
4 Random Vectors

Everything that holds for random variables (one-dimensional case) can be easily generalized to any
dimension, i.e. to random vectors. We restrict our discussion to two-dimensional random vectors
(X, Y ) : S → R2.

Let (S,K, P ) be a probability space. A random vector is a function (X, Y ) : S → R2 satisfying
the following the condition

(X ≤ x, Y ≤ y) = {e ∈ S | X(e) ≤ x, Y (e) ≤ y} ∈ K,

for all (x, y) ∈ R2.

• if the set of values that it takes, (X, Y )(S), is at most countable in R2, then (X, Y ) is a
discrete random vector,

• if (X, Y )(S) is a continuous subset of R2, then (X, Y ) is a continuous random vector.

• the function F : R2 → R defined by

F (x, y) = P (X ≤ x, Y ≤ y)

is called the joint cumulative distribution function (joint cdf) of the vector (X, Y ).

The properties of the cdf of a random variable translate very naturally for a random vector, as
well: Let (X, Y ) be a random vector with joint cdf F : R2 → R and let FX , FY : R → R be the
cdf’s of X and Y , respectively. Then following properties hold:

• If ak < bk, k = 1, 2, then

P (a1 < X ≤ b1, a2 < Y ≤ b2) = F (b1, b2) − F (b1, a2)

− F (a1, b2) + F (a1, a2).

• lim
x,y→∞

F (x, y) = 1,

lim
y→−∞

F (x, y) = lim
x→−∞

F (x, y) = 0, ∀x, y ∈ R,
lim
y→∞

F (x, y) = FX(x), ∀x ∈ R,
lim
x→∞

F (x, y) = FY (y), ∀y ∈ R.
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4.1 Discrete Random Vectors

Let (X, Y ) : S → R2 be a two-dimensional discrete random vector. The joint probability distri-
bution (function) of (X, Y ) is a two-dimensional array of the form

X \ Y y1 . . . yj . . .

x1

...
...

xi · · · pij · · · pi
...

...

qj

(4.1)

where (xi, yj) ∈ R2, (i, j) ∈ I × J are the values that (X, Y ) takes and pij = P (X = xi, Y = yj).
An important property is that∑

j∈J

pij = pi,
∑
i∈I

pij = qj and
∑
i∈I

∑
j∈J

pij =
∑
j∈J

∑
i∈I

pij = 1,

where pi = P (X = xi), i ∈ I and qj = P (Y = yj), j ∈ J. The probabilities pi and qj are called
marginal pdf’s.

For discrete random vectors, the computational formula for the cdf is

F (x, y) =
∑
xi≤x

∑
yj≤y

pij, x, y ∈ R.

Operations with discrete random variables

Let X and Y be two discrete random variables with pdf’s

X

(
xi

pi

)
i∈I

and Y

(
yj

qj

)
j∈J

.

Sum. The sum of X and Y is the random variable with pdf given by

X + Y

(
xi + yj

pij

)
(i,j)∈I×J

. (4.2)
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Product. The product of X and Y is the random variable with pdf given by

X · Y

(
xiyj

pij

)
(i,j)∈I×J

. (4.3)

Scalar Multiple. The random variable αX , α ∈ R, with pdf given by

αX

(
αxi

pi

)
i∈I

. (4.4)

Quotient. The quotient of X and Y is the random variable with pdf given by

X/Y

(
xi/yj

pij

)
(i,j)∈I×J

, (4.5)

provided that yj ̸= 0, for all j ∈ J.

In general, if h : R → R is a function, then we can define the random variable h(X), with pdf given
by

h(X)

(
h(xi)

pi

)
i∈I

. (4.6)

Variables X and Y are said to be independent if

pij = P (X = xi, Y = yj) = P (X = xi)P (Y = yj) = piqj, (4.7)

for all (i, j) ∈ I × J.

If X and Y are independent, then in (4.2), (4.3) and (4.5), pij = piqj, for all (i, j) ∈ I × J.

4.2 Continuous Random Vectors

Let (X, Y ) be a continuous random vector with joint cdf F : R2 → R. Then F is absolutely

continuous, i.e. there exists a function f : R2 → R, such that

F (x, y) =

x∫
−∞

y∫
−∞

f(u, v) du dv, (4.8)

for all x, y ∈ R. The function f is called the joint probability density function (joint pdf) of
(X, Y ).
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The usual properties of continuous pdf’s (and their relationship with cdf’s) hold for the two-
dimensional case, as well: Let (X, Y ) be a continuous random vector with joint cdf F and joint
density function f . Let FX , FY : R → R be the cdf’s of X and Y and fX , fY : R → R be the pdf’s
of X and Y , respectively. Then the following properties hold:

•
∂2F (x, y)

∂x∂y
= f(x, y), for all (x, y) ∈ R2.

•
∫∫
R2

f(x, y) dxdy = 1.

• for any domain D ⊆ R2, P
(
(X, Y ) ∈ D

)
=

∫∫
D

f(x, y) dxdy.

• fX(x) =

∫
R

f(x, y) dy, ∀x ∈ R and fY (y) =

∫
R

f(x, y) dx, ∀y ∈ R.

