
Chapter 4. Statistical Inference
Populations are characterized by parameters. The goal of Inferential Statistics is to make infer-

ences (estimates) about one or more population parameters on the basis of a sample.
In this chapter, we discuss how

• to estimate parameters of the distribution. The methods presented in Descriptive Statistics
mostly concern measure of location (mean, median, quantiles) and variability (variance, stan-
dard deviation, interquartile range). As we know, this does not cover all possible parameters,
and thus, we still lack a general methodology of estimation.

• to construct confidence intervals. Any estimator, computed from a collected random sample
instead of the whole population, is understood as only an approximation of the corresponding
parameter. Instead of one estimator that is subject to a sampling error, it is often more rea-
sonable to produce an interval that will contain the true population parameter with a certain
known high probability.

• to test hypotheses. That is, we shall use the collected sample to verify statements and claims
about the population. As a result of each test, a statement is either rejected on basis of the
observed data or accepted (not rejected). Sampling error in this analysis results in a possibility
of wrongfully accepting or rejecting the hypothesis; however, we can design tests to control
the probability of such errors.

Results of such statistical analysis are used for making decisions under uncertainty, developing
optimal strategies, forecasting, evaluating and controlling performance and so on.

1 Estimation; Basic Notions

We will refer to the parameter to be estimated as the target parameter and denote it by θ.
Two types of estimation will be considered: point estimate, when the result of the estimation is one
single value and interval estimate, when the estimate is an interval enclosing the value of the target
parameter. In either case, the actual estimation is accomplished by an estimator, a rule, a formula,
or a procedure that leads us to the value of an estimate, based on the data from a sample.

Throughout this chapter, we consider a characteristic X (relative to a population), whose pdf
f(x; θ) depends on the parameter θ, which is to be estimated. If X is discrete, then f represents the
probability distribution function, while if X is continuous, f is the probability density function.
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As before, we consider a random sample of size n, i.e. sample variables X1, . . . , Xn, which are
independent and identically distributed (iid), having the same pdf as X . The notations introduced
in the previous chapter for some sample functions still stand.

A point estimator for (the estimation of) the target parameter θ is a sample function (statistic)

θ = θ(X1, X2, . . . , Xn).

Other notations may be used, such as θ̂ or θ̃.
Each statistic is a random variable because it is computed from random data. It has a so-called

sampling distribution. Each statistic estimates the corresponding population parameter and adds
certain information about the distribution of X , the variable of interest. The value of the point
estimator, the point estimate, is the actual approximation of the unknown parameter.

Many different point estimators may be obtained for the same target parameter. Some are con-
sidered “good”, others “bad”, some “better” than others. We need some criteria to decide on one
estimator versus another.

For one thing, it is highly desirable that the sampling distribution of an estimator θ to be “clus-
tered” around the target parameter. In simple terms, we expect that the value the point estimator
provides to be the actual value of the parameter it estimates. This justifies the following notion.

Definition 1.1. A point estimator θ is called an unbiased estimator for θ if

E(θ) = θ. (1.1)

The bias of θ is the value B = E(θ)− θ.

Unbiasedness means that in the long-run, collecting a large number of samples and computing
θ from each of them, on the average we hit the unknown parameter θ exactly. In other words, in a
long run, unbiased estimators neither underestimate nor overestimate the parameter.

Example 1.2.
1. Recall from Proposition 2.2. (Chapter 3, Lecture 5) that for the sample mean, as a random
variable, we have E(X) = µ. Thus the sample mean is an unbiased estimator for the population
mean.
2. By Proposition Proposition 3.5. (Chapter 3, Lecture 5), the sample central moment of order 2 is

not an unbiased estimator for the population central moment of order 2 (or it is a biased estimator),
since

E(µ2) =
n− 1

n
µ2 ̸= µ2 = σ2.
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3. However, the sample variance

s2 =
1

n− 1

n∑
i=1

(Xi −X)2

is an unbiased estimator for the population variance, since E(s2) = σ2 (see Remark 3.8. in Chapter
3, Lecture 5). That was the main reason for the way the sample variance was defined.

Another desirable trait for a point estimator is that its values do not vary too much from the value
of the target parameter. So we need to evaluate variability of computed statistics and especially
parameter estimators. That can be accomplished by computing the following statistic.

