
4.3 Confidence Intervals for the Mean and Variance of One Population

Let X be a population characteristic, with mean µ = E(X) and variance V (X) = σ2, whose pdf
depends on a parameter θ, f(x; θ). Let X1, X2, . . . , Xn be a sample drawn from the pdf of X .
The formulas for finding confidence intervals for the mean µ and variance σ2 are based on the
following results (which were discussed in Chapter 3).

Proposition 4.1. Assume X ∈ N(µ, σ). Then

a) Z =
X − µ

σ√
n

∈ N(0, 1);

b) T =
X − µ

s√
n

∈ T (n− 1);

c) V =
1

σ2

n∑
i=1

(Xi −X)2 =
(n− 1) s2

σ2
∈ χ2(n− 1).

Proposition 4.2. If the sample size is large enough (n > 30), then

a) Z =
X − µ

σ√
n

∈ N(0, 1);

b) T =
X − µ

s√
n

∈ T (n− 1).

CI for the mean, known variance

If either X ∈ N(µ, σ) or the sample is large enough (n > 30) and σ is known, then by Propo-
sitions 4.1 and 4.2, we can use the pivot

Z =
X − µ

σ√
n

∈ N(0, 1).

The procedure will go exactly as described in the previous section, with θ = µ, θ = X, σθ =
σ√
n

.

The 100(1− α)% CI for the mean is given by

µ ∈
[
X − z1−α

2

σ√
n
, X − zα

2

σ√
n

]
. (4.1)
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Since N(0, 1) is symmetric (and one quantile is the negative of the other), we can write it in short
as

X ± zα
2

σ√
n

or X ∓ z1−α
2

σ√
n
. (4.2)

• Upper confidence interval for µ
To find µL such that P (µ ≥ µL) = 1− α, we use

1− α = P (µ ≥ µL) = P (−µ ≤ −µL)

= P
(X − µ

σ/
√
n

≤ X − µL

σ/
√
n

)
= P

(
Z ≤ X − µL

σ/
√
n

)
= P (Z ≤ z1−α),

so
X − µL

σ/
√
n

= z1−α, µL = X − z1−α
σ√
n

and the upper CI is [
X − z1−α

σ√
n
,∞
)

=

[
X + zα

σ√
n
,∞
)
.

• Lower confidence interval for θ
Similarly, we find a lower CI as(

−∞, X − zα
σ√
n

]
=

(
−∞, X + z1−α

σ√
n

]
,

CI for the mean, unknown variance

In practice, it is somewhat unreasonable to expect to know the value of σ, if the value of µ is
unknown. We can find CI’s for the mean, without knowing the variance. If either X ∈ N(µ, σ) or
the sample is large enough (n > 30), then by Propositions 4.1 and 4.2, we can use the pivot

T =
X − µ

s√
n

∈ T (n− 1).
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The same computations as before will lead to the 100(1− α)% CI for the mean:

µ ∈
[
X − t1−α

2

s√
n
, X − tα

2

s√
n

]
. (4.3)

Notice that we change the notations for the quantiles, according to the pdf of the pivot (z for N(0, 1),
t for T (n− 1), etc.). The Student T (n− 1) is also symmetric (see Figure 1), so again, we can write
the CI in short as

X ± tα
2

s√
n

or X ∓ t1−α
2

s√
n
. (4.4)

Fig. 1: Confidence Interval for the T distribution

Remark 4.3.
1. The parameter of a Student T distribution, ν, is generally called number of degrees of freedom.
One might wonder why in estimating the mean, this parameter is ν = n − 1 and not ν = n, the
sample size. The sample variables X1, . . . , Xn are independent, so it would seem that there are
ν = n degrees of freedom. But its meaning is the dimension of the vector used to estimate the
sample variance

s2 =
1

n− 1

n∑
k=1

(Xk −X)2,

where we use the vector X1−X, . . . , Xn−X . Notice that by subtracting the sample mean X from
each observation, there exists a linear relation among the elements, namely

n∑
k=1

(Xk −X) = 0,
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so we lose 1 degree of freedom due to this constraint. In general, the number of degrees of freedom
can be computed by

ν = sample size − number of estimated parameters.

