5.7 Type II Errors, Power of a Test and the Neyman-Pearson Lemma

Recall that for a target parameter 6, we are testing

Hy: 0 =40, versus one of
0 < b,

H, - 0 > 60,
0 # o,

(5.1)

The “goodness” of a test is measured by the two probabilities of risk

= P(typelerror) = P(reject Hy | Hy)
f = P(typeIlerror) = P(notreject Hy| Hy).

The smaller both of them are, the more reliable the test is. For some problems, a type I error is more
dangerous, while for others, a significant type II error is unacceptable. In general, « is preset, at

most 0.05 and the test is designed so that /3 is also small enough to be acceptable.

Type II Errors and Power of a Test

So far, type II errors were not discussed much. As we have seen in a few examples, the computation
of 3 can be more difficult. The condition that H; is true does not specify an actual value for the
unknown parameter and thus, does not identify a distribution, for which the probability can be
computed. The simple condition that a parameter € is less than, greater than or not equal to a value
is not enough to help us compute the probability. However, if the alternate H; is also a simple
hypothesis

H,: 60 = 64,

then 3 can be computed. Thus, £, unlike «, depends on the value specified in the alternative hy-
pothesis,
B = p6).

Example 5.1. Let us consider again the problem in Example 5.2. in Lecture 11 (or Example 5.4 in
Lecture 10): The number of monthly sales at a firm is known to have a mean of 20 and a standard
deviation of 4 and all salary, tax and bonus figures are based on these values. However, in times of
economical recession, a sales manager fears that his employees do not average 20 sales per month,
but less, which could seriously hurt the company. For a number of 36 randomly selected salespeople,

it was found that in one month they averaged 19 sales. At the 5% significance level, does the data
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confirm or contradict the manager’s suspicion?
Now let us find S for the test
Hy: p=po=20
Hy: p=p =18 <20,

i.e. find 5(p1).

Solution. We tested a left-tailed alternative for the mean

Hol ILLIQO
H;: ,u<20

The population standard deviation was given, 0 = 4 and for a sample of size n = 36, the sample

mean was X = 19. For the test statistic

X —p
o]

NG

TS = Z =

€ N(0,1),

the observed value was o
X — 19 — 20
ZU = g Ho = 4 = —1.5.
vn 6

At the significance level o = 0.05, we have determined the rejection region

X - X-20
RR = {Z() = = Ho < 20.05} = { 1 < —1645}

/n

6

— 4 —
= {X < —1.645- 2 +20} = {X <189}.
Then, in a similar fashion we compute
B(m) = P(notreject Hy | Hi) = P (X > 189 | p= ).

If the true value of 1 is py, then the statistic




has a Standard Normal N (0, 1) distribution. Hence,

Blp) = P(X>189|pu=m)

X —-18 189 —-18
= P( — > |,u:18>

1 1
6 6

= P(Z,>1.35| Z € N(0,1))

— 1—P(Z <135|Z € N(0,1))

= 1—normedf(1.35) = 0.0885.

Remark 5.2. Let us take a closer look at the computation of « and /3 in the previous example. We
used the fact that the variable

_ X—p
NG

has a N (0, 1) distribution. So, when the true value of y is 1o = 20, then

A

Zo = Z( = o) € N(0,1)
and when the value is ;1; = 18, then
Zy = Z(i = m) € N(0,1).

However, in the end, we expressed the error probabilities o and 3, by looking at the distribution of
X by itself, not its reduced version. In other words, we used the fact that, when the true value of x
is o = 20, then

X € N(up,0/y/n)and a = P(X < 18.9),

while when the true value is p4; = 18, then
X € N(uy,0/y/n)and B =P(X > 18.9).

This can be seen graphically in Figure 1.



Fig. 1: Type I and type II errors

In order to have a better control over 3, we introduce the following notion.

Definition 5.3. The power of a test on a parameter 0, unknown, is the probability of rejecting the
null hypothesis

w(0*) = P(reject Hy|0=0") = P(T'S€ RR|0=20"), (5.2)

when the true value of the parameter is 0 = 0*.

Notice that the power of a test is, usually, a function of the parameter 6, because the alternative
hypothesis includes a set of parameter values.

