
Chapter 2. Descriptive Statistics

Statistics is a branch of Mathematics that deals with the collection, analysis, display and interpre-
tation of numerical data. It consists of two main areas:
Descriptive Statistics includes the collection, presentation and description of numerical data. It is
what most people think of when they hear the word “Statistics”.
Inferential Statistics consists of the techniques of interpretation, of modeling the results from de-
scriptive Statistics and then using them to make inferences.

As a discipline, Statistics has mostly developed in the past century. Probability theory - the
mathematical foundation for statistics - was developed in the 17th to 19th centuries based on work
by Thomas Bayes, Pierre-Simon Laplace and Carl Gauss. In contrast to the somewhat theoretical
nature of probability, Statistics is an applied science concerned with analysis and modeling of data.
Modern Statistics as a rigorous scientific discipline traces its roots back to the late 1800’s and Francis
Galton and Karl Pearson. R. A. Fisher, in the early 20th century, was a leading pioneer of modern
Statistics, introducing key new ideas and concepts.

A new trend in modern Statistics is Exploratory Data Analysis (EDA). This new area of Statis-
tics was promoted by John Tukey beginning in the 1970’s. He proposed a reformation of Statistics,
where statistical inference is just one component of data analysis. He encouraged statisticians to
explore the data, often using statistical graphics and other data visualization methods, and possibly
formulate hypotheses that could lead to new data collection and experiments.

As a consequence, new disciplines in Statistics were established, such as Robust statistics and
Nonparametric tests, which do not rely so heavily on theoretical assumptions and are not so easily
affected by outliers (extreme observations).

1 Analysis and Display of Data

1.1 Basic Concepts

A population is a set of individuals, objects, items or measurements whose properties are to be
analyzed.
In order to form a population, a set must have a common feature. The population of interest must
be carefully defined and is considered so when its membership list is specified.

A subset of the population (a set of observed units collected from the population) is called a
sample, or a selection. A sample must be random (each element of the population must have the
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same chance of being chosen) and representative for the population it was drawn from (the structure
of the sample must be similar to the structure of the population).

A characteristic or variable is a certain feature of interest of the elements of a population or
a sample, that is about to be analyzed statistically. Characteristics can be quantitative (numerical)
or qualitative (a certain trait). From the probabilistic point of view, a numerical characteristic is a
random variable. Further, numerical variables can be discrete (if they can be counted) or continuous

(if they can be measured). A numerical characteristic is called a parameter, if it refers to an entire
population and a statistic, if it refers just to a sample.

The outcomes of an experiment yield a set of data, i.e. the values that a variable takes for all the
elements of a population or a sample.

1.2 Data Collection, Sampling

An important first step in any statistical analysis is the sampling technique, i.e. the collection of
methods and procedures used to gather data. There are several ways of collecting data: If every
element of a population is selected, then a census is compiled. However, this technique is hardly
ever used these days, because it can be expensive, time consuming or just plain impossible. Instead,
only a sample is selected, which is analyzed and based on the findings, inferences (estimates)
are made about the entire population, as well as measurements of the degree of accuracy of the
estimates.

A sample is chosen based on a sampling design, the process used to collect sample data. If
elements are chosen on the basis of being “typical”, then we have a judgment sample, whereas if
they are selected based on probability rules, we have a probability sample. Statistical inference
requires probability samples. The most familiar probability sample is a random sample, in which
each possible sample of a certain size has the same chance of being selected and every element in
the population has an equal probability of being chosen.
Other types of samples may be considered:

• systematic sample

• stratified sample

• quota sample

• cluster sample

Throughout the remaining chapters, we will only consider random samples.
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Sometimes discrepancies occur between a sample and its underlying population.
Sampling errors are caused simply by the fact that only a portion of the entire population is

observed. For most statistical procedures, sampling errors decrease (and converge to zero) if the
sample size is appropriately increased.

Non-sampling errors are produced by inappropriate sampling designs or wrong statistical tech-
niques. No statistical procedures can save a poorly collected sample!

1.3 Graphical Display of Data, Frequency Distribution Tables, Histograms

“A picture is worth a thousand words!”
Once the sample data is collected, it must be represented in a relevant, “easy to read” way, one that
hopefully reveals important features, patterns of behavior, connections, etc.

Circle graphs (“pie” charts) and bar graphs are popular ways of displaying data, that use the
proportions of each type of data and represent them as percentages.

Example 1.1. Suppose that a software company is having 25 items on sale, 5 of which are learning
programs (L), 8 are antivirus programs (AV), 3 are games (G) and the rest (9) are miscellaneous
(M).