When obtained from the vector (X, Y ), the pdf’s fX and fY are called marginal densities.
The continuous random variables X and Y are said to be independent if

f(X,Y )(x, y) = fX(x)fY (y), (4.9)

for all (x, y) ∈ R2.

5 Common Distributions

5.1 Common Discrete Distributions

Bernoulli Distribution Bern(p)

A random variable X has a Bernoulli distribution with parameter p ∈ (0, 1) (q = 1− p), if its pdf is

X

(
0 1

q p

)
. (5.1)

Then

E(X) = p,

V (X) = pq.
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A Bernoulli r.v. models the occurrence or nonoccurrence of an event.

Discrete Uniform Distribution U(m)

A random variable X has a Discrete Uniform distribution ( unid ) with parameter m ∈ N, if its pdf
is

X

 k
1

m


k=1,m

, (5.2)

with mean and variance

E(X) =
m+ 1

2
,

V (X) =
m2 − 1

12
.

The random variable that denotes the face number shown on a die when it is rolled, has a Discrete
Uniform distribution U(6).

Binomial Distribution B(n, p)

A random variable X has a Binomial distribution ( bino ) with parameters n ∈ N and p ∈ (0, 1)

(q = 1− p), if its pdf is

X

(
k

Ck
np

kqn−k

)
k=0,n

, (5.3)

with

E(X) = np,

V (X) = npq.

This distribution corresponds to the Binomial model. Given n Bernoulli trials with probability of
success p, let X denote the number of successes. Then X ∈ B(n, p). Also, notice that the Bernoulli
distribution is a particular case of the Binomial one, for n = 1, Bern(p) = B(1, p).
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Hypergeometric Distribution H(N, n1, n)

A random variable X has a Hypergeometric distribution ( hyge ) with parameters N, n1, n ∈ N
(n, n1 ≤ N ), if its pdf is

X

 k

Ck
n1
Cn−k

N−n1

Cn
N


k=0,n

, (5.4)

with

E(X) =
nn1

N
,

V (X) =
nn1(N − n1)(N − n)

N2(N − 1)
.

This distribution corresponds to the Hypergeometric model. If X is the number of successes in a
Hpergeometric model, then X ∈ H(N, n1, n).

Geometric Distribution Geo(p)

A random variable X has a Geometric distribution ( geo ) with parameter p ∈ (0, 1) (q = 1− p), if
its pdf is given by

X

(
k

pqk

)
k=0,1,...

. (5.5)

Its expectation and variance are given by

E(X) =
q

p
,

V (X) =
q

p2
.

If X denotes the number of failures that occurred before the occurrence of the 1st success in a
Geometric model, then X ∈ Geo(p).
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Negative Binomial (Pascal) Distribution NB(n, p)

A random variable X has a Negative Binomial (Pascal) ( nbin ) distribution with parameters n ∈ N
and p ∈ (0, 1) (q = 1− p), if its pdf is

X

(
k

Ck
n+k−1p

nqk

)
k=0,1,...

. (5.6)

Then

E(X) =
nq

p
,

V (X) =
nq

p2
.

This distribution corresponds to the Negative Binomial model. If X denotes the number of failures
that occurred before the occurrence of the nth success in a Negative Binomial model, then X ∈
NB(n, p). It is a generalization of the Geometric distribution, Geo(p) = NB(1, p).

Poisson Distribution P(λ)

A random variable X has a Poisson distribution ( poiss ) with parameter λ > 0, if its pdf is

X

 k

λk

k!
e−λ


k=0,1,...

(5.7)

with

E(X) = V (X) = λ.

A Poisson r.v. does not come from the Poisson model! Poisson random variables arise in
connection with so-called Poisson processes, processes that involve observing discrete events in a
continuous interval of time, length, space, etc. The variable of interest in a Poisson process, X ,
represents the number of occurrences of the discrete event in a fixed interval of time, length, space.
For instance, the number of gas emissions taking place at a nuclear plant in a 3-month period,
the number of earthquakes hitting a certain area in a year, the number of white blood cells in a
drop of blood, all these are modeled by Poisson random variables. The parameter λ of a Poisson
distribution represents the average number of occurrences of the event in question in that interval
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(of time, length, space, etc.).
Poisson’s distribution is also known as the “law of rare events”, the name coming from the fact

that

lim
k→∞

λk

k!
e−λ = 0,

i.e. as k gets larger, the event (X = k) becomes less probable, more “rare”. The discrete events that
are counted in a Poisson process are also called “rare events”.

Remark 5.1.
1. The sum of n independent Bern(p) random variables is a B(n, p) variable.
2. The sum of n independent Geo(p) random variables is a NB(n, p) variable.

5.2 Common Continuous Distributions

Uniform Distribution U(a, b)

A random variable X has a Uniform distribution ( unif )with parameters a, b ∈ R, a < b, if its pdf
is

f(x) =


1

b− a
, if x ∈ [a, b]

0, if x /∈ [a, b].
(5.8)

Then its cdf is

F (x) =

x∫
−∞

f(t)dt =


0, if x ≤ a

x− a

b− a
, if a < x ≤ b

1, if x ≥ b

(5.9)

and its numerical characteristics are

E(X) =
a+ b

2
,

V (X) =
(b− a)2

12
.