However, it should be noted that this issue is important only when the sample size is small (n < 30),
when there is significant difference in the values of the quantiles. When n is large, we may use the
quantiles for T (ν) with ν = n or ν = n− 1, since both distributions

T (n), T (n− 1)
n→∞−→ N(0, 1),

so both quantiles are approximately equal to the z quantiles.
2. As before, we can find one-sided (lower and upper) CI’s.

CI for the variance

By Proposition 4.1, if X ∈ N(µ, σ), then we can use the pivot

V =
(n− 1) s2

σ2
∈ χ2(n− 1).

Let us see how to do that. Even though the χ2(n− 1) is not symmetric (see Figure 2), so we cannot
really talk about the “middle” for the area, we can still use the quantiles as before. So, we have:

1− α = P
(
χ2

α
2
≤ V ≤ χ2

1−α
2

)
= P

(
χ2

α
2
≤ (n− 1) s2

σ2
≤ χ2

1−α
2

)
= P

(
1

χ2
1−α

2

≤ σ2

(n− 1) s2
≤ 1

χ2
α
2

)

= P

(
(n− 1) s2

χ2
1−α

2

≤ σ2 ≤ (n− 1) s2

χ2
α
2

)
.

Thus, a 100(1− α)% CI for the variance is

σ2 ∈

[
(n− 1) s2

χ2
1−α

2

,
(n− 1) s2

χ2
α
2

]
(4.5)
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and one for the standard deviation is

σ ∈

[√
(n− 1) s2

χ2
1−α

2

,

√
(n− 1) s2

χ2
α
2

]
(4.6)

Fig. 2: Confidence Interval for the χ2 distribution

Remark 4.4.
1. Remember, “χ2

α” is just a notation for the quantile of order α for the χ2(n − 1) distribution, it
does not mean you have to take the square of it!
2. Since the χ2(n − 1) is no longer symmetric, there is no relationship between the two quantiles,
we have to use both and there is no shorter writing for the CI for the variance than the one in (4.5)
(or (4.6) for the standard deviation).
3. Again, the parameter of the χ2 distribution is number of degrees of freedom and it is n− 1 (and
not n) for the same reason as the one mentioned in Remark 4.3.
4. Also, we can find one-sided (lower and upper) CI’s for the variance, using appropriate quantiles.

Selecting the sample size

Notice that in the case of a Normal distribution of the pivot, the CI we find is symmetric and the
length of the CI is

2σθ · z1−α
2
.

We can revert the problem and ask a very practical question: How large a sample should be
collected to provide a certain desired precision of our estimator? In other words, what sample size
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n guarantees that the margin of a (1 − α)100% CI does not exceed a specified limit ∆? To answer
this question, we only need to solve the inequality

2σθ · z1−α
2

≤ ∆ (4.7)

in terms of n. Typically, parameters are estimated more accurately based on larger samples, so that
the standard error σθ and the margin are decreasing functions of the sample size n. Then, (4.7) will
be satisfied for sufficiently large n.

For example, when estimating the mean in the case of known variance, inequality (4.7) comes
down to

2
σ√
n
· z1−α

2
≤ ∆,

so we require

n ≥
(
2σz1−α

2

∆

)2

(4.8)

Example 4.5. Consider a sample of measurements

2.5, 7.4, 8.0, 4.5, 7.4, 9.2,

drawn from an approximately Normal distribution.
a) Find a 95% confidence interval for the population mean, if the measurement device guarantees a
standard deviation of σ = 2.2.
b) How many measurements should be taken in order for the length of the 95% confidence interval
for the mean to not exceed 1?
c) Without any information on the population variance, construct 95% two- and one-sided CI’s for
the mean of the population.
d) Again, without any information on the population variance, find 95% CI’s for the variance and
standard deviation.

Solution. This sample has size n = 6 and sample mean X = 6.5. To attain a confidence level of
1− α = 0.95, we need α = 0.05 and α/2 = 0.025.
a) If σ = 2.2 is known, we use formula (4.1). Hence, we need quantiles

z0.025 = −1.96, z0.975 = 1.96.
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We find the 95% CI for the mean[
X ± zα

2

σ√
n

]
= [4.74, 8.26].

