
3 Methods of Point Estimation

So far, we have discussed desirable properties of point estimators, how to distinguish “good” from
“bad” or “better” estimators, based on how reliable they are in approximating the value of a popu-
lation parameter. In all the procedures we analyzed and all the examples we discussed, the value of
a point estimator θ was given for a target parameter θ, based on sample variables X1, X2, . . . , Xn,
i.e. θ = θ(X1, X2, . . . , Xn). But how to actually find an estimator, an approximating value? Some-
times, such a value may be “guessed” from past experience or from observing many samples over
time. But statisticians wanted more rigorous, more mathematical ways of producing a point estima-
tor, which can then be analyzed from the various points of view discussed in the previous section.
They developed a number of estimation techniques, each having certain optimal properties. This
question will be addressed in this section.

We present two of the most popular methods of finding point estimators: the method of moments

and the method of maximum likelihood. We will also discuss advantages and disadvantages of each
method.

3.1 Method of Moments

This is one of the oldest and easiest methods for obtaining point estimators, first formalized by K.
Pearson in the late 1800’s.

Let us recall, for a population characteristic X , we define the moments of order k as

νk = E
(
Xk
)
=



∑
i∈I

xk
i pi, if X is discrete with pdf X

(
xi

pi

)
i∈I∫

R

xkf(x) dx, if X is continuous with pdf f : R → R.

(3.1)

For a sample drawn from the distribution of X , i.e. sample variables X1, . . . , Xn (iid), the
sample moments of order k are defined by

νk =
1

n

n∑
i=1

Xk
i . (3.2)

1



Also, let us recall (from Proposition 3.3, Chapter 3, Lecture 5) that

E(νk) = νk, (3.3)

so νk is an unbiased estimator for νk and

V (νk) =
1

n

(
ν2k − ν2

k

)
→ 0, as n → ∞. (3.4)

By (3.3)-(3.4), the sample moment of order k is an absolutely correct estimator for the population
moment of the same order.

That is precisely the idea of this method. Since the theoretical (population) moments in (3.1)
contain the target parameters that are to be estimated, while the sample moments in (3.2) are all
known, computable from the sample data, simply set the two to be equal and solve the resulting
system. To estimate k parameters, equate the first k population and sample moments:

ν1 = ν1

. . . . . . . . .

νk = νk

(3.5)

The left-hand sides of these equations depend on the distribution parameters. The right-hand sides
can be computed from data. The method of moments estimator is the solution of this k×k system
of equations.

Remark 3.1. We state, without proof, the fact that an estimator θn obtained by the method of
moments converges almost surely to the target parameter that it estimates:

θn
a.s.→ θ.

That implies the convergence in probability, θn
p→ θ, so any method of moments estimator is a

consistent estimator.

Example 3.2. Let X be a characteristic with pdf

f(x; θ) =
1

θ2
xe−

x
θ ,

for x > 0 and 0, otherwise, where θ > 0 is unknown (this was used in Example 2.11, Lecture
6). Based on a random sample X1, . . . , Xn, find the method of moments estimator θ for θ. For the
sample data {2.3, 3.7, 1.44, 2.16}, find the numerical estimation of θ.
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Solution. There is only one unknown parameter, θ, so we will have only one equation in system
(3.5),

ν1 = ν1, i.e.

E(X) = X.

In our work in Example 2.11 (Lecture 6), we computed

E(X) =

∫
R

xf(x) dx = 2θ.

So, we solve the equation
2θ = X,

to find the method of moments estimator

θ =
1

2
X.

Notice that it is an unbiased estimator, since

E
(
θ
)
= E

(
1

2
X

)
=

1

2
E
(
X
)
=

1

2
E(X) =

1

2
· 2θ = θ.

For the sample data x1 = 2.3, x2 = 3.7, x3 = 1.44 and x4 = 2.16, we have

x =
x1 + x2 + x3 + x4

4
=

9.6

4
= 2.4,

so the numerical value of our estimator is

θ = 1.2.

Example 3.3. Let us use the method of moments to estimate both parameters of the Normal N(µ, σ)

distribution.

Solution. Now we have a characteristic X with pdf
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f(x;µ, σ) =
1

σ
√
2π

e
−
(x− µ)2

2σ2 , x ∈ R,

with µ ∈ R and σ > 0, both unknown.
To estimate two parameters, we need two equations in system (3.5),{

ν1 = ν1

ν2 = ν2

In the first equation, we have

ν1 = E(X) = µ and

ν1 = X,

since for a Normal N(µ, σ) variable the first parameter is its expectation. We also know that the
variance of a N(µ, σ) variable is equal to σ2. But recall the computational formula for the variance
(in general)

V (X) = E
(
X2
)
− (E(X))2 = ν2 − ν2

1 .

