+k*k); 

c6=a*a*h*h/2/(a*a*h*h+k*k); 

c7=-a*h*k/8/(a*a*h*h+k*k); 

c8=h*h*k*k/2/(a*a*h*h+k*k); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

nr_it=0;stop=0; 

  

while (stop~=1) 

    nr_it=nr_it+1; 

    err_u=0;err_T=0;   

    for i=2:N-1 

        for j=2:M-1 

         u_new(i,j)=c1*(u(i+1,j)+u(i-1,j))+c2*(u(i,j+1)+u(i,j-1))+ 

                    c4*(T(i+1,j)-T(i-1,j)); 

         T_new(i,j)=c5*(T(i+1,j)+T(i-1,j))+c6*(T(i,j+1)+T(i,j-1))+ 

                    c7*((u(i,j+1)-u(i,j-1))*(T(i+1,j)-T(i-1,j))- 

                       (u(i+1,j)-u(i-1,j))*(T(i,j+1)-T(i,j-1)))+c8; 

            if abs(u(i,j)-u_new(i,j))>err_u  

                err_u=abs(u(i,j)-u_new(i,j)); 

            end 

            if abs(T(i,j)-T_new(i,j))>err_T  

                err_T=abs(T(i,j)-T_new(i,j)); 

            end 

            u(i,j)=u_new(i,j); 

            T(i,j)=T_new(i,j); 

        end 

    end; 

    

    T_new(:,1)=T_new(:,2);T_new(:,M)=T_new(:,M-1); % adiabatic condition; 
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%%error evaluation 

    if (err_u<1e-9 & err_T<1e-9) 

            stop=1; 

        end 

         

         

    u=u_new; 

    T=T_new; 

%%print intermediate values of the error 

   if mod(nr_it,500)==0 

    fprintf('nr_it=%g err_u=%g err_T=%g\n', nr_it, err_u, err_T); 

   end 

end %%while  

 

  nr_it 

  max(max(T)) 

  max(max(u)) 

  x=0:h:(N-1)*h;y=0:k:(M-1)*k; 

  

 figure(1); 

  contour(x,y,u',40) 

  axis equal 

  figure(2); 

  contour(x,y,T',40) 

  axis equal 
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Linii de current si izoterme pentru Ra = 100, a=1 

 
Linii de current si izoterme pentru Ra = 100, a=0.5 
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Linii de current si izoterme pentru Ra = 100, a=2 
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(M. Haajizadeh, A.F. Ozguc, C.L. Tien, Natural convection in a vertical porous enclosure with internal heat 

generation, Int. J. Heat Mass Transfer 27 (1984) 1893-1902) 
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FINITE DIFFERENCE METHOD. NON-UNIFORM GRID 
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How to obtain a non-uniform grid? 

𝑥𝑛𝑜𝑛−𝑢𝑛𝑖𝑓𝑜𝑟𝑚 = 𝑓(𝑥𝑢𝑛𝑖𝑓𝑜𝑟𝑚) 

 

𝑥𝑛𝑜𝑛−𝑢𝑛𝑖𝑓𝑜𝑟𝑚 = 𝑥𝑢𝑛𝑖𝑓𝑜𝑟𝑚
𝑝, p = 2, 3; 
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function [x,y,N]=BLGrid(bl, N_bl) 

%x,y grid 

%N total number of nodes 

% bl boundary layer thickness 

%N_bl the number of nodes in the boundary layer region 

x1=zeros(N_bl,1); 

hunif=(bl^(1/2))/(N_bl-1); 

for i=1:N_bl 

    x1(i)=((i-1)*hunif)^2; 

end 

hmin=x1(2)-x1(1); 

hmax=(x1(N_bl)-x1(N_bl-1)); 

Nm=floor(((1-bl-(bl))/hmax))-1; 

N=Nm+2*N_bl-1; 

h=(1-bl-(bl))/Nm; 

x2=zeros(Nm-1,1); 

for i=1:Nm-1 

    x2(i)=bl+i*h; 

end 

  

x3=zeros(N_bl,1); 

hunif=(1^(1/2)-(1-bl)^(1/2))/(N_bl-1); 

x3(N_bl)=1; 
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for i=N_bl-1:-1:1 

    x3(i)= 1-x1(N_bl-i+1); 

end 

xunif=0:1/(N-1):1; 

  

x=[x1;x2;x3]; 

y=x; 

[N,M]=size(x); 

  

figure(1) 

plot(xunif,x,'.') 

