
3 Correlation and Regression

So far we have been discussing a number of descriptive techniques for describing one variable
only. However, a very important part of Statistics is describing the association between two (or
more) variables, whether or not they are independent, and if they are not, what is the nature of
their dependence. One of the most fundamental concepts in statistical research is the concept of
correlation.
Correlation is a measure of the relationship between one dependent variable, called the response

variable and one or more independent variables, called predictor variables (or, simply, predictors).
If two variables are correlated, this means that one can use information about one variable to predict
the values of the other variable. Regression is then the method or statistical procedure that is used
to establish that relationship.

3.1 Correlation, Curves of Regression

We will restrict our discussion to the case of two characteristics, X and Y . If X and Y have the same
length, we can get a first idea of the relationship between the two, by plotting them in a scattergram,
or scatterplot, , which is a plot of the points with coordinates (xi, yi)i=1,k, xi ∈ X, yi ∈ Y, i = 1, k.

We group the N primary data into mn classes and denote by (xi, yj) the class mark and by fij the
absolute frequency of the class (i, j), i = 1,m, j = 1, n. Then we represent the two-dimensional
characteristic (X, Y ) in a correlation table, or contingency table, as shown in Table 1.

X \ Y y1 . . . yj . . . yn
x1 f11 . . . f1j . . . f1n f1.
...

...
...

...
...

xi fi1 . . . fij . . . fin fi.
...

...
...

...
...

xm fm1 . . . fmj . . . fmn fm.

f.1 . . . f.j . . . f.n f.. = N

Table 1: Correlation Table

Notice that
n∑

j=1

fij = fi.,

m∑
i=1

fij = f.j,

m∑
i=1

fi. =
n∑

j=1

f.j = f.. = N.

Now we can define numerical characteristics associated with (X, Y ).
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Definition 3.1. Let (X, Y ) be a two-dimensional characteristic whose distribution is given by Table

1 and let k1, k2 ∈ N.

(1) The (initial) moment of order (k1, k2) of (X, Y ) is the value

νk1k2 =
1

N

m∑
i=1

n∑
j=1

fijx
k1
i yk2j . (3.1)

(2) The central moment of order (k1, k2) of (X, Y ) is the value

µk1k2 =
1

N

m∑
i=1

n∑
j=1

fij(xi − x)k1(yj − y)k2 , (3.2)

where x = ν10 =
1

N

m∑
i=1

fi.xi and y = ν01 =
1

N

n∑
j=1

f.jyj are the means of X and Y ,

respectively.

Remark 3.2. Just as the means of the two characteristics X and Y can be expressed as moments of
(X, Y ), so can their variances:

σ2
X = µ20 = ν20 − ν2

10,

σ2
Y = µ02 = ν02 − ν2

01.

Definition 3.3. Let (X, Y ) be a two-dimensional characteristic whose distribution is given by Table

1.

(1) The covariance ( cov ) of (X, Y ) is the value

cov(X, Y ) = µ11 =
1

N

m∑
i=1

n∑
j=1

fij(xi − x)(yj − y). (3.3)

(2) The correlation coefficient ( corrcoef ) of (X, Y ) is the value

ρ = ρXY =
cov(X, Y )√
µ20

√
µ02

=
µ11

σXσY

. (3.4)

These two notions have been mentioned before, for two random variables. They are defined simi-
larly for sets of data and they have the same properties. The covariance gives a rough idea of the
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relationship between X and Y. As before, if X and Y are independent (so there is no relationship,
no correlation between them), then the covariance is 0. If large values of X are associated with large
values of Y , then the covariance will have a positive value, if, on the contrary, large values of X are
associated with small values of Y , then the covariance will have a negative value. Also, an easier
computational formula for the covariance is cov(X, Y ) = ν11 − x · y.
The correlation coefficient is then

ρ =
ν11 − x · y
σXσY

and, as before, it satisfies the inequality

−1 ≤ ρ ≤ 1. (3.5)

By its variation between −1 and 1, its value measures the linear relationship between X and Y.

If ρXY = 1, there is a perfect positive correlation between X and Y , if ρXY = −1, there is a
perfect negative correlation between X and Y . In both cases, the linearity is “perfect”, i.e there
exist a, b ∈ R, a ̸= 0, such that Y = aX + b. If ρXY = 0, then there is no linear correlation
between X and Y , they are said to be (linearly) uncorrelated. However, in this case, they may not
be independent, some other type of relationship (not linear) may exist between them.

In our task of finding a relationship between X and Y, we may go the following path: knowing
the value of one of the characteristics, try to find a probable, an “expected” value for the other.
If the two characteristics are related in any way, then there should be a pattern developing, i.e.,
the expected value of one of them, conditioned by the other one taking a certain value, should
be a function of that value that the other variable assumes. In other words, we should consider
conditional means, defined similarly to regular means, only taking into account the condition.

Definition 3.4. Let (X, Y ) be a two-dimensional characteristic whose distribution is given by Table

1.

(1) The conditional mean of Y , given X = xi, is the value

yi = y(xi) =
1

fi.

n∑
j=1

fijyj, i = 1,m. (3.6)

(2) The conditional mean of X , given Y = yj, is the value

xj = x(yj) =
1

f.j

m∑
i=1

fijxi, j = 1, n. (3.7)
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Definition 3.5. Let (X, Y ) be a two-dimensional characteristic.

