
Chapter 3. Sample Theory

In inferential Statistics, we will have the following situation: we are interested in studying a
characteristic (a random variable) X, relative to a population P of (known or unknown) size N .
The difficulty or even the impossibility of studying the entire population, as well as the merits of
choosing and studying a random sample from which to make inferences about the population of
interest, have already been discussed in the previous chapter. Now, we want to give a more rigorous
and precise definition of a random sample, in the framework of random variables, one that can then
employ probability theory techniques for making inferences.

1 Random Samples and Sample Functions

We choose n objects from the population and actually study Xi, i = 1, n, the characteristic of
interest for the ith object selected. Since the n objects were randomly selected, it makes sense that
for i = 1, n, Xi is a random variable, one that has the same distribution (pdf) as X , the characteristic
relative to the entire population. Furthermore, these random variables are independent, since the
value assumed by one of them has no effect on the values assumed by the others. Once the n objects
have been selected, we will have n numerical values available, x1, . . . , xn, the observed values of
X1, . . . , Xn.

Definition 1.1. A random sample of size n from the distribution of X , a characteristic relative to

a population P, is a collection of n independent random variables X1, . . . , Xn, having the same

distribution as X. The variables X1, . . . , Xn, are called sample variables and their observed values

x1, . . . , xn, are called sample data.

Remark 1.2. The term random sample may refer to the objects selected, to the sample variables, or
to the sample data. It is usually clear from the context which meaning is intended. In general, we
use capital letters to denote sample variables and corresponding lowercase letters for their observed
values, the sample data.

We are able now to define sample functions, or statistics, in the more precise context of random
variables.

Definition 1.3. A sample function or statistic is a random variable

Yn = hn(X1, . . . , Xn),
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where hn : Rn → R is a measurable function. The value of the sample function Yn is yn =

hn(x1, . . . , xn).

We will revisit now some sample numerical characteristics discussed in the previous chapter and
define them as sample functions. That means they will have a pdf, a cdf, a mean value, variance,
standard deviation, etc. A sample function will, in general, be an approximation for the corre-
sponding population characteristic. In that context, the standard deviation of the sample function is
usually referred to as the standard error.

In what follows, {X1, . . . , Xn} denotes a sample of size n drawn from the distribution of some
population characteristic X .

2 Sample Mean

Definition 2.1. The sample mean is the sample function defined by

Xn =
1

n

n∑
i=1

Xi (2.1)

and its value is xn =
1

n

n∑
i=1

xi.

Now that the sample mean is defined as a random variable, we can discuss its distribution and
its numerical characteristics.

Proposition 2.2. Let X be a characteristic with E(X) = µ and V (X) = σ2. Then

E
(
X
)
= µ and V

(
X
)
=

σ2

n
. (2.2)

Moreover, if X ∈ N(µ, σ), then X ∈ N

(
µ,

σ√
n

)
.

Proof. Since X1, . . . , Xn are identically distributed, with the same distribution as X , E(Xi) =

E(X) = µ and V (Xi) = V (X) = σ2, ∀i = 1, n. Then, by the usual properties of expectation, we
have

E
(
X
)
= E

(
1

n

n∑
i=1

Xi

)
=

1

n

n∑
i=1

E(Xi) =
1

n
nµ = µ.
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Further, since X1, . . . , Xn are also independent, by the properties of variance, it follows that

V
(
X
)
= V

(
1

n

n∑
i=1

Xi

)
=

1

n2

n∑
i=1

V (Xi) =
1

n2
nσ2 =

σ2

n
.

The last part follows from the fact that X is a linear combination of independent, normally dis-
tributed random variables.

Remark 2.3. As a consequence, the standard deviation of X is

Std(X) =

√
V (X) =

σ√
n
.

So, when estimating the population mean µ from a sample of size n by the sample mean X , the
standard error of the estimate is σ/

√
n, which oftentimes is estimated by s/

√
n. Either way, notice

that as n increases and tends to ∞, the standard error decreases and approaches 0. That means that
the larger the sample on which we base our estimate, the more accurate the approximation.

Corollary 2.4. Let X be a characteristic with E(X) = µ and V (X) = σ2 and for n ∈ N let

Zn =
X − µ

σ√
n

.

Then the variable Zn converges in distribution to a Standard Normal variable, as n → ∞, i.e.

FZn

n→∞−→ FZ = Φ.

Moreover, if X ∈ N(µ, σ), then the statement is true for every n ∈ N.

Proof. This is a direct consequence of the Central Limit Theorem (CLT).