Definition 1.3. The standard error of an estimator θ, denoted by σθ, is its standard deviation

σθ = σ(θ) = Std(θ) =

√
V (θ).

Both population and sample variances are measured in squared units. Therefore, it is convenient
to have standard deviations that are comparable with our variable of interest, X . As a measure
of variability, standard errors show precision and reliability of estimators. They show how much
estimators of the same target parameter θ can vary if they are computed from different samples.

Ideally, we would like to deal with unbiased or nearly unbiased estimators that have low standard
error.

Definition 1.4. An unbiased estimator θ = θ(X1, . . . , Xn) for θ is called a minimum-variance
unbiased estimator (MVUE), if it has lower variance than any other unbiased estimator for θ,

V (θ) ≤ V (θ̂), ∀θ̂ with E(θ̂) = θ.

Remark 1.5. It can be shown that if an unbiased estimator exists for a parameter, then an MVUE
also exists and it is unique. However, they are not easy to produce!

In Table 1, we present some common unbiased estimators, their means and their standard errors.

Remark 1.6.
1. The expected values and the standard errors in Table 1 are valid regardless of the form of the
density function of the underlying population.
2. For large samples (as n, n1, n2 → ∞), all these estimators have probability densities that are
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Target Param. Sample Size Pt. Estimator Mean St. Error
θ θ E(θ) σθ

µ n X µ
σ√
n

νk n νk νk

√
ν2k − ν2

k

n

p n p p

√
pq

n

µ1 − µ2 n1, n2 X1 −X2 µ1 − µ2

√
σ2
1

n1

+
σ2
2

n2

p1 − p2 n1, n2 p1 − p2 p1 − p2

√
p1q1
n1

+
p2q2
n2

Table 1: Common Unbiased Estimators

approximately Normal. The Central Limit Theorem and similar theorems justify these statements.
Recall, in practice, it was determined that “large” means n > 30 for one sample and n1 + n2 > 40

for two samples.
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2 Properties of Point Estimators

2.1 Fisher’s Information and Efficient Estimators

Definition 2.1. The likelihood function of a sample X1, . . . , Xn is the joint probability function of

the sample (seen as a vector), i.e. the sample function

L(X1, . . . , Xn; θ) =
n∏

i=1

f(Xi; θ), (2.1)

whose value L(x1, . . . , xn; θ) =
n∏

i=1

f(xi; θ) represents the joint probability distribution (in the

discrete case) or the joint density (in the continuous case) of the random vector (X1, . . . , Xn).

Definition 2.2. For a sample of size n, Fisher’s (quantity of) information relative to θ, is the

quantity

In(θ) = E

[(
∂ lnL(X1, . . . , Xn; θ)

∂θ

)2
]
, (2.2)

if the likelihood function L is differentiable with respect to θ.

Remark 2.3. Fisher’s information is a way of measuring the amount of information that a random
sample X1, . . . , Xn carries about an unknown parameter θ, upon which the likelihood function
depends. Formally, it is the expected value of the observed information (or the variance of the
score).

An easier computational formula than (2.2) is given below.

Proposition 2.4. If the range of X does not depend on θ and the likelihood function L is twice

differentiable with respect to θ, then

In(θ) = −E

[
∂2 lnL(X1, . . . , Xn; θ)

∂θ2

]
, (2.3)

Corollary 2.5. If the range of X does not depend on θ, then

In(θ) = nI1(θ). (2.4)
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Proof. By (2.1), we have

lnL =
n∑

i=1

ln f(Xi; θ),

∂2 lnL

∂θ2
=

n∑
i=1

∂2 ln f(Xi; θ)

∂θ2
.

By Proposition 2.4,

In(θ) = −
n∑

i=1

E

[
∂2 ln f(Xi; θ)

∂θ2

]
=

n∑
i=1

I1(θ) = nI1(θ).

Recall that we seek unbiased estimators with small variance. At the very least, we hope that the
variance gets smaller as the sample size increases. This is the idea in the next definition.

Definition 2.6. An estimator θ = θ(X1, . . . , Xn) is called an absolutely correct estimator for θ, if

it satisfies the conditions

(i) E(θ) = θ,

(ii) lim
n→∞

V (θ) = 0.