The pie chart and the bar graph are shown in Figure 1.

Frequency Distribution Tables

Once collected, the raw data must be “organized” in a relevant and meaningful manner. One way
to do that is to write it in a frequency distribution table, which contains the values xi, i = 1, k,
sorted in increasing order, together with their (absolute) frequencies, fi, i = 1, k, i.e. the number
of times each value occurs in the sample data, as seen in Table 1.

Value Frequency
x1 f1
x2 f2
...

...
xk fk

Table 1: Frequency Distribution Table
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Fig. 1: Example 1.1

If needed, the table can also contain the relative frequencies

rfi =
fi
N
, ∀i = 1, k,

usually expressed as percentages, the cumulative frequencies

Fi =
i∑

j=1

fj, ∀i = 1, k,

or relative cumulative frequencies

rFi =
1

N

i∑
j=1

fj, ∀i = 1, k,

where N =
k∑

i=1

fi is the sample size.

However, when the data volume is large and the values are non-repetitive, the frequency dis-
tribution is not of much help. Every value is listed with a frequency of 1. In this case, it is better
to group the data into classes and construct a grouped frequency distribution table. So, first we
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decide on a reasonable number of classes n, small enough to make our work with the data easier,
but still large enough to not lose the relevance of the data. Then for each class i = 1, n, we have
− the class limits ci−1, ci,
− the class mark xi =

ci−1 + ci
2

, the midpoint of the interval, as an identifier for the class,
− the class width (length) li = ci − ci−1,
− the class frequency fi, the sum of the frequencies of all observations x in that class.
Notice that we used the same notation xi for primary data and for class marks. This is by choice,
since in the case of grouped data, the class mark plays the role of a “representative” for that class and
the class frequency is taken as being the frequency of that one value. The double notation should not
cause confusion throughout the text, since N is the sample size, so x1, . . . , xN denotes the primary
data, while n is the number of classes and thus,(

xi

fi

)
i=1,n

denotes the grouped frequency distribution of the data.

The grouped frequency distribution table will look similar to the one in Table 1, only it will contain
classes instead of individual values, each with their corresponding features.

Remark 1.2.
1. Relative or cumulative frequencies can also be computed for grouped data, as well, using the
same formulas as for ungrouped data.
2. In general, the classes are taken to be of the same length l.
3. When all classes have the same length, the number of classes, n, and the class length l determine
each other (if one is known, so is the other). In this case, there are two customary procedures
(empirical formulas) of determining the number of classes:
One is a formula for n, known as Sturges’ rule

n = 1 +
10

3
log10N, (1.1)

where N is the sample size. Then it follows that l =
xmax − xmin

n
.

The other is a formula for the class width

l =
8

100
(xmax − xmin) . (1.2)
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Then n =
xmax − xmin

l
.

Once we determined n and l, we have ci = xmin + i · l, i = 0, n.

Histograms and Frequency Polygons

When data is grouped into classes, the best way to visualize the frequency distribution is by con-
structing a histogram ( hist ). A histogram is a type of bar graph, where classes are represented by
rectangles whose bases are the class lengths and whose heights are chosen so that the areas of the
rectangles are proportional to the class frequencies. If the classes have all the same length, then the
heights will be proportional to the class frequencies. If relative frequencies are considered (so the
proportionality factor is N , the total number of observations), then the total areas of all rectangles
will be equal to 1. For a large volume of data grouped into a reasonably large number of classes, the
histogram gives a rough approximation of the density function (pdf) of the population from which
the sample data was drawn.

An alternative in that sense (the sense of roughly approximating the shape of the density function)
to histograms are frequency polygons, obtained by joining the points with coordinates (xi, fi), i =

1, n (x−coordinates are the class marks and y−coordinates are the class frequencies).

Example 1.3. The following represents the grades distribution in a Statistics exam, for a group of
3rd year students:

7 8 10 5 4 5 5 6 5 8 9 9 1 4 5 5 7 10

5 9 2 2 10 10 8 3 8 7 5 6 7 8 9 9 9 4.

Let us analyze these data. First, we sort them in increasing order:

1 2 2 3 4 4 4 5 5 5 5 5 5 5 5 6 6 7

7 7 7 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10

There are N = 36 observations, with xmin = 1 and xmax = 10.

Since the sample size is not too large and there are repetitions, we can construct the ungrouped
frequency distribution table:
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Value Frequency
1 1
2 2
3 1
4 3
5 8
6 2
7 4
8 5
9 6
10 4

Table 2: Frequency Distribution Table

Let us group the data into classes of the same length. With Sturges’ rule, we get

n = 6.1877 ≈ 6, l = 1.5,

while if using formula (1.2), we have

l = 0.72, n ≈ 12.