  

figure(3) 

hold on 

for i=1:N 

plot(x,ones(N,1)*y(i)); 

end 

for i=1:N 

plot(ones(N,1)*x(i),y); 

end 

axis equal 

axis off 
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Internal heat generation effects on the unsteady free  

convection in a square cavity filled with a porous medium 

 

 

Mathematical model 

Consider the unsteady natural convection flow in a rectangular cavity filled with a porous 

medium and internal heat generation.  

It is assumed that the vertical walls are maintained at constant temperatures cT and hT , 

while the horizontal walls are adiabatic. We also take into account the effect of uniform 

heat generation in the flow region. The constant volumetric rate of heat generation is 

]/[''' 3
0 mWq . It is also assumed that the effect of buoyancy is included through the 

well-known Boussinesq approximation. The resulting convective flow is governed by the 

combined mechanism of the driven buoyancy force and internal heat generation.  
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     Under the above assumptions, the conservation equations for mass, Darcy and energy 

are given by 
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Eliminating the pressure, introducing the following non-dimensional variables  
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where 2/)(0 ch TTT   is the characteristic temperature and using the stream function    

( YU  /  and XV  / )  we obtain the dimensionless differential equations: 
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where  mch LTTgKRa /)(   is the Rayleigh number and  mI kLKgqRa /''' 3
0  is 

the heat generation parameter. 

The non-dimensional heat transfer rate, per unit length in the depth-wise direction for the 

left vertical wall is given by 

                                 (9) 
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Discretization 

 

Implicit in Ox 
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Implicit in Oy 
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Algorithm 

1. Solve (b) 

2. Solve (c) 

3. Solve (a) . Verify if |𝜓 − 𝜓𝑜𝑙𝑑| <  𝜀 

4. Next time step. 

 

clear all 

format long g 

tic 

%Cavity 

%parameters 

A=1; %aspect ratio 

Ra=10; 

RaI=0; 

RaE=1; 

Q=RaI/RaE; 

Ha=0; 

g=0; 

%discretization and initialization%%%%%%%%%% 
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%discretization%%%%%%%%%% 

[x,y,N]=BLGrid(0.2,15); 

for i=1:N-1 

    dx(i)=x(i+1)-x(i); 

    dy(i)=y(i+1)-y(i); 

end 

dx(1) 

N %%number of nodes in x- direction 

  

M=N;%%number of nodes in y- direction 

  

dt=dx(1)/5; 

  

uo=zeros(N,M);un=zeros(N,M);%u_old,u_new 

uo(2:N-1,2:M-1)=ones(N-2,M-2); 

  

To=zeros(N,M);Ti=zeros(N,M);Tn=zeros(N,M);%T_old,T_intermediar, T_new 

To(1,:)=0.5;To(N,:)=-0.5; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%coefficients in energy discretized equation 

%coefficients in momentum and energy discretized equations 

for i=2:N-1 

    c1(i)=2/dx(i)/dx(i-1); 

    c2(i)=2/dy(i)/dy(i-1); 

    c3(i)=2/dx(i)/(dx(i)+dx(i-1)); 
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    c4(i)=2/dx(i-1)/(dx(i)+dx(i-1)); 

    c5(i)=2/dy(i)/(dy(i)+dy(i-1)); 

    c6(i)=2/dy(i-1)/(dy(i)+dy(i-1)); 

    c7(i)=Ra/(dx(i)+dx(i-1)); 

    c8(i)=(dx(i)+dx(i-1)); 

    c9(i)=(dy(i)+dy(i-1)); 

end; 

a1=c4/2;a3=c1/2;a4=c3/2;a5=A*A*a1;a6=A*A*a3;a7=A*A*a4; 

  

for i=2:N-1 

    for j=2:N-1 

Ku1(i,j)=c3(i)*(1+Ha*cos(g)*cos(g))/(c1(i)*(1+Ha*cos(g)*cos(g))+c2(j)*(A*A+Ha*sin(g)*s

in(g))); 