Indeed, if the null hypothesis is true, i.e. § = 6, then
7T(90) = P(TS € RR | 0= 90) = P(reject H, ’ H()) = Q. (5.3)
For any other true value (in the alternative hypothesis H) 6 = 0, # 6,

w(01) = P(reject Hy |0 =0,) = P(reject Hy | H)
= 1— P(notreject Hy | Hy) = 1— [(0y). (5.4)

So, basically, the power of a test is the probability of rejecting a false null hypothesis. The larger the
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power is, the smaller /3 is, which is what we want in a test. Then we can state a hypothesis testing
problem the following way:

For a parametric test where both hypotheses are simple

H()Z 0:90
Hli (9:91,

we preset « = 7(6p) and we determine a rejection region RR for which

m(01) = 1—08(0h)

is the largest possible. Such a test is called a most powerful test.

The Neyman-Pearson Lemma (NPL)

Most powerful tests cannot always be found. The following result gives a procedure for finding a

most powerful test, when both hypotheses tested are simple.

Lemma 5.4 (Neyman-Pearson (NPL)). Let X be a characteristic with pdf f(x;0), with0 € A C R,

unknown. Suppose we test on 0 the simple hypotheses

Hoi 9:90
Hli 9:91,

based on a random sample X1, ..., X,. Let L(0) = L(Xy, ..., X,;0) denote the likelihood func-
tion of this sample. Then for a fixed o € (0, 1), a most powerful test is the test with rejection region
0
Oy 5 k} : (5.5)

= { (@)

where the constant k, > 0 depends only on o and the sample variables.

given by

h

h

Example 5.5. Suppose X represents a single observation from a probability density given by

Flas) = { 020=, ifx € (0,1)

0, otherwise.



Find the NPL most powerful test that at the 5% significance level tests

Also, find §3 for that test.
Solution. Since our sample has size 1, we have

L(61) _ f(Xy;01) _ 30X129

= = = 30X}
L(eo) f(Xl,eo) 1 !

So the rejection region given by the NPL is

RR = {30X¥ >k} = {X| > K.},

1 1/29

where K, = [ —k,
30

We find the value of K, from

o = P(XleRR|H0) = P(XlzKa|0:]_>

1

= /dx = 1-K,,

Ka

re. K, = 1—a = 0.95.
So, of all tests for testing H, versus H;, based on a sample of size 1, the observation X3, at the

significance level a = (.05, the most powerful test has rejection region
RR = {X; > 0.95}.

For this test,



and the power is
w(0) =1— p(6;) = 0.834.

Note that the error probability £ that we obtained is unacceptably large, but considering that the
estimation was based on a sample of size one, we cannot expect too much accuracy.
]

Remark 5.6. Notice that the rejection region and, hence, the most powerful test we found in Ex-
ample 5.5, depend on the value stated in H;. For a different value of 6;, we would have found a
different rejection region. That is usually the case. However, sometimes, a test obtained with the
NPL actually maximizes the power for every value in [{1, i.e. even if H; is not a simple hypothesis.

Such a test is called a uniformly most powerful test.

Example 5.7. Let X, ..., X, be arandom sample drawn from a Normal N (u, o) distribution, with
i € R unknown and o > 0 known. At the significance level a € (0, 1), find the most powerful
right-tailed test for testing

Ho: p=po

Hy: p> po.

Solution. First we use the NPL to find a most powerful test for a simple alternative, i.e.

Ho: p=po
Hy: op=p > po.

We have the Normal pdf

2

! M),‘v’xe]&

f($7:u):0\/%exp<_ 252

The likelihood function is

L(p) = Hf(Xz';M)

Then, by the NPL, we find




or, taking the logarithm In (which is an increasing function) on both sides,

n n

% [Z(Xz — po)® — Z(Xz - M1)2] > Ink,,

i=1 =1

iXE — Q,UDiXi + nua — (in — QﬂliXi +nu%> > 20%Ink,.
i=1 i=1 i=1 i=1

_ 1&
After cancellations and using X = — E X;, we have
n
=1

2nX (1 — pio) > 20° Inko + n(pf — pg).-

Since w3 > pp, we get

2
<> o”Ink, +M1+M0

= K,.
— n(u — o) 2

Then we use the test statistic 7.S = X, for which we found the rejection region
RR={X > K,}.

But

since Zy = —— al € N(0,1). Then we must have
o

K, —
fo_, Ky = o+ 21—,

N
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so K, is independent of ji;. Then the test with RR = {X > K, } is a uniformly most powerful test
for testing
Hy: p=po
Hy o> po,
at the significance level a.
[

Remark 5.8. In a similar manner, we can find a uniformly most powerful test for the left-tailed case

Hy: pp=po
Hy: p < po.