The grouped frequency tables are shown in Tables 3 and 4. We have also included the relative and
cumulative frequencies. Figure 2 shows the corresponding histogram and frequency polygon for
grouped data.

No Class Mark Freq. C. Freq. R. Freq. R. C. Freq.
1 [ 1.00 , 2.50) 1.75 3 3 8% 8%
2 [ 2.50 , 4.00) 3.25 4 7 11% 19%
3 [ 4.00 , 5.50) 4.75 8 15 22% 41%
4 [ 5.50 , 7.00) 6.25 6 21 17% 58%
5 [ 7.00 , 8.50) 7.75 5 26 14% 72%
6 [ 8.50 , 10.00] 9.25 10 36 28% 100%

Table 3: Grouped Frequency Distribution Table With n = 6 Classes

Remark 1.4. Due to rounding errors, the length of the last class may be slightly different than the
rest of them, even when we group data into classes of the same width.
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No Class Mark Freq. C. Freq. R. Freq. R. C. Freq.
1 [ 1.00 , 1.72) 1.36 1 1 3% 3%
2 [ 1.72 , 2.44) 2.08 2 3 6% 9%
3 [ 2.44 , 3.16) 2.80 1 4 3% 12%
4 [ 3.16 , 3.88) 3.52 0 4 0% 12%
5 [ 3.88 , 4.60) 4.24 3 7 8% 20%
6 [ 4.60 , 5.32) 4.96 8 15 22% 42%
7 [ 5.32 , 6.04) 5.68 2 17 6% 48%
8 [ 6.04 , 6.76) 6.40 0 17 0% 48%
9 [ 6.76 , 7.48) 7.12 4 21 11% 59%

10 [ 7.48 , 8.20) 7.84 5 26 14% 73%
11 [ 8.20 , 8.92) 8.56 0 26 0% 73%
12 [ 8.92 , 10] 9.46 10 36 27% 100%

Table 4: Grouped Frequency Distribution Table With n = 12 Classes
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Fig. 2: Histogram and Frequency Polygon
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2 Calculative Descriptive Statistics

In the last section, we have considered some graphical methods for getting an idea of the shape of
the density function of the population from which the sample data was drawn. Some characteristics,
such as symmetry, regularity can be observed from these graphical displays of the data. Next, we
consider some statistics that allow us to summarize the data set analytically. It is hoped that these
will give us some idea of the values of the parameters that characterize the entire population. We
are looking mainly at two types of statistics: measures of central tendency, i.e. values that locate
the observations with highest frequencies (so, where most of the data values lie) and measures of

variability that indicate how much the values are spread out.

2.1 Measures of Central Tendency

These are values that tend to locate in some sense the “middle” of a set of data. The term “average”
is often associated with these values. Each of the following measures of central tendency can be
called the “average” value of a set of data.

Definition 2.1. The (arithmetic) mean ( mean ) of the data x1, . . . , xN is the value

xa =
1

N

N∑
i=1

xi. (2.1)

For grouped data,

(
xi

fi

)
i=1,n

,

xa =
1

N

n∑
i=1

fixi.

Remark 2.2. Some immediate properties of the arithmetic mean are the following:
1. The sum of all deviations from the mean is equal to 0. Indeed,

N∑
i=1

(xi − xa) =
N∑
i=1

xi −Nxa = 0.

2. The mean minimizes the mean square deviation, i.e. for every a ∈ R,

N∑
i=1

(xi − a)2 ≥
N∑
i=1

(xi − xa)
2 .
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A straightforward computation leads to

N∑
i=1

(xi − a)2 =
N∑
i=1

[(xi − xa)− (a− xa)]
2

=
N∑
i=1

(xi − xa)
2 − 2(a− xa)

N∑
i=1

(xi − xa)

+ N
N∑
i=1

(a− xa)
2

≥
N∑
i=1

(xi − xa)
2 ,

since the second term is 0 and the third term is always nonnegative.

Definition 2.3. The geometric mean ( geomean ) of the data x1, . . . , xN is the value

xg = N
√
x1 . . . xN . (2.2)

For grouped data,

(
xi

fi

)
i=1,n

,

xg =
N

√
xf1
1 . . . xfn

n .

The geometric mean is used in Economics Statistics for price study. One of its distinctive fea-
tures is that it emphasizes the relative deviations from central tendency, as opposed to the absolute
deviations, emphasized by the arithmetic mean.