The Uniform distribution is used when a variable can take any value in a given interval, equally
probable. For example, locations of syntax errors in a program, birthdays throughout a year, arrival
times of customers, etc.
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(a) Density Function (pdf) (b) Cumulative Distribution Function (cdf)

Fig. 1: Uniform Distribution

A special case is that of a Standard Uniform Distribution, where a = 0 and b = 1. The pdf
and cdf are given by

fU(x) =

{
1, x ∈ [0, 1]

0, x /∈ [0, 1]
, FU(x) =


0, x ≤ 0

x, 0 < x ≤ 1

1, x ≥ 1 .

(5.10)

Standard Uniform variables play an important role in stochastic modeling; in fact, any random
variable, with any thinkable distribution (discrete or continuous) can be generated from Standard
Uniform variables.

Normal Distribution N(µ, σ)

The Normal distribution is one of the most important distributions, underlying many of the modern
statistical methods used in data analysis. It was first described in the late 1700’s by De Moivre, as a
limiting case for the Binomial distribution (when n, the number of trials, becomes infinite), but did
not get much attention. Half a century later, both Laplace and Gauss (independently of each other)
rediscovered it in conjunction with the behavior of errors in astronomical measurements. It is also
referred to as the “Gaussian” distribution.
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A random variable X has a Normal distribution ( norm ) with parameters µ ∈ R and σ > 0, if
its pdf is

f(x) =
1

σ
√
2π

e
−
(x− µ)2

2σ2 , x ∈ R. (5.11)

The cdf of a Normal variable is then given by

F (x) =
1

σ
√
2π

x∫
−∞

e
−
(t− µ)2

2σ2 dt =
1√
2π

x−µ
σ∫

−∞

e
−
t2

2 dt (5.12)

and its mean and variance are

E(X) = µ,

V (X) = σ2.

(a) Density Function (pdf) (b) Cumulative Distribution Function (cdf)

Fig. 2: Normal Distribution

The graph of the Normal density is a symmetric, bell-shaped curve (known as “Gauss’s bell” or
“Gauss’s bell curve”) centered at the value of the first parameter µ, as can be seen in Figure 2(a).
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The graph of the cdf of a Normally distributed random variable is given in Figure 2(b) and this is
approximately what the graph of the cdf of any continuous random variable looks like.

There is an important particular case of a Normal distribution, namely N(0, 1), called the Stan-
dard (or Reduced) Normal Distribution. A variable having a Standard Normal distribution is
usually denoted by Z. The density and cdf of Z are given by

fZ(x) =
1√
2π

e
−
x2

2 , x ∈ R and FZ(x) =
1√
2π

x∫
−∞

e
−
t2

2 dt. (5.13)

The function FZ given in (5.13) is known as Laplace’s function and its values can be found in
tables or can be computed by any mathematical software. One can notice that there is a relationship
between the cdf of any Normal N(µ, σ) variable X and that of a Standard Normal variable Z,
namely,

FX(x) = FZ

(
x− µ

σ

)
.

Exponential Distribution Exp(λ)

A random variable X has an Exponential distribution ( exp ) with parameter λ > 0, if its pdf and
cdf are given by

f(x) =

{
λe−λx, if x ≥ 0

0, if x < 0
and F (x) =

{
1− e−λx, x ≥ 0

0, x < 0
, (5.14)

respectively.

Remark 5.2.
1. The Exponential distribution is often used to model time: lifetime, waiting time, halftime, in-
terarrival time, failure time, time between rare events, etc. In a sequence of rare events (where the
number of rare events has a Poisson distribution), the time between two consecutive rare events is
Exponential. The parameter λ represents the frequency of rare events, measured in time−1.
2. A word of caution here: The parameter µ in Matlab (where the Exponential pdf is defined as
1

µ
e−

1
µ
x, x ≥ 0) is actually µ = 1/λ. It all comes from the different interpretation of the “frequency”.

For instance, if the frequency is “2 per hour”, then λ = 2/hr, but this is equivalent to “ one every
half an hour”’, so µ = 1/2 hours. The parameter µ is measured in time units.
3. The Exponential distribution is a special case of a more general distribution, namely the
Gamma(a, b), a, b > 0, distribution ( gam ). The Gamma distribution models the total time of a
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multistage scheme.
4. If α ∈ N, then the sum of α independent Exp(λ) variables has a Gamma(α, 1/λ) distribution.

(a) Density Function (pdf) (b) Cumulative Distribution Function (cdf)

Fig. 3: Exponential Distribution

Remark 5.3. In Statistics, the most widely used distributions are the following:
− the Normal distribution, N(µ, σ), especially N(0, 1) ( norm ),
− the Student (T) distribution, T (n) ( t ),
− the χ2 distribution, χ2(n) ( chi2 ),
− the Fisher (F) distribution, F (m,n) ( f ).
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