From here, we get
ν2 = V (X) + ν2

1 = σ2 + µ2,

in this case.
So system (3.5) becomes {

µ = X

µ2 + σ2 = ν2

,

a system of two equations in two unknowns, with solution
µ = X

σ =

√
ν2 −X

2
=

√√√√ 1

n

n∑
i=1

X2
i −

(
1

n

n∑
i=1

Xi

)2
.

Remark 3.4. Method of moments estimates are typically easy to compute. However, on rare oc-
casions, when k equations are not enough to estimate k parameters, higher moments (i.e. more
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equations) can be considered. Also, if more convenient, central (population and sample) moments
can be used, to make computations easier.

3.2 Method of Maximum Likelihood

Maximum-likelihood estimation was first recommended, analyzed and then vastly popularized by
R. A. Fisher in the 1920’s, although it had been used earlier by Gauss and Laplace. For a fixed
random sample from an underlying probability distribution, the maximum likelihood method picks
the values of the population parameters that make the data “more likely” than any other values of
the parameters would make them.

Let us illustrate it, first, with a simple, intuitive example, to understand the underlying ideas.

Example 3.5. Suppose there are 5 balls in a box, black or white, the number of each being unknown.
Suppose further, that we randomly select 3 of them, without replacement, and we get all three white.
What would be a good estimate, w, for the number of white balls in the box, w?

Solution. Obviously, w ∈ {3, 4, 5}.
If the true value was w = 3, then the probability of randomly selecting 3 white balls without

replacement, would be (by the Hypergeometric model)

p1 =
C3

3C
0
2

C3
5

=
1

10
.

If the true value was w = 4, then the probability of us randomly selecting 3 white balls without
replacement, would be

p2 =
C3

4C
0
1

C3
5

=
4

10
.

And, finally, if the true value was w = 5, then the probability of randomly selecting 3 white
balls without replacement, would be

p3 =
C3

5C
0
0

C3
5

= 1.

So, it would seem reasonable to choose w = 5 as our estimate for w, since this would maximize

the probability of obtaining our observed sample.

This, in essence, describes the method of maximum likelihood estimation. Now let us write it
formally.
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Recall that the probability of obtaining an observed sample is measured by the likelihood function

of a sample:

L(X1, . . . , Xn; Θ) =
n∏

i=1

f(Xi; Θ),

where now all unknown target parameters are contained in a vector Θ = (θ1, . . . , θl).
This method chooses the values of an estimator Θ = (θ1, . . . , θl) = Θ(X1, . . . , Xn) that maximize
the function L(X1, . . . , Xn; Θ). So, if L is differentiable with respect to each θ1, . . . , θl, we find the
solutions of the maximum-likelihood system

∂L(X1, . . . , Xn; θ1, . . . , θl)

∂θj
= 0, j = 1, l, (3.6)

or, equivalently, but easier to compute, the maximum-likelihood equations

∂ lnL(X1, . . . , Xn; θ1, . . . , θl)

∂θj
= 0, j = 1, l. (3.7)

If the system (3.7) has a solution, then it is unique and it is a point of maximum for L, called the
maximum likelihood (MLE) estimator.

Example 3.6. Consider again the situation in Example 3.2, so a characteristic with pdf

f(x; θ) =
1

θ2
xe−

x
θ ,

for x > 0, with θ > 0 is unknown. Based on a random sample X1, . . . , Xn, let us now find the MLE
θ̂ for θ.

Solution. The likelihood function is given by

L(X1, . . . , Xn; θ) =
n∏

i=1

( 1

θ2
Xie

−
Xi

θ
)

=
( n∏

i=1

Xi

) 1

θ2n
e

−
1

θ

n∑
i=1

Xi

= K
1

θ2n
e
−
nX

θ ,
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where K =
n∏

i=1

Xi is a constant with respect to θ.

Take the logarithm, to make computations easier and differentiate it with respect to θ (the only
unknown).

lnL = lnK − 2n ln θ − nX

θ
∂ lnL

∂θ
= −2n

θ
+

nX

θ2
.

Then system (3.7) becomes

−2n

θ
+

nX

θ2
= 0,

whose solution is the MLE
θ̂ =

1

2
X,

the same as the method of moments estimator θ̂.

Example 3.7. Let us also find the MLE’s for the parameters of the Normal N(µ, σ) distribution

f(x;µ, σ) =
1

σ
√
2π

e
−
(x− µ)2

2σ2 , x ∈ R,

with µ ∈ R and σ > 0, both unknown.