Ku2(i,j)=c4(i)*(1+Ha*cos(g)*cos(g))/(c1(i)*(1+Ha*cos(g)*cos(g))+c2(j)*(A*A+Ha*sin(g)*s

in(g))); 

Ku3(i,j)=c5(j)*(A*A+Ha*sin(g)*sin(g))/(c1(i)*(1+Ha*cos(g)*cos(g))+c2(j)*(A*A+Ha*sin(g)

*sin(g))); 

Ku4(i,j)=c6(j)*(A*A+Ha*sin(g)*sin(g))/(c1(i)*(1+Ha*cos(g)*cos(g))+c2(j)*(A*A+Ha*sin(g)

*sin(g))); 

Ku5(i,j)=c7(i)/(c1(i)*(1+Ha*cos(g)*cos(g))+c2(j)*(A*A+Ha*sin(g)*sin(g))); 

Ku6(i,j)=2*A*Ha*sin(g)*cos(g)/c8(i)/c9(j)/(c1(i)*(1+Ha*cos(g)*cos(g))+c2(j)*(A*A+Ha*si

n(g)*sin(g))); 

a2(i,j)=0.5*A/(dx(i)+dx(i-1))/(dy(j)+dy(j-1)); 

    end 

end  
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kk=0; 

t=0; 

tf=0.5; 

titer=1; 

steady=1; 

errT=1; 

ur=1.8; 

i_Nu=0; 

while (errT>1e-6) 

  

t=t+dt; 

clear Ax bx 

%solve temperature 

%implicit in x direction 

    for j=2:M-1 

    %%%%%%%solve system for each fixed j %%%%%%%%%%%%%%%% 

         

        Ax=zeros(N,N);bx=zeros(N,1); 

        %boundary conditions for x=0 

        Ax(1,1)=1; 

        %bx(1)=0; 

        bx(1)=0.5; 

        %%%%%%%%%system%%%%%%%%%%%%%                 

        for i=2:N-1 



Introduction to Computational Fluid Dynamics 

 Lecture 10 –Finite Difference Method. Curvilinear boundaries      28 
 

         Ax(i,i-1)=-a1(i)-a2(i,j)*(uo(i,j+1)-uo(i,j-1)); 

Ax(i,i)=1/dt+a3(i); Ax(i,i+1)=-a4(i)+a2(i,j)*(uo(i,j+1)-uo(i,j-1)); 

bx(i)=To(i,j-1)*(a5(j)-a2(i,j)*(uo(i+1,j)-uo(i-1,j)))+To(i,j)* 

(1/dt-a6(j))+To(i,j+1)*(a7(j)+a2(i,j)*(uo(i+1,j)-uo(i-1,j)))+0.5*Q; 

        end 

        %boundary conditions for x=1 

        Ax(N,N)=1; 

        %bx(N)=0; 

        bx(N)=-0.5; 

  

        Ti(:,j)=Ax\bx; 

    end; 

     

    clear Ax bx 

%implicit in y direction 

    for i=2:N-1 

    %%%%%%%solve system for each fixed i %%%%%%%%%%%%%%%% 

         

        Ax=zeros(M,M);bx=zeros(M,1); 

        %boundary conditions for y=0 

        Ax(1,1)=1;Ax(1,2)=-1;bx(1)=0; 

        %%%%%%%%%system%%%%%%%%%%%%%                 

        for j=2:M-1 

         Ax(j,j-1)=-a5(j)+a2(i,j)*(uo(i+1,j)-uo(i-1,j));Ax(j,j)=1/dt+a6(j); 

Ax(j,j+1)=-a7(j)-a2(i,j)*(uo(i+1,j)-uo(i-1,j)); 
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bx(j)=Ti(i-1,j)*(a1(i)+a2(i,j)*(uo(i,j+1)-uo(i,j-1)))+Ti(i,j)* 

(1/dt-a3(i))+Ti(i+1,j)*(a4(i)-a2(i,j)*(uo(i,j+1)-uo(i,j-1)))+0.5*Q; 

        end 

        %boundary conditions for x=0 

        Ax(M,M-1)=-1;Ax(M,M)=1;bx(M)=0; 

        Tn(i,:)=(Ax\bx)'; 

    end; 