That means that the mean µ of the population from which the sample was drawn is between 4.74

and 8.26 with probability 0.95.

b) Notice that the length of the CI found in part a) is ≈ 3.52, quite large (not much precision).
If we want to improve the accuracy of our estimate (shorten the length of the interval), we need to
enlarge the sample, take more measurements.
With σ = 2.2, z0.975 = 1.96 and ∆ = 1, we find from (4.8),

n ≥
(
2σz1−α

2

∆

)2

= 74.37,

so, a sample of size at least 75 will ensure the fact that the length of the 95% CI for the mean does
not exceed 1.

c) If σ is not known, we use s instead. We have s = 2.497 and the quantiles for the T (5) dis-
tribution

t1−α/2 = t0.975 = 2.57

t1−α = t0.95 = 2.02.

We find the two-sided CI to be

[X ∓ s√
n
t1−α/2] = [3.88, 9.12],

the lower CI
(−∞, X +

s√
n
· t1−α] = (−∞, 8.55]

and the upper CI
[X − s√

n
· t1−α,∞) = [4.45,∞).
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d) The sample variance is s2 = 6.23. The quantiles for the χ2(5) distribution are

χ2
α/2 = χ2

0.025 = 0.83

χ2
1−α/2 = χ2

0.975 = 12.83.

Then, by (4.5)-(4.6), the 95% CI’s for the variance and standard deviation are

σ2 ∈

[
(n− 1) s2

χ2
1−α

2

,
(n− 1) s2

χ2
α
2

]
= [2.43, 37.49]

and

σ ∈

[√
(n− 1) s2

χ2
1−α

2

,

√
(n− 1) s2

χ2
α
2

]
= [1.56, 6.12].

4.4 Confidence Intervals for Comparing Means and Variances of Two Popu-
lations

Assume we have two characteristics X(1) and X(2), relative to two populations, with means µ1 =

E(X(1)), µ2 = E(X(2)) and variances σ2
1 = V (X(1)), σ

2
2 = V (X(2)), respectively.

We draw from both populations random samples of sizes n1 and n2, respectively, that are indepen-
dent. Denote the two sets of random variables by

X11, . . . , X1n1 and X21, . . . , X2n2 .

Then we have two sample means and two sample variances, given by

X1 =
1

n1

n1∑
i=1

X1i, X2 =
1

n2

n2∑
j=1

X2j

and

s21 =
1

n1 − 1

n1∑
i=1

(
X1i −X1

)2
, s22 =

1

n2 − 1

n2∑
j=1

(
X2j −X2

)2
,
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respectively. In addition, denote by

s2p =

n1∑
i=1

(
X1i −X1

)2
+

n2∑
j=1

(
X2j −X2

)2
n1 + n2 − 2

=
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2

the pooled variance of the two samples, i.e. a variance that considers (“pools”) the sample data
from both samples.

Recall that when comparing the means of two populations, we estimate their difference and
when comparing the variances, we estimate their ratio.

The formulas for finding confidence intervals for the difference of means µ1 − µ2 and for the

ratio of variances
σ2
1

σ2
2

are based on the following results.

Proposition 4.6. Assume X(1) ∈ N(µ1, σ1) and X(2) ∈ N(µ2, σ2). Then

a) Z =
(X1 −X2)− (µ1 − µ2)√

σ2
1

n1

+
σ2
2

n2

∈ N(0, 1);

b) T =
(X1 −X2)− (µ1 − µ2)

sp

√
1

n1

+
1

n2

∈ T (n1 + n2 − 2);

c) T ∗ =
(X1 −X2)− (µ1 − µ2)√

s21
n1

+
s22
n2

∈ T (n), where
1

n
=

c2

n1 − 1
+

(1− c)2

n2 − 1
and c =

s21
n1

s21
n1

+
s22
n2

;

d) F =
s21/σ

2
1

s22/σ
2
2

∈ F (n1 − 1, n2 − 1).