3 Sample Moments and Sample Variance

Definition 3.1. The statistic

νk =
1

n

n∑
i=1

Xk
i (3.3)
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is called the sample moment of order k and its value is
1

n

n∑
i=1

xk
i .

The statistic

µk =
1

n

n∑
i=1

(Xi −X)k (3.4)

is called the sample central moment of order k and its value is
1

n

n∑
i=1

(xi − x)k.

Remark 3.2. Just like for theoretical (population) moments, we have

ν1 = X,

µ1 = 0,

µ2 = ν2 − ν2
1.

Next we discuss the distributions and characteristics of these new sample functions.

Proposition 3.3. Let X be a characteristic with the property that for k ∈ N, the theoretical moment

ν2k = ν2k(X) = E
(
X2k

)
exists. Then

E (νk) = νk and V (νk) =
1

n

(
ν2k − ν2

k

)
. (3.5)

Proof. First off, the condition that ν2k exists for X ensures the fact that all theoretical moments of
X of order up to k also exist. The rest follows as before. We have

E (νk) =
1

n

n∑
i=1

E(Xk
i ) =

1

n

n∑
i=1

E(Xk) =
1

n
nνk = νk

and

V (νk) =
1

n2

n∑
i=1

V (Xk
i ) =

1

n2

n∑
i=1

V (Xk)

=
1

n2
n
(
ν2k − ν2

k

)
=

1

n

(
ν2k − ν2

k

)
.

Corollary 3.4. Let X be a characteristic satisfying the hypothesis of Proposition 3.3 and for n ∈ N
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let

Zn =
νk − νk√
ν2k − ν2

k

n

.

Then Zn
d−→ Z, as n → ∞ .

Proposition 3.5. Let X be a characteristic with V (X) = µ2 = σ2 and for which the theoretical

moment ν4 = E (X4) exists. Then

E (µ2) =
n− 1

n
σ2, (3.6)

V (µ2) =
n− 1

n3

[
(n− 1)µ4 − (n− 3)σ4

]
,

cov(X,µ2) =
n− 1

n2
µ3.

Proof. We only prove the first assertion, as it is the most important and oftenly used property of µ2.

Using Proposition 3.3, Remark 3.2, the properties of expectation and the fact that X1, . . . , Xn are
independent and identically distributed, we have

E (µ2) = E (ν2)− E
(
ν2
1

)
= ν2 − E

(( 1
n

n∑
i=1

Xi

)2)

= ν2 −
1

n2
E
( n∑

i=1

X2
i + 2

∑
i<j

XiXj

)
= ν2 −

1

n2

[
n∑

i=1

E
(
X2

i

)
+ 2

∑
i<j

E(Xi)E(Xj)

]

= ν2 −
1

n2

[
nν2 + 2

n(n− 1)

2
ν2
1

]
= ν2 −

1

n
ν2 −

n− 1

n
ν2
1

=
n− 1

n

(
ν2 − ν2

1

)
=

n− 1

n
σ2.

Remark 3.6.
1. For large samples, i.e. when n → ∞, X and µ2 are uncorrelated.
2. If X has a symmetric distribution, then µ3 = 0 and, hence, X and µ2 are uncorrelated for every
n ∈ N.
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3. As before, one can show that under the assumptions of Proposition 3.5, the sequence

Zn =
µ2 − σ2√
µ4 − σ4

n

converges in distribution to a Standard Normal variable, as n → ∞.

4. Notice that the sample central moment of order 2 is the first statistic whose expected value is not

the corresponding population function, in this case the theoretical variance. This is the motivation
for the next definition.

Definition 3.7. The statistic

s2 =
1

n− 1

n∑
i=1

(Xi −X)2 (3.7)

is called the sample variance and its value is
1

n− 1

n∑
i=1

(xi − x)2.

The statistic s =
√
s2 is called the sample standard deviation.

Remark 3.8. Notice that the sample central moment of order 2 is no longer equal to the sample
variance, as we are used. In fact, we have

s2 =
n

n− 1
µ2.

Then, by Proposition 3.5, we have for the sample variance

E
(
s2
)

= µ2 = σ2, (3.8)

V
(
s2
)

=
1

n(n− 1)

[
(n− 1)µ4 − (n− 3)σ4

]
,

cov(X, s2) =
1

n
µ3.

4 Sample Proportions

Definition 4.1. Assume a subpopulation A of a population consists of items that have a certain

attribute. The population proportion is then the probability

p = P (i ∈ A), (4.1)
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i.e. the probability for a randomly selected item i to have this attribute.

The sample proportion is

p =
number of sampled items from A

n
(4.2)

Proposition 4.2. Let p be a population proportion. Then

E (p) = p, V (p) =
p(1− p)

n
=

pq

n
and σ (p) =

√
pq

n
, (4.3)

where q = 1− p.