(1) The curve y = f(x) formed by the points with coordinates (xi, yi), i = 1,m, is called the

curve of regression of Y on X .

(2) The curve x = g(y) formed by the points with coordinates (yj, xj), j = 1, n, is called the

curve of regression of X on Y .

Remark 3.6. The curve of regression of a characteristic Y with respect to another characteristic X

is then the mean value of Y , y(x), given X = x. The curve of regression is determined so that it
approximates best the scatterplot of (X, Y ).

3.2 Least Squares Estimation, Linear Regression

One of the most popular ways of finding curves of regression is the least squares method.
Assume the curve of regression of Y on X is of the form

y = y(x) = f(x; a1, . . . , as).

We determine the unknown parameters a1, . . ., as so that the sum of squares error (SSE) (the sum of
the squares of the differences between the responses yj and their fitted values y(xi), each counted
with the corresponding frequency)

S=SSE =
m∑
i=1

n∑
j=1

fij

(
yj − y(xi)

)2
=

m∑
i=1

n∑
j=1

fij

(
yj − f(xi; a1, . . . , as)

)2
is minimum (hence, the name of the method).
We find the point of minimum (a1, . . . , as) of S by solving the system

∂S

∂ak
= 0, k = 1, s,

i.e.

−2
m∑
i=1

n∑
j=1

fij

(
yj − f(xi; a1, . . . , as)

)∂f(xi; a1, . . . , as)

∂ak
= 0, (3.8)

for every k = 1, s.
Then the equation of the curve of regression of Y on X is

y = f (x; a1, . . . , as) .
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Linear regression

Let us consider the case of linear regression and find the equation of the line of regression of Y on
X .

We are finding a curve
y = ax+ b,

for which

S(a, b) =
m∑
i=1

n∑
j=1

fij

(
yj − axi − b

)2
is minimum. We have to solve the 2× 2 system

∂S(a, b)

∂a
= 0

∂S(a, b)

∂b
= 0,

i.e.

−2
m∑
i=1

n∑
j=1

fij

(
yj − axi − b

)
xi = 0

−2
m∑
i=1

n∑
j=1

fij

(
yj − axi − b

)
= 0,

which becomes

(
m∑
i=1

n∑
j=1

fijx
2
i

)
a +

(
m∑
i=1

n∑
j=1

fijxi

)
b =

m∑
i=1

n∑
j=1

fijxiyj

(
m∑
i=1

n∑
j=1

fijxi

)
a +

(
m∑
i=1

n∑
j=1

fij

)
b =

m∑
i=1

n∑
j=1

fijyj

and after dividing both equations by N ,{
ν20a + ν10b = ν11

ν10a + ν00b = ν01.
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Its solution is

a =
ν11 − ν10ν01

ν20 − ν2
10

=
ν11 − x · y

σ2
X

=
ν11 − x · y
σXσY

· σY

σX

= ρ
σY

σX

,

b = ν01 − ν10a = y − a · x.

So the equation of the line of regression of Y on X is

y − y = ρ
σY

σX

(x− x) (3.9)

and, by analogy, the equation of the line of regression of X on Y is

x− x = ρ
σX

σY

(y − y) . (3.10)

Remark 3.7.
1. The point of intersection of the two lines of regression, (x, y) , is called the centroid of the
distribution of the characteristic (X, Y ).

2. The slope aY |X = ρ
σY

σX

of the line of regression of Y on X is called the coefficient of regression

of Y on X . Similarly, aX|Y = ρ
σX

σY

is the coefficient of regression of X on Y and

ρ2 = aY |X aX|Y .

3. For the angle α between the two lines of regression, we have

tanα =
1− ρ2

ρ2
· σXσY

σ2
X + σ2

Y

.

So, if | ρ | = 1, then α = 0, i.e. the two lines coincide. If | ρ | = 0 (for instance, if X and Y are
independent), then α =

π

2
, i.e. the two lines are perpendicular.

Example 3.8. Let us examine the situations graphed in Figure 1.

• In Figure 1(a) ρ = 0.95, positive and very close to 1, suggesting a strong positive linear
trend. Indeed, most of the points are on or very close to the line of regression of Y on X. The
positivity indicates that large values of X are associated with large values of Y. Also, since
the correlation coefficient is so close to 1, the two lines of regression almost coincide.
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(a) ρ = 0.95 (b) ρ = −0.28

(c) ρ = 0 (d) ρ = 0

Fig. 1: Scattergram, Lines of Regression and Centroid
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• In Figure 1(b) ρ = −0.28, negative and fairly small, close to 0. If a relationship exists between
X and Y, it does not seem to be linear. In fact, they are very close to being independent,
since the points are scattered around the plane, no pattern being visible. The two lines of
regression are very distinct and both have negative slopes, suggesting that large values of X
are associated with small values of Y .

• In Figure 1(c) ρ = 0, so the two characteristics are uncorrelated, no linear relationship exists
between them. However they are not independent, they were chosen so that Y = −X2 +

sin

(
1

X

)
. Notice also, that the two lines of regression are perpendicular.

• Finally, in Figure 1(d) ρ = 0, again, so no linear relationship exists. In fact the two character-
istics are independent, which is suggested by their random scatter inside the plane.

Remark 3.9. Other types of curves of regression that are fairly frequently used are
− exponential regression y = abx,

− logarithmic regression y = a log x+ b,

− logistic regression y =
1

ae−x + b
,

− hyperbolic regression y =
a

x
+ b.
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