Proposition 4.7. If the samples are large enough (n1 + n2 > 40), then parts a), b) and c) of

Proposition 4.6 still hold.

CI for the difference of means

Case σ1, σ2 known

If either X(1) ∈ N(µ1, σ1), X(2) ∈ N(µ2, σ2) or the samples are large enough (n1 + n2 > 40)
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and σ1, σ2 are known, then by Propositions 4.1 and 4.2, we can use the pivot

Z =
(X1 −X2)− (µ1 − µ2)√

σ2
1

n1

+
σ2
2

n2

∈ N(0, 1).

With the same line of computations as before, we find a 100(1− α)% CI for µ1 − µ2 as

µ1 − µ2 ∈

X1 −X2 − z1−α
2

√
σ2
1

n1

+
σ2
2

n2

, X1 −X2 − zα
2

√
σ2
1

n1

+
σ2
2

n2

 , (4.9)

or, using symmetry, X1 −X2 ± zα
2

√
σ2
1

n1

+
σ2
2

n2

 . (4.10)

Case σ1 = σ2 unknown

Assume that either X(1) ∈ N(µ1, σ1), X(2) ∈ N(µ2, σ2) or the samples are large enough (n1+n2 >

40). The population variances are not known anymore, but they are known to be equal. Then each
is approximated by the pooled variance s2p. Then by Propositions 4.6 and 4.7, we use the pivot

T =
(X1 −X2)− (µ1 − µ2)

sp

√
1

n1

+
1

n2

∈ T (n1 + n2 − 2).

A 100(1− α)% CI for µ1 − µ2 is given by

µ1 − µ2 ∈
[
X1 −X2 − t1−α

2
sp

√
1

n1

+
1

n2

, X1 −X2 − tα
2
sp

√
1

n1

+
1

n2

]
, (4.11)

where the quantiles tα
2
, t1−α

2
refer to the T (n1 + n2 − 2) distribution. Again, by symmetry we can

write the CI in short as [
X1 −X2 ± tα

2
sp

√
1

n1

+
1

n2

]
. (4.12)

Case σ1, σ2 unknown

Assuming that either X(1) ∈ N(µ1, σ1), X(2) ∈ N(µ2, σ2) or the samples are large enough (n1 +
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n2 > 40), by Propositions 4.6 and 4.7, we use the pivot

T ∗ =
(X1 −X2)− (µ1 − µ2)√

s21
n1

+
s22
n2

∈ T (n),

where
1

n
=

c2

n1 − 1
+

(1− c)2

n2 − 1
and c =

s21
n1

s21
n1

+
s22
n2

.

We find a 100(1− α)% CI for µ1 − µ2 as

µ1 − µ2 ∈

X1 −X2 − t1−α
2

√
s21
n1

+
s22
n2

, X1 −X2 − tα
2

√
s21
n1

+
s22
n2

 , (4.13)

or, by symmetry, X1 −X2 ± tα
2

√
s21
n1

+
s22
n2

 (4.14)

where the quantile tα
2
, t1−α

2
refer to the T (n) distribution, with n given above.

CI for the difference of means, paired data

In many applications, we want to compare the means of two populations, when two random samples
(one from each population) are available, which are not independent, where each observation in one
sample is naturally or by design paired with an observation in the other sample. As examples,
consider:
− comparing average values of the same measurements made under two different conditions,
− compare the response of the same group of patients to two different treatments,
− compare the behaviour of some equipment under different temperature/pressure conditions, etc.
These are usually cases best described as “before and after” situations.

In such cases, both samples have the same length, n:

X11, . . . , X1n and X21, . . . , X2n.

Then we consider the sample of their differences, D1, . . . , Dn, where

Di = X1i −X2i, i = 1, n.
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For this sample, we have

Xd =
1

n

n∑
i=1

Di, the sample mean and

s2d =
1

n− 1

n∑
i=1

(
Di −Xd

)2
, the sample variance.

Then, it is known that when n is large enough (n > 30) or the two populations that the samples are
drawn from have approximately Normal distributions N(µ1, σ1), N(µ2, σ2), the statistic

Td =
Xd − (µ1 − µ2)

sd√
n

∈ T (n− 1).