   Tn(1,:)=0.5;Tn(N,:)=-0.5; 

  errT=norm(To-Tn); 

%   steady=abs(max(max(To-Tn))/max(max(Tn))); 

   To=Tn; 

  

     %solve stream 

     nr_it=0;err_u=1; 

   while (err_u>1e-6) 

   nr_it=nr_it+1;    

   err_u=0;   

    for i=2:N-1 

        for j=2:M-1 

un(i,j)=Ku1(i,j)*uo(i+1,j)+Ku2(i,j)*uo(i-1,j)+ 

        Ku3(i,j)*uo(i,j+1)+Ku4(i,j)*uo(i,j-1)+ 

        Ku5(i,j)*(To(i+1,j)-To(i-1,j))+ 

        Ku6(i,j)*(uo(i+1,j+1)-uo(i+1,j-1)-uo(i-1,j+1)+uo(i-1,j-1)); 

un(i,j)=uo(i,j)+ur*(un(i,j)-uo(i,j)); 
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          if abs(uo(i,j)-un(i,j))>err_u  

                err_u=abs(uo(i,j)-un(i,j)); 

            end%if 

            uo(i,j)=un(i,j); 

        end%for j 

    end;%for i 

    

   uo=un; 

     

%    if mod(nr_it,10)==0 

%     fprintf('nr_it=%g err_u=%g err_T=%g\n', nr_it, err_u, errT); 

%    end 

  end %while stream 

  

  titer=titer+1; 

     if mod(titer,10)==0 

        kk=kk+1; 

       i_Nu=i_Nu+1; 

       timp(i_Nu)=t; 

       Nuloc=(Tn(2,:)-Tn(1,:))/dx(1); 

       Nu(i_Nu)=trapz(y,Nuloc); 

        fprintf('\nt=%g  errT=%g \n', t, errT); 

    end 

  

end%while main     
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Nuloc=(Tn(2,:)-Tn(1,:))/dx(1); 

i_Nu=i_Nu+1; 

timp(i_Nu)=t; 

Nuloc=(Tn(2,:)-Tn(1,:))/dx(1); 

Nu(i_Nu)=trapz(y,Nuloc); %using trapezoidal rule 

 

figure(1) 

 contour(x,y,To',20) 

 axis equal 

 axis([0,1,0,1]) 

  

 figure(2) 

 contour(x,y,uo',20) 

 axis equal 

 axis([0,1,0,1]) 

toc 
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Grid dependence 

Table 1. Mean Nusselt number uN  for different grids at 310Ra  

Boundary layer 

thickness 

1x - first 

step in b.l. 

blN  - number of 

nodes in b.l. 

N – total number 

of nodes 

uN  (Nusselt 

number) 

0.1 0.00123 10 56 13.4523 

0.1 0.00027 20 116 13.5982 

0.2 0.00054 20 67 13.5521 

0.2 0.00023 30 102 13.6027 

0.3 0.00035 30 77 13.5822 

0.3 0.00019 40 104 13.6085 

0.4 0.00026 40 87 13.5968 

0.4 0.00016 50 110 13.6131 
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Validation 

 

We use a non-uniform grid and in the absence of internal heat generation effect we obtain: 

Table 2. Comparison of the mean Nusselt number uN  for different values  

of Ra  when the steady state is reached 

 

 

Authors Ra  
                                 10       100          1000          10000 

Walker and Hosmy [20]  3.097 12.96 51 

Bejan [21]  4.2 15.8 50.80 

Beckerman et al. [22]  3.113  48.9 

Gross et al. [23]  3.141 13.448 42.583 

Manole and Lage [24]  3.118 13.637 48.117 

Moya et al. [25] 1.065 2.801   

Batas and Pop [26] 1.079 3.16 14.06 48.33 

Present results 

(110 x 110) 

1.079 3.108 13.613 48.208 
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Results and discussion 

 

Streamlines and isotherms for Ra = 10 and Q = 0 (steady state). 

 

Streamlines and isotherms for Ra = 10 and Q = 1 (steady state).
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Curvilinear boundaries 

Domain transformation 
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or 
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The obtained equation for the computational domain is more complicated! 
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Boundary discretization 
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Fig. 4.1 
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