
2.3 Sufficient Statistics and the Rao-Blackwell Theorem

Recall that we are estimating a population parameter (called target parameter) θ, by an estimator
θ(X1, . . . , Xn), based on a sample (i.e. sample variables X1, X2, . . . , Xn). Our goal is to find
“good” estimators, i.e. unbiased estimators with low variance, ultimately MVUE’s. We saw last
time that an efficient estimator is also a MVUE.

We are know exploring other means of finding such estimators, by finding “appropriate” statis-
tics (sample functions) to use in our estimation.

Here is the main idea: So far, we have chosen estimators from a sample on the basis of intuition,
like the sample mean X for the population mean µ (or the sample variance s2 for the population
variance σ2). We did not use the actual sample values themselves, but rather, we summarized
(reduced) them into a value. Has this process retained all the information about the target parameter
θ (µ or σ2) or has some important information been lost? We want to find statistics that, in some
way, summarize all the information in a sample about a target parameter. These are called sufficient

statistics.

Definition 2.1. The statistic S = S(X1, . . . , Xn) is called sufficient for (the estimation of) θ, if the

conditional probability distribution of (X1, . . . , Xn), given the value of the statistic S = s, does not

depend on the parameter θ, i.e.

f(x1, . . . , xn; θ | S = s) = f(x1, . . . , xn | S = s). (2.1)

Remark 2.2.
1. Intuitively, this is saying that once the value of the statistic S is known, no other function of
X1, . . . , Xn (so no other statistic) will shed additional light on the possible values of θ. Then the
conditional probability distribution of the data does not depend on the unknown parameter except
through the sufficient statistic. In that sense, S contains all the information in the sample about θ.
2. If a statistic S is sufficient for a parameter θ, then the conditional distribution of any statistic,
given the value of S, does not depend on θ, since any statistic is just a function of the sample
variables X1, . . . , Xn.

f(A(x1, . . . , xn; θ) | S = s) = f(A(x1, . . . , xn)| S = s).

Example 2.3. Let X1, . . . , Xn be a random sample drawn from the Poisson P(λ) distribution of
parameter λ > 0, with pdf

f(x;λ) =
λx

x!
e−λ, x = 0, 1, . . . .
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Is S =
n∑

k=1

Xk a sufficient statistic for the estimation of λ?

Solution. Since each sample variable Xk ∈ P(λ), their sum S also has a Poisson distribution
P(nλ), with pdf

S

 s
(nλ)s

s!
e−nλ


s=0,1,...

.

Then the conditional probability of (x1, . . . , xn), given S = s is

f(x1, . . . , xn;λ | s) = P (X1 = x1, . . . , Xn = xn | S = s)

=

P
(
X1 = x1, . . . , Xn = xn, S =

n∑
k=1

xk = s
)

P (S = s)

=

P
(
X1 = x1, . . . , Xn−1 = xn−1, Xn = s−

n−1∑
k=1

xk

)
P (S = s)

ind
=

P (X1 = x1) . . . P (Xn−1 = xn−1)P
(
Xn = s−

n−1∑
k=1

xk

)
P (S = s)

=

P
(
Xn = s−

n−1∑
k=1

xk

) n−1∏
i=1

λxi

xi!
e−λ

P (S = s)

=

λ

s−

n−1∑
k=1

xk

(
s−

n−1∑
k=1

xk

)
!

e−λ λ

n−1∑
i=1

xi

x1! . . . xn−1!
e−(n−1)λ

(nλ)s

s!
e−nλ

=
s!

nsx1! . . . xn!

and does not depend on λ. So, S is sufficient for the estimation of λ.

As we have seen, neither Definition 2.1, nor Remark 2.2 is easy to verify for a given statistic. An
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equivalent, but easier to use result for sufficiency was given by Fisher:

Theorem 2.4 (Fisher’s Factorization Criterion).
A statistic S = S(X1, . . . , Xn) is sufficient for θ, if and only if the likelihood function

L(X1, . . . , Xn; θ) =
n∏

i=1

f(Xi; θ)

can be factored into two nonnegative functions

L(x1, . . . , xn; θ) = g(x1, . . . , xn)h(s; θ), (2.2)

such that one factor, g, does not depend on θ and the other factor, h, which does depend on θ,

depends on (x1, . . . , xn) only through the value of s = S(x1, . . . , xn).

Example 2.5. Let us consider again the previous example, where X1, . . . , Xn is a random sample

drawn from a Poisson P(λ), λ > 0 and S =
n∑

k=1

Xk.

Solution. For each i = 1, n,

f(xi;λ) =
λxi

xi!
e−λ.

Then the likelihood function is given by

L(x1, . . . , xn;λ) =
n∏

i=1

λxi

xi!
e−λ

=
λ


n∑

i=1

xi


x1! . . . xn!

· e−nλ

=
1

x1! . . . xn!

· λse−nλ

= g(x1, . . . , xn)h(s;λ),

where g(x1, . . . , xn) =
1

x1! . . . xn!

and h(s;λ) = λse−nλ.