Remark 2.7. The sample mean X is an absolutely correct estimator for the theoretical mean µ =

E(X). More generally, the sample moment of order k, νk, is an absolutely correct estimator for the
population moment of order k, νk = E

(
Xk
)
.

Recall that a MVUE has the lowest variance that an unbiased estimator can possibly have. The
next result tells us exactly how low that can be, under certain conditions.

Theorem 2.8 (Cramér-Rao Inequality). Let X be a characteristic whose probability density func-

tion f(x; θ) is differentiable with respect to θ and let θ = θ(X1, . . . , Xn) be an absolutely correct

estimator for θ. Then

V (θ) ≥ 1

In(θ)
. (2.5)

Definition 2.9. Let θ = θ(X1, . . . , Xn) be an absolutely correct estimator for θ. The efficiency of θ

is the quantity

e(θ) =
I−1
n (θ)

V (θ)
=

1

In(θ)V (θ)
. (2.6)

The estimator θ is said to be efficient for θ, if e(θ) = 1.
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Remark 2.10.
1. So, by Theorem 2.8, the efficiency e(θ) is the minimum possible variance for an unbiased esti-
mator θ divided by its actual variance. Its value is always e(θ) ≤ 1.
2. An efficient estimator may not exist, but if it does, it is also the MVUE. This is because an
efficient estimator maintains equality on the Cramér-Rao inequality for all parameter values, which
means it attains the minimum variance for all parameters. The MVUE, even if it exists, is not
necessarily efficient.

Example 2.11. Let X be a characteristic with pdf

f(x; θ) =
1

θ2
xe−

x
θ ,

for x > 0 and 0, otherwise, where θ > 0 is unknown. For a random sample X1, . . . , Xn, consider

the estimator θ =
1

2
X . Show that it is absolutely correct and find its efficiency.

Solution. First, let us check that f(x; θ) is indeed a density function.

∫
R

f(x) dx =
1

θ2

∞∫
0

xe−
x
θ dx,

which, with the change of variables u =
x

θ
, is equal to

∞∫
0

ue−u du = Γ(2) = 1,

where Γ(a) =

∞∫
0

xa−1e−x dx is Euler’s Gamma function. Recall that Γ(n+ 1) = n!.

With the same change of variables, we compute

µ = E(X) =

∫
R

xf(x) dx =
1

θ2

∞∫
0

x2e−
x
θ dx = θ

∞∫
0

u2e−u du = θ Γ(3) = 2θ,

ν2 = E(X2) =

∫
R

x2f(x) dx =
1

θ2

∞∫
0

x3e−
x
θ dx = θ2

∞∫
0

u3e−u du = θ2 Γ(4) = 6θ2,

σ2 = V (X) = E(X2)− (E(X))2 = 6θ2 − 4θ2 = 2θ2.
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Then for θ we have
E(θ) =

1

2
E(X) =

µ

2
= θ,

which means θ is unbiased and

V (θ) =
1

4
V (X) =

1

4
· σ

2

n
=

θ2

2n
→ 0, as n → ∞,

so θ is absolutely correct.
To compute Fisher’s information, since the range of X does not depend on θ, we use (2.4). We have

L(X1; θ) =
1

θ2
X1e

− 1
θ
X1 , lnL = −2 ln θ + lnX1 −

1

θ
X1,

so
∂ lnL

∂θ
= −2

θ
+

1

θ2
X1,

∂2 lnL

∂θ2
=

2

θ2
− 2

θ3
X1.

Then
I1(θ) = −E

(
∂2 lnL

∂θ2

)
= − 2

θ2
+

2

θ3
E(X1) = − 2

θ2
+

4

θ2
=

2

θ2
.

Thus
In(θ) =

2n

θ2
and e(θ) = 1,

so θ =
1

2
X is an efficient estimator and, by Remark 2.10, also the MVUE for θ.

2.2 Consistent Estimators

Recall that we seek estimators θ that are unbiased (E(θ) = θ), or, at least, nearly unbiased. We
would expect that as the sample size n increases, θ gets “closer” to θ, at least in a probabilistic
sense. That is the idea behind consistent estimators.