Thus, we can use it as a pivot to construct a CI for the difference of means. The same line of
computations as before will lead to the 100(1− α)% CI for the difference of means:

µ1 − µ2 ∈
[
Xd − t1−α

2

sd√
n
, Xd − tα

2

sd√
n

]
=
[
Xd ± tα

2

sd√
n

]
=
[
Xd ∓ t1−α

2

sd√
n

]
.(4.15)

Remark 4.8. We can find one-sided CI’s for the difference of means of paired data, using the same
procedures (and appropriate quantiles) that were described earlier.

CI for the ratio of variances

Assume the two independent samples were drawn from approximately Normal distributions N(µ1, σ1)

and N(µ2, σ2), respectively. By Proposition 4.7, we use the pivot

F =
s21/σ

2
1

s22/σ
2
2

∈ F (n1 − 1, n2 − 1).

A 100(1− α)% CI for
σ2
1

σ2
2

is given by

σ2
1

σ2
2

∈

[
1

f1−α
2

· s
2
1

s22
,

1

fα
2

· s
2
1

s22

]
(4.16)
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and, from here, a 100(1− α)% CI for
σ1

σ2

is

σ1

σ2

∈

[√
1

f1−α
2

· s1
s2
,

√
1

fα
2

· s1
s2

]
, (4.17)

where the quantiles fα
2
, f1−α

2
refer to the F (n1 − 1, n2 − 1) distribution.

Example 4.9. An account on server A is more expensive than an account on server B. However,
server A is faster. To see if it’s optimal to go with the faster but more expensive server, a manager
needs to know how much faster it is. A certain computer algorithm is executed 30 times on server
A and 20 times on server B with the following results:

Server A Server B

n1 = 30 n2 = 20

X1 = 6.7 min X2 = 7.5 min
s1 = 0.6 min s2 = 1.2 min

a) Construct a 95% confidence interval for the difference µ1−µ2 between the mean execution times
on server A and server B.
b) Assuming that the observed times are approximately Normal, find a 95% confidence interval for
the ratio of the two population standard deviations.

Solution.
a) The samples are large enough (n1 + n2 = 50), that we can use Proposition 4.7. Nothing is
said about the population variances (that they might be known, or known to be equal). Also, the
second sample standard deviation is twice as large as the first one, therefore, equality of population
variances can hardly be assumed. We use the general case for unknown, unequal variances and use
formula (4.14).
We want confidence level 1− α = 0.95, so α = 0.05 and α/2 = 0.025.
The parameter n in (4.6) is found to be

n = 25.3989 ≈ 25.

For the T (25) distribution, we find the quantile

t0.025 = −2.0595.
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Them the 95% CI for the difference of means isX1 −X2 ± tα
2

√
s21
n1

+
s22
n2

 =

[
6.7− 7.5± 2.06

√
0.62

30
+

1.22

20

]
= [−0.8± 0.505],

so,

µ1 − µ2 ∈ [−1.305, −0.295]

with probability 0.95. Since all values in the CI are negative, with high probability, it seems that
µ1 − µ2 < 0, so indeed the first server seems to be faster, on average.

b) Since now the times are assumed to be approximately Normal, we can use formula (4.16). For
the F (29, 19) distribution, the quantiles are

f0.025 = 0.4482, f0.975 = 2.4019.

Now,

s1
s2

=
0.6

1.2
= 0.5,

s21
s22

=
0.36

1.44
= 0.25.

Then, the 95% CI for the ratio of variances is[
1

f1−α
2

· s
2
1

s22
,

1

fα
2

· s
2
1

s22

]
=

[
1

2.4019
· 0.25, 1

0.4482
· 0.25

]
= [0.104, 0.558]

and the 95% CI for the ratio of standard deviations is[√
1

f1−α
2

· s1
s2
,

√
1

fα
2

· s1
s2

]
=

[√
1

2.4019
· 0.5,

√
1

0.4482
· 0.5

]
= [0.323, 0.747].
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