Definition 2.4. The harmonic mean ( harmmean ) of the data x1, . . . , xN is the value

xh =
N

N∑
i=1

1

xi

. (2.3)

For grouped data,

(
xi

fi

)
i=1,n

,

xh =
N

n∑
i=1

fi
xi

.
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The harmonic mean has applications in Economics Statistics in the study of time norms.

Remark 2.5.
1. For any set of data x1, . . . , xN , the well-known means inequality holds:

xh ≤ xg ≤ xa,

with equality holding if and only if x1 = . . . = xN .

2. The most widely used is the arithmetic mean. When nothing else is mentioned, we simply say
mean, instead of arithmetic mean, and use the simplified notation x.

Definition 2.6. The median ( median ) is the value xme that divides a set of ordered data X into

two equal parts from the probability (or frequency) point of view, i.e. the value with the property

P (X < xme) ≤
1

2
≤ P (X ≤ xme), (2.4)

or, equivalently,

P (X > xme) ≤ 1/2

P (X < xme) ≤ 1/2. (2.5)

So, the median is exceeded with probability no greater than 0.5 and is preceded with probability no

greater than 0.5.

Remark 2.7.
1. For a sample, the median is exceeded by at most one half of the observations and is preceded by
at most one half of observations.
2. The median may or may not be one of the values in the data. If the sorted primary data is

x1 ≤ . . . ≤ xN ,

then

xme =

 xk+1, if N = 2k + 1
xk + xk+1

2
, if N = 2k

.
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Definition 2.8. A mode, xmo, of a set of data is a most frequent value.

Remark 2.9.
1. Notice from the wording of the definition that the mode may not be unique. A set of data can
have one mode, two modes − bimodal data, three modes − trimodal data, or more − multimodal

data. If every value occurs only once, we say that there is no mode.
2. For symmetric distributions, we have

x = xme = xmo.

This is true, for instance, for the Normal distribution. In general,

xmo ≈ x− 3(x− xme).

2.2 Measures of Variability

Once we have located the “middle” of a set of data, it is important to measure the variability of the
data, how unstable the data can be and how much the data values can differ from its expectation or
from other middle values. These values will help us assess reliability of our estimates and accuracy
of our forecasts.These measures of variation will have small values for closely grouped data (little
variation) and larger values for more widely spread out data (large variation).

Consider the primary data X = {x1, . . . , xN}. The first two measures of variation give a very
general idea of the spread in the data values.

Definition 2.10. The range ( range ) of X is the difference

xmax − xmin.

If the values of X are sorted in increasing order, then the range is xN − x1.

Definition 2.11. The mean absolute deviation ( mad ) of X is the value

MAD =
1

N

N∑
i=1

|xi − x|.

Next, following the idea behind the definition of the median, we define values that divide the data
into certain percentages.
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Definition 2.12. Let X be a set of data sorted increasingly.

(1) The percentiles ( prctile ) of X are the values P1, P2, . . . , P99 that divide the data into 100

equal parts, i.e. for k = 1, 99, Pk has the property

P (X < Pk) ≤
k

100
, P (X > Pk) ≤

100− k

100
. (2.6)

(2) The quartiles of X are the values

Q1 = P25, Q2 = P50 = xme and Q3 = P75, (2.7)

that divide the data into 4 equal parts.

xmin Q1 Q2 Q3 xmax

25% 25% 25% 25%

Fig. 3: Quartiles

Definition 2.13. Let X be a set of sorted data with quartiles Q1, Q2 and Q3.

(1) The interquartile range ( iqr ) is the difference between the third and the first quartile

IQR = Q3 −Q1. (2.8)

(2) The interquartile deviation or the semi interquartile range is the value

IQD =
IQR

2
=

Q3 −Q1

2
. (2.9)

(3) The interquartile deviation coefficient or the relative interquartile deviation is the value

IQDC =
IQD

xme

=
Q3 −Q1

2Q2

. (2.10)
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Remark 2.14.
1. The interquartile deviation is an absolute measure of variation and it has an important property:
the range xme ± IQD contains approximately 50% of the data.
2. The interquartile deviation coefficient IQDC varies between −1 and 1, taking values close to 0

for symmetrical distributions, with little variation and values close to ±1 for skewed data with large
variation.

Outliers

The interquartile range is also involved in another important aspect of statistical analysis, namely
the detection of outliers. An outlier, as the name suggests, is basically an atypical value, “far away”
from the rest of the data, that does not seem to belong to the distribution of the rest of the values in
the data set.

For example, in a set of data where all values but one are between 0 and 1, a value of 1000 would
surely seem out of place!