Proof. We use the indicator random variable

Xi =

{
1, i ∈ A

0, i /∈ A
.

Then Xi ∈ Bern(p) and, so, we know that E(Xi) = p and V (Xi) = pq, for every i = 1, . . . , n.

But notice that p =
1

n

n∑
i=1

Xi, i.e. the sample mean of the sample X1, . . . , Xn. Thus, by Proposition

2.2,

E (p) = p,

V (p) =
pq

n
,

σ (p) =

√
pq

n
.

5 Sample Distribution Function

Thus far, we have been able to define sample functions that mimicked their theoretical correspon-
dents (mean, moments, variance, proportion) and, hopefully, will provide good inferential estimates
for the entire population. The ultimate goal of Statistics is to derive the probability distribution that
generated a sample from the sample itself, i.e. to define a sample function that gives some infor-
mation of the distribution function of a characteristic, relative to the entire population. The idea is
suggested by the shape of the cumulative distribution function of discrete random variables.
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Definition 5.1. Let X be a characteristic and X1, . . . , Xn sample variables for a random sample

of size n. The sample distribution function ( sdf ) or empirical distribution function is the sample

function F n : R → R defined by

F n(x) =
1

n
I(Xi ≤ x) =

card{Xi | Xi ≤ x}
n

, (5.1)

where I(A) is the indicator of event A, and its value is
card{xi | xi ≤ x}

n
.

Remark 5.2.
1. So, the sample distribution function at a value x is given by

F n(x) =
number of sample elements xi ≤ x

n
.

Defining it this way makes it an excellent tool for measuring how faithful the sample is to the prob-
ability distribution: where observations are densely packed, this function grows rapidly, which is
exactly what is expected from the true distribution function (for where the distribution function
grows rapidly, the probability density−its derivative, is large, which is propitious to a high concen-
tration of observations), while observations that are few and far between happen in regions of low
probability density.
2. Assuming the sample data x1, . . . , xn are sorted in increasing order, a more explicit computational
formula for the sample distribution function is

F n(x) =


0, if x < x1

i

n
, if xi ≤ x < xi+1, i = 1, n− 1

1, if x ≥ xn.

.

Thus F n presents similar properties to those of a cumulative distribution function of a discrete
random variable:

• it is a step function;

• it monotonically increases from 0 to 1;

• it is constant on semi-open intervals [xi, xi+1);

• its limits at ±∞ are 1 and 0, respectively.
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In addition, here the height of each “step” is
1

n
.

3. The sample distribution function can also be viewed as a random variable (since it is a sample
function). If F denotes the cumulative distribution function of the characteristic X , then for each
x ∈ R, F n(x) is a discrete random variable with pdf

F n(x)

(
i/n

Ci
n (F (x))i (1− F (x))n−i

)
i=0,n

.

Now that we have seen the similarities between a cdf and a sdf, the question that naturally arises
is how much does the latter resemble the former, how well and in what sense, does it approximate
it. The answer is given below.

Theorem 5.3 (Glivenko-Cantelli). Let X be a characteristic with cdf F and X1, . . . , Xn be sample

variables for a random sample of size n, with sdf F n. Then

P

(
lim
n→∞

(
sup
x∈R

|F n(x)− F (x)|
)
= 0

)
= 1, (5.2)

i.e. the sample distribution function converges almost surely to the cumulative distribution function.

6 Sample Functions for Comparing Two Populations

It will be necessary sometimes to compare characteristics of two populations. For that, we will need
results on sample functions referring to both collections. Assume we have two characteristics X(1)

and X(2), relative to two populations. We draw from both populations independent random samples
of sizes n1 and n2, respectively. Denote the two sets of random variables by

X11, . . . , X1n1 and X21, . . . , X2n2 .

Then we have two sample means and two sample variances, given by

X1 =
1

n1

n1∑
i=1

X1i, X2 =
1

n2

n2∑
j=1

X2j

and

s21 =
1

n1 − 1

n1∑
i=1

(
X1i −X1

)2
, s22 =

1

n2 − 1

n2∑
j=1

(
X2j −X2

)2
,
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respectively. In addition, denote by

s2p =

n1∑
i=1

(
X1i −X1

)2
+

n2∑
j=1

(
X2j −X2

)2
n1 + n2 − 2

=
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2

the pooled variance of the two samples, i.e. a variance that considers the sample data from both
samples.

In inferential Statistics, when comparing the means of two populations, we will look at their
difference and try to estimate it. Regarding that, we have the following result.