Thus, by Theorem 2.4, S is a sufficient statistic for the estimation of λ.
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Sufficient statistics play an important role in finding good estimators. We have already mentioned
that for an unbiased estimator, we want the standard error to be small. Having an unbiased estimator,
sufficient statistics can be used to find an unbiased estimator with a smaller variance.

Theorem 2.6 (Rao-Blackwell).
Let θ̂ be an unbiased estimator and S be a sufficient statistic for θ. Let

θ = E(θ̂ | S) (2.3)

Then

a) E(θ) = θ (i.e. θ is also an unbiased estimator for θ) and

b) V (θ) ≤ V (θ̂).

So, using sufficient statistics we can improve an unbiased estimator by lowering its variance. It
would seem that by repeatedly applying Theorem 2.6 to an unbiased estimator, we get better and
better estimators (and, eventually, a MVUE). Unfortunately, that is not so, if the same sufficient
statistic S is used. Indeed, if θ = E(θ̂ | S) = f(S), then by Remark 2.2, we have

E(θ | S) = E (f(S) | S) = f(S) = θ,

the same.
Stronger conditions on the statistic S need to be imposed, in order to improve the quality of unbiased
estimators.

2.4 Complete Statistics and the Lehmann-Scheffé Theorem

Definition 2.7. The statistic S = S(X1, . . . , Xn) is said to be complete for the family of probability

distributions f(x; θ), θ ∈ A, if

E(φ(S)) = 0,∀θ ∈ A =⇒ φ
a.s.
= 0. (2.4)

Example 2.8. Let us consider again the statistic S =
n∑

i=1

Xi for the Poisson P(λ), λ > 0 distribu-

tion. Is it complete?

Solution. So, again, since each sample variable Xi ∈ P(λ), the sum S also has a Poisson distribu-
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tion P(nλ), with pdf

S

 s
(nλ)s

s!
e−nλ


s=0,1,...

.

Then the random variable φ(S) is also discrete with pdf

φ(S)

 φ(s)
(nλ)s

s!
e−nλ


s=0,1,...

.

We compute the expected value in (2.4). We have

E(φ(S)) =
∞∑
s=0

φ(s)
(nλ)s

s!
e−nλ

= e−nλ

∞∑
s=0

φ(s)ns

s!
λs.

So, the condition in (2.4) means

e−nλ

∞∑
s=0

φ(s)ns

s!
λs = 0, ∀λ > 0.

The only way that this can happen is if all the coefficients in the power series are equal to 0, i.e.

φ(s) = 0, ∀s ∈ N,

which means
φ

a.s.
= 0.

Thus, condition (2.4) holds and S is a complete statistic for the family of Poisson P(λ), λ > 0,
distributions.

In the next result, we see what happens when we construct the estimator from the Rao-Blackwell
Theorem using a statistic that is sufficient and complete.

Theorem 2.9 (Lehmann-Scheffé).
Let θ̂ = θ̂(X1, . . . , Xn) be an unbiased estimator for θ and S = S(X1, . . . , Xn) be a sufficient and
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complete statistic for θ. Then the estimator

θ = θ(X1, . . . , Xn) = E(θ̂ | S) (2.5)

is a MVUE.

Proof. Let θ̃ = θ̃(X1, . . . , Xn) be any unbiased estimator for θ and let

θ1 = E(θ̃ | S).

Since S is sufficient, by Theorem 2.6, θ1 is unbiased (E(θ1) = θ) and V (θ1) ≤ V (θ̃).

The same things are true for θ. Then

E(θ) = E(θ1) = θ,

i.e.
E
(
E(θ̂ | S)

)
= E

(
E(θ̃ | S)

)
= θ,

which can be rewritten as
E
(
E(θ̂ | S)− E(θ̃ | S)

)
︸ ︷︷ ︸

φ(S)

= 0

and this is true for any unbiased estimator θ̃.
Since S is also complete, it follows that φ a.s.

= 0, which means

E(θ̂ | S) a.s.
= E(θ̃ | S),

i.e.
θ

a.s.
= θ1

and
V (θ) = V (θ1).

But V (θ) = V (θ1) ≤ V (θ̃), i.e.
V (θ) ≤ V (θ̃),

for any unbiased estimator θ̃. Thus, θ is a MVUE.

6



Example 2.10. Consider again X1, . . . , Xn, a sample drawn from the Poisson distribution P(λ),

λ > 0 and the statistic S =
n∑

k=1

Xk = nX . Let us find a MVUE for λ.

Solution. To make computations easier, we will find an estimator for the parameter θ = e−λ (which,
then, of course, will lead to an estimator for λ). Then the pdf is

f(x; θ) =
λx

x!
e−λ =

1

x!
θ

(
ln

1

θ

)x

, x = 0, 1, . . .

and S has a Poisson pdf with parameter nλ = n

(
ln

1

θ

)
.

Recall that S is a sufficient and complete statistic for λ, which means it is also a sufficient and
complete statistic for θ.