Definition 2.12. An estimator θ = θn, found from a sample of size n, is said to be a consistent
estimator for θ, if θn

p→ θ, i.e. if for every ε > 0,

lim
n→∞

P
(
|θn − θ| < ε

)
= 1.

The property of consistency of a point estimator ensures the fact that the larger the sample size,
the better the estimate. The estimate “improves consistently” with increasing the sample size. The
notions of unbiasedness and consistency seem to be very close, however they are not equivalent:
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Unbiasedness is a statement about the expected value of the sampling distribution of the estimator.
Consistency is a statement about “where the sampling distribution of the estimator is going” as the
sample size increases. Let us consider a few examples.

Example 2.13. Let X1, . . . , Xn be a random sample drawn from a N(µ, σ) population, with both
parameters µ ∈ R, σ > 0 unknown.

For estimating the mean µ, consider the estimator µ = X1. Obviously it is an unbiased estimator
for µ, since

E(X1) = E(X) = µ.

But, µ is not consistent, since its distribution does not become more concentrated around µ as the
sample size increases, it stays N(µ, σ), no matter how large the sample size gets.

To estimate the variance σ2, let σ2 =
1

n

n∑
i=1

(Xi−X)2. We know (from Proposition 3.5, Lecture

5) that
E
(
σ2
)

=
n− 1

n
σ2 ̸= σ2,

so σ2 is not unbiased. On the other hand, we have

V
(
σ2
)

=
2(n− 1)

n2
σ4.

So, we see that the distribution of σ2 is becoming more and more concentrated at σ2 as the sample
size increases, since its mean is converging to σ2 and its variance is converging to 0, as n → ∞.
Thus, σ2 is a consistent estimator for σ2.

Example 2.14. Let X1, . . . , Xn be a random sample drawn from a population with pdf(
−a a

0.5 0.5

)
,

with a > 0 unknown.
Consider the estimators θ̂1 = max{X1, . . . , Xn} and θ̂2 = X , for the estimation of a. Let us study
their unbiasedness and their consistency.

First, we compute the population mean and variance

E(X) = −a · 0.5 + a · 0.5 = 0,

V (X) = E
(
X2
)
− (E(X))2 = a2.
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Let us find the pdf of θ̂1. Obviously, θ̂1 can only take the values a or −a. The only way that the
maximum of the Xi’s is −a is if all variables Xi take the value −a. That means that

P (θ̂1 = −a) = P (X1 = −a) . . . P (Xn = −a) =
1

2n
and, consequently,

P (θ̂1 = a) = 1− 1

2n
.

Thus, the pdf of θ̂1 is

θ̂1

 −a a
1

2n
1− 1

2n

 ,

and its mean is

E(θ̂1) = − a

2n
+ a

(
1− 1

2n

)
= a

(
1− 1

2n−1

)
< a.

So θ̂1 is biased. However, it is a consistent estimator of a because the error probability
1

2n
converges

to 0 as the sample size increases, so the limit of the pdf of θ̂1 as n → ∞ is the constant random

variable

(
a

1

)
.

For the second estimator, we have

E(θ̂2) = E(X) = E(X) = 0 ̸= a,

so θ̂2 is also biased for the estimation of a.
By the WLLN,

X
p→ E(X), , i.e.

θ̂2
p→ 0 ̸= a,

so θ̂2 is neither unbiased, nor consistent.

Proposition 2.15. An absolutely correct estimator is consistent.

Proof. Let θ be an absolutely correct estimator. By Chebyshev’s inequality, for every ε > 0,

P (|θ − E(θ)| ≥ ε) ≤ V (θ)

ε2
.
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Since θ is absolutely correct, it is unbiased, E(θ) = θ, so we have

0 ≤ P (|θ − θ| ≥ ε) ≤ V (θ)

ε2
.

Let n → ∞ to get
lim
n→∞

P (|θ − θ| ≥ ε) = 0.

Taking the probability of the contrary event,

lim
n→∞

P (|θ − θ| < ε) = 1.

Thus, θ is a consistent estimator.

Remark 2.16. The sample moment of order k, νk, is a consistent estimator for the population
moment of order k, νk = E

(
Xk
)
, since it is absolutely correct. In particular, the sample mean X is

a consistent estimator for the theoretical mean µ = E(X).
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