Solution. We find the likelihood function and its logarithm:

L(X1, . . . , Xn;µ, σ) =
n∏

i=1

 1

σ
√
2π

e
−
(Xi − µ)2

2σ2



=

(
1

σ
√
2π

)n

e

−
1

2σ2

n∑
i=1

(Xi − µ)2

,

lnL(µ, σ) = −n ln (σ
√
2π)− 1

2σ2

(
n∑

i=1

X2
i − 2µ

n∑
i=1

Xi + nµ2

)

= −n lnσ − n ln (
√
2π)− 1

2σ2

(
n∑

i=1

X2
i − 2nµX + nµ2

)
.
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The maximum likelihood system will consist of two equations
∂ lnL(µ, σ)

∂µ
= 0

∂ lnL(µ, σ)

∂σ
= 0,

i.e. 
− 1

2σ2

(
−2nX + 2nµ

)
= 0

−n
1

σ
+

1

σ3

(
n∑

i=1

X2
i − 2nµX + nµ2

)
= 0,

From the first equation, we get

µ̂ = X.

Substituting that into the second equation, we find

n =
1

σ2

(
n∑

i=1

X2
i − 2nµ̂X + nµ̂2

)
,

σ2 =
1

n

(
n∑

i=1

X2
i − 2nX

2
+ nX

2

)
= ν2 −X

2

σ̂ =

√
ν2 −X

2

So, again, the MLE’s coincide with the method of moments estimators.

Remark 3.8. In both our examples, the two methods yielded the same point estimator. That is
not always the case. If they differ, the natural question is: which one is better? In some respects,
when estimating parameters of a known family of probability distributions, the method of moments
is superseded by Fisher’s method of maximum likelihood, because maximum likelihood estimators
have higher probability of being close to the quantities to be estimated. However, in some cases, the
likelihood equations (3.7) may be intractable without computers, whereas the method of moments
estimators can be quickly and easily calculated by hand as seen above. Estimates by the method of
moments may be used as the first approximation to the solutions of the likelihood equations (3.7),
and successive improved approximations may then be found by the Newton method. In this way,
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the method of moments and the method of maximum likelihood are symbiotic. In some cases,
infrequent with large samples but not so infrequent with small samples, the estimates given by the
method of moments are outside of the parameter space and it does not make sense to rely on them
then. That problem never arises in the method of maximum likelihood. Also, estimates by the
method of moments are not necessarily sufficient statistics, i.e., they sometimes fail to take into
account all relevant information in the sample. Bottom line is, if the two methods produce different
estimators, we should pick the MLE.

4 Estimation by Confidence Intervals

4.1 Basic Concepts

So far, point estimators provided one single value, θ, to estimate the value of an unknown parameter
θ, but little measure of the accuracy of the estimate. In contrast, an interval estimator specifies
a range of values, within which the parameter is estimated to lie. More specifically, the sample
will be used to produce two sample functions, θL(X1, . . . , Xn) < θU(X1, . . . , Xn), with values
θL = θL(x1, . . . , xn), θU = θU(x1, . . . , xn), respectively, such that for a given α ∈ (0, 1),

P (θL ≤ θ ≤ θU) = 1− α. (4.1)

Then
− the range (θL, θU) is called a confidence interval (CI), more specifically, a 100(1 − α)% confi-
dence interval,
− the values θL, θU are called (lower and upper) confidence limits,
− the quantity 1− α is called confidence level or confidence coefficient and
− the value α is called significance level.

Remark 4.1.
1. It may seem a little peculiar that we use 1− α instead of simply α in (4.1), since both values are
in (0, 1), but the reasons are in close connection with hypothesis testing and will be revealed in the
next sections.
2. The condition (4.1) does not uniquely determine a 100(1− α)% CI.
3. Evidently, the smaller α and the length of the interval θU − θL are, the better the estimate for θ.
Unfortunately, as we will see, as the confidence level increases, so does the length of the CI, thus,
reducing accuracy.
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To produce a CI estimate for θ, we need a pivotal quantity, i.e. a statistic S that satisfies two
conditions:
− S = S(X1, . . . , Xn; θ) is a function of the sample measurements and the unknown parameter θ,
this being the only unknown,
− the distribution of S is known and does not depend on θ.

Let us illustrate the idea of the pivotal method, by a simple example.

Example 4.2. Suppose we have a single observation X1, from an Exponential Exp(1/θ) distribu-
tion, with θ > 0 unknown. We want to use X1 to find a 90% CI for θ.

Solution. The pdf of X1 is given by

f(x) =
1

θ
e−

x
θ , x > 0.

Let S = θX1. Then it can be easily shown that S also has an Exponential distribution, Exp(1),
with pdf

fS(x) = e−x, x > 0.

Then its cdf is (by integration)

FS(x) = 1− e−x, x > 0,

and we have

P (a ≤ S ≤ b) = FS(b)− FS(a) = e−a − e−b.