In order to use Theorem 2.9, we have to start with an unbiased estimator for θ. For i = 1, . . . , n,
consider the variables

Yi =

{
1, Xi = 0

0, Xi ̸= 0.

Then

P (Yi = 1) = P (Xi = 0) =
1

0!
θ

(
ln

1

θ

)0

= θ

and, obviously P (Yi = 0) = 1− θ. Thus, each Yi has a Bern(θ) pdf

Yi

(
0 1

1− θ θ

)

and expectation E(Yi) = θ, i = 1, n.
Let

θ̂ =
1

n

n∑
i=1

Yi =
the number of Xi’s that are equal to 0

n
.

Then

E(θ̂) =
1

n

n∑
i=1

E(Yi) =
1

n
· nθ = θ,
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so θ̂ is an unbiased estimator for θ. Hence, by Theorem 2.9, the estimator

θ = E(θ̂ | S)

is the MVUE. Let us compute it. First off, we have

θ = E(θ̂ | S) = E

(
1

n

n∑
i=1

Yi | S

)
=

1

n

n∑
i=1

E(Yi | S) =
1

n
· nE(Y1 | S) = E(Y1 | S).

Now, to go further with the computation, let us recall a few things about conditional probability:

P (A | B) =
P (A∩B)

P (B)
,

P (B | A) =
P (A∩B)

P (A)
,

P (A | B) =
P (A) · P (B | A)

P (B)
.

So, we have

E(Y1 | S) = P (Y1 = 0 | S = s) · 0 + P (Y1 = 1 | S = s) · 1

= P (X1 = 0 | S = s)

=
P
(
(X1 = 0)∩(S = s)

)
P (S = s)

=
P (X1 = 0) · P (S = s | X1 = 0)

P (S = s)

=

P (X1 = 0) · P

(
n∑

i=1

Xi = s | X1 = 0

)
P (S = s)

=
P (X1 = 0) · P (X2 + . . .+Xn = s )

P (S = s)

Now, P (X1 = 0) =
λ0

0!
e−λ = e−λ = θ and since all Xi’s have P(λ) pdf, the sum X2 + . . . +Xn

will have P((n− 1)λ) pdf  s
((n− 1)λ)s

s!
e−(n−1)λ


s=0,1,...

.
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So, we continue the computation

E(Y1 | S) =

θ · 1
s!

(
(n− 1) ln

1

θ

)s

· θn−1

1

s!

(
n ln

1

θ

)s

· θn

=

(
n− 1

n

)s

=

(
1− 1

n

)s

.

Thus, the estimator

θ = E(θ̂ | S) =

(
1− 1

n

)S

=

(
1− 1

n

)nX

is the MVUE for θ. To find it for λ, we solve

e−λ =

(
n− 1

n

)nX

−λ = nX ln

(
n− 1

n

)
λ =

(
n ln

(
n

n− 1

))
X.

Example 2.11. Let X1, . . . , Xn be sample variables for a random sample drawn from a Bernoulli
distribution with parameter p ∈ (0, 1), unknown. Find the MVUE for p.

Solution. Recall the Bern(p) pdf (
0 1

1− p p

)
.

So, for each i = 1, n, the pdf can be written

f(xi; p) = P (Xi = xi) = pxi(1− p)1−xi , xi ∈ {0, 1},

Then the likelihood function of the sample is

L(x1, . . . , xn; p) =
n∏

i=1

f(xi; p)
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= px1+...+xn(1− p)n−(x1+...+xn)

= ps(1− p)n−s,

where S is the statistic

S = S(X1, . . . , Xn) =
n∑

1=1

Xi = nX.

By Theorem 2.4, with g(x1, . . . , xn) = 1 and h(s; p) = ps(1− p)n−s, S is sufficient.

Now assume that E(φ(S)) = 0, for all p ∈ (0, 1). Recall that since X1, . . . , Xn are indepen-
dent and identically distributed with a Bernoulli distribution, S has a Binomial distribution with
parameters n and p

S

(
s

Cs
np

s(1− p)n−s

)
s=0,n

and φ(S) has pdf

φ(S)

(
φ(s)

Cs
np

s(1− p)n−s

)
s=0,n

.

Then

E(φ(S)) =
n∑

s=0

φ(s)Cs
np

s(1− p)n−s = (1− p)n
n∑

s=0

φ(s)Cs
n

(
p

1− p

)s

.

If E(φ(S)) = 0, for all p ∈ (0, 1), then

n∑
s=0

φ(s)Cs
n

(
p

1− p

)s

= 0,

for all p ∈ (0, 1), which is possible only if φ(s) = 0, for all s = 0, n, i.e. φ a.s.
= 0. Thus S is also

complete.

Now let us consider the estimator p̂ = X =
1

n
S. Since S ∈ Bino(n, p), we know that E(S) =

np and, hence E(p̂) = p, so p̂ is an unbiased estimator for p. Then by Theorem 2.9, the MVUE is
given by

p = E(p̂ | S) = E

(
1

n
S | S

)
= E

(
1

n
S

)
=

1

n
S = X.

Thus, the sample mean X is the MVUE for the population mean p = E(X).
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