Proposition 6.1. Let X(1), X(2) be two population characteristics with means E(X(i)) = µi and

variances V (X(i)) = σ2
i , i = 1, 2. Then

E
(
X1 −X2

)
= µ1 − µ2,

V
(
X1 −X2

)
=

σ2
1

n1

+
σ2
2

n2

. (6.1)

The proof is straightforward computational, similar to the proof of Proposition 2.2 and we skip it.
In a similar fashion, we can compare two population proportions. Again, the random variable of

interest is their difference.

Proposition 6.2. Assume we have two population proportions p1 and p2. From each population we

draw independent samples of size n1 and n2, respectively, which yield the population proportions

p1 and p2. Then

E (p1 − p2) = p1 − p2,

V (p1 − p2) =
p1q1
n1

+
p2q2
n2

, (6.2)

with qi = 1− p1, i = 1, 2.

Again, the proof is straightforward computational and we skip it.

7 Properties of Sample Functions

Before we state some properties that will be used later, let us review the notations of all the sample
functions we discussed previously and their corresponding population characteristics.
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So, as usually, let X be a characteristic of a population from which a random sample of size n is
drawn and let X1, . . . , Xn be the sample variables. We have the following correspondence:

Function Population (theoretical) Sample

Mean µ = E(X) X =
1

n

n∑
i=1

Xi

Variance σ2 = V (X) s2 =
1

n− 1

n∑
i=1

(Xi −X)2

Standard deviation σ =
√

V (X) s =
√
s2

Moment of order k νk = E
(
Xk
)

νk =
1

n

n∑
i=1

Xk
i

Central moment of order k µk = E
[
(X − E(X))k

]
µk =

1

n

n∑
i=1

(Xi −X)k

Proportion p = P (i ∈ A) p =
number of Xi from A

n

Table 1: Notations

The following results will be used later on in Inferential Statistics. They are based either on
properties of random variables or they are consequences of some Central Limit Theorem. We just
state them without proof, so they can be referenced later.

Proposition 7.1. Assume either that X ∈ N(µ, σ) or that the sample size is large enough and let

Z =
X − µ

σ√
n

.
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Then Z ∈ N(0, 1).

Proposition 7.2. Assume either that X ∈ N(µ, σ) or that the sample size is large enough and let

T =
X − µ

s√
n

.

Then T ∈ T (n− 1).

Proposition 7.3. Assume that X ∈ N(µ, σ) and let

V =
1

σ2

n∑
i=1

(Xi −X)2 =
(n− 1) s2

σ2
.

Then V ∈ χ2(n− 1).

For comparing two populations, assume we have two characteristics X(1) and X(2), relative to two
populations. We draw from both populations independent random samples of sizes n1 and n2,
respectively:

X11, . . . , X1n1 and X21, . . . , X2n2 .

Recall the notations

X1 =
1

n1

n1∑
i=1

X1i, X2 =
1

n2

n2∑
j=1

X2j

and

s21 =
1

n1 − 1

n1∑
i=1

(
X1i −X1

)2
, s22 =

1

n2 − 1

n2∑
j=1

(
X2j −X2

)2
and the pooled variance of the two samples

s2p =

n1∑
i=1

(
X1i −X1

)2
+

n2∑
j=1

(
X2j −X2

)2
n1 + n2 − 2

=
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2

Proposition 7.4. Assume either that X(1) ∈ N(µ1, σ1), X(2) ∈ N(µ2, σ2) or that the sample sizes

are large enough and let

Z =
(X1 −X2)− (µ1 − µ2)√

σ2
1

n1

+
σ2
2

n2

and T =
(X1 −X2)− (µ1 − µ2)√

s21
n1

+
s22
n2

.
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Then Z ∈ N(0, 1) and T ∈ T (n), where

1

n
=

c2

n1 − 1
+

(1− c)2

n2 − 1
and c =

s21
n1

s21
n1

+
s22
n2

.

Proposition 7.5. Assume either that X(1) ∈ N(µ1, σ1), X(2) ∈ N(µ2, σ2) or that the sample sizes

are large enough and let

T =
(X1 −X2)− (µ1 − µ2)

sp

√
1

n1

+
1

n2

.

Then T ∈ T (n1 + n2 − 2).

Proposition 7.6. Assume X(1) ∈ N(µ1, σ1) and X(2) ∈ N(µ2, σ2) and let

F =
s21/σ

2
1

s22/σ
2
2

.

Then F ∈ F (n1 − 1, n2 − 1).

Remark 7.7. The elusive term “large enough” should be understood as follows: for one sample,
n > 30 and for two samples, n1 + n2 > 40.
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