>> x=[rand(10,1); 1000]

x =

1.0e+03 *

0.0007

0.0000

0.0003

0.0000

0.0001

0.0008

0.0007

0.0003

0.0010

0.0000

1.0000

Outliers can arise for two reasons: either they are legitimate observations whose values are simply
unusually large or unusually small, compared to the rest of the values in the data set, or they are the
result of an error in measurement, of poor experimental techniques, or of mistakes in recording or
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entering the data. Whichever the reason, they can adversely affect some values of the measures of
central tendency and of variation, thus leading to erroneous inferential results.

>> mean(x)

ans =

91.2707

>> median(x)

ans =

0.3171

Once the presence of such outliers is detected, it is suggested that sample statistics be computed
both with and without the outliers.

>> x = x(1:end-1)

x =

0.7000

0

0.3000

0

0.1000

0.8000

0.7000

0.3000

1.0000

0

>> mean(x)
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ans =

0.3900

>> median(x)

ans =

0.3000

Thus the problem of detecting and locating an outlier is an important part of any statistical data
analysis process.

For instance, one simple procedure would be to consider an outlier any value that is more than
2.5 standard deviations away from the mean, and an extreme outlier a value more than 3 standard
deviations away from the mean. This procedure is justified by the “3σ rule” (the “3σ rule” is an
application of Chebyshev’s inequality and states that most of the values that any random variable
takes, at least 89%, lie within 3 standard deviations away from the mean) and would work well for
unimodal and symmetrical distributions.

A more general approach, that works for skewed data, is to consider an outlier any observation
that is outside the range[

Q1 −
3

2
IQR, Q3 +

3

2
IQR

]
= [Q1 − 3IQD, Q3 + 3IQD] .

Example 2.15. Consider the following set of data

0.5973 0.3624 0.8304 1.7347 1.2499

0.1104 0.8082 0.6039 0.3046 0.6183

0.0065 0.8748 1.3528 1.6458 1.5117

0.3253 −2.0000 −1.3000 1.7500 3.8500

We sort them in increasing order:

−2.0000 −1.3000 0.0065 0.1104 0.3046

0.3253 0.3624 0.5973 0.6039 0.6183

0.8082 0.8304 0.8748 1.2499 1.3528

1.5117 1.6458 1.7347 1.7500 3.8500
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We have:
Q1 = 0.3150,

Q2 = 0.7133,

Q3 = 1.4323,

Q1 −
3

2
IQR = −1.3610,

Q3 +
3

2
IQR = 3.1082.

The data (boxplot) (horizontally) is displayed graphically in Figure 4.
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Fig. 4: Quartiles, Interquartile Range, Outliers

Definition 2.16.

(1) The moment of order k is the value

νk =
1

N

N∑
i=1

xk
i , νk =

1

N

n∑
i=1

fix
k
i , (2.11)

for primary and for grouped data, respectively.
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(2) The central moment of order k ( moment ) is the value

µk =
1

N

N∑
i=1

(xi − x)k, µk =
1

N

n∑
i=1

fi(xi − x)k (2.12)

for primary and for grouped data, respectively.

(3) The variance ( var ) is the value

σ2 =
1

N

N∑
i=1

(xi − x)2, σ2 =
1

N

n∑
i=1

fi(xi − x)2 (2.13)

for primary and for grouped data, respectively. The quantity σ =
√
σ2 is the standard devia-

tion ( std ).

Remark 2.17.
1. We will see later that when the data represents a sample (not the entire population), a better
formula for the variance is

s2 =
1

N − 1

N∑
i=1

(xi − x)2, s2 =
1

N − 1

n∑
i=1

fi(xi − x)2, (2.14)

for the sample variance for primary or grouped data. The reason for that will have to do with the
“bias” and will be explained later on in the next chapter. For now, we will just agree to use (2.13)
to compute the variance of a set of data that represents a population and (2.14) for the variance of a
sample.
2. In Matlab, when computing the variance of a population, we use var(..., 1), as opposed to var(...),
for a sample. The command std has the same option.
3. A more efficient computational formula for the variance is

σ2 =
1

N

 N∑
i=1

x2
i −

1

N

(
N∑
i=1

xi

)2
 , (2.15)

which follows straight from the definition.
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Definition 2.18. The coefficient of variation is the value

CV =
σ

x
.

Remark 2.19.
1. The coefficient of variation can be expressed as a ratio or as a percentage. It is useful in comparing
the degrees of variation of two sets of data, even when their means are different.
2. The coefficient of variation is widely used in Biostatistics and Business Statistics. For example,
in the investing world, the coefficient of variation helps brokers determine how much volatility (risk)
they are assuming in comparison to the amount of return they can expect from a certain investment.
The lower the value of the CV, the better the risk-return trade off.
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