So choose a, b > 0 such that e−a− e−b = 0.9. Obviously, there are infinitely many such pairs. Let’s
say we choose e−a = 0.95 and e−b = 0.05, i.e. a = 0.051, b = 2.996. Then we can use this to find
a CI for θ.

0.9 = P (0.051 ≤ S ≤ 2.996)

= P (0.051 ≤ θX1 ≤ 2.996)

= P

(
0.051

X1

≤ θ ≤ 2.996

X1

)

So, we found a 90% CI for θ,
[
0.051

X1

,
2.996

X1

]
.
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We used the variable S, which was related to θ, but for which the distribution was completely

known and thus we could find confidence interval limits. Once those were found for S, we went
backwards and found the limits for θ. This is the idea of the pivotal method.

4.2 Confidence Intervals, General Framework

We will use the pivotal method to find 100(1 − α)% CI’s, as in the previous example. Depending
on which population parameter we wish to estimate, the expression and the pdf of the pivot will
change, but the principles will stay the same. So, we start with the case where the pivot has a
N(0, 1) distribution, so we can better understand the ideas.

Let θ be a target parameter and let θ be an unbiased estimator for θ (E(θ) = θ), with standard
error σθ, such that, under certain conditions, it is know that

Z =
θ − θ

σθ

(
=

θ − E(θ)

σ(θ)

)
(4.2)

has an approximately Standard Normal N(0, 1) distribution. We can use Z as a pivotal quantity to
construct a 100(1− α)% CI for estimating θ. Just as in the previous example, since the pdf of Z is
known, we can choose two values, ZL, ZU such that for a given α ∈ (0, 1),

P (ZL ≤ Z ≤ ZU) = 1− α. (4.3)

How to choose them? Of course, there are infinitely many possibilities. Recall that for continuous
random variables, the probability in (4.3) is an area, namely the area under the graph of the pdf and
above the x-axis, between the values ZL and ZU . Basically, the values ZL and ZU should be chosen
so that that area is 1− α. We will take advantage of the symmetry of the Standard Normal pdf and
choose the two values so that the area 1 − α is in “the middle”. That means (since the total area
under the graph is 1) the two portions left on the two sides, both should have an area of

α

2
, as seen

in Figure 2.
So what should the values be? Recall quantiles. A quantile of a given order α ∈ (0, 1) for a

random variable X , is a value qβ with the property that

F (qα) = P (X ≤ qα) = α,

i.e., that the area under the graph of the pdf, to the left of qα is α (see Figure 1).
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α

qα

f(pdf)

Fig. 1: Quantile of order α ∈ (0, 1)

Fig. 2: Confidence Interval for the N(0, 1) distribution
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Since for ZL we want the area to its left to be α/2, we choose it to be the quantile of order α/2
for Z,

ZL = zα/2.

For the value ZU , the area to its right should be α/2, which means the area to the left is 1 − α/2.
Thus, we choose

ZU = z1−α/2.

Indeed, now we have
P (zα/2 ≤ Z ≤ z1−α/2) = 1− α,

as in (4.2).
From here, we proceed (as in the previous example) to rewrite the inequality inside, until we get

the limits of the CI for θ. We have

1− α = P

(
zα

2
≤ θ − θ

σθ

≤ z1−α
2

)
= P

(
σθ · zα

2
≤ θ − θ ≤ σθ · z1−α

2

)
= P

(
−σθ · z1−α

2
≤ θ − θ ≤ −σθ · zα

2

)
= P

(
θ − σθ · z1−α

2
≤ θ ≤ θ − σθ · zα

2

)
,

so the 100(1− α)% CI for θ is given by

[
θ − σθ · z1−α

2
, θ − σθ · zα

2

]
. (4.4)

Remark 4.3.
1. Since the Standard Normal distribution is symmetric about the origin, we have zα

2
= −z1−α

2
and

the CI can be written as

[
θ − σθ · z1−α

2
, θ + σθ · z1−α

2

]
or

[
θ + σθ · zα

2
, θ − σθ · zα

2

]
.

2. The CI we determined is a two-sided CI, because it gives bounds on both sides. A two-sided CI is
not always the most appropriate for the estimation of a parameter θ. It may be more relevant to make
a statement simply about how large or how small the parameter might be, i.e. to find confidence
intervals of the form (−∞, θU ] and [θL,∞), respectively, such that the probability that θ is in the
CI is 1− α. These are called one-sided confidence intervals and they can be found the same way,
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using quantiles of an appropriate order. Then, we can find a 100(1−α)% lower confidence interval

for θ, as (
−∞, θ − σθ · zα

]
and a 100(1− α)% upper confidence interval for θ,

[
θ − σθ · z1−α,∞

)
.

3. As mentioned earlier, for estimating various population parameters, the pivot will be different,
but the procedure of finding the CI will be the same, even when the distribution of the pivot is not

symmetric.
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