5.7 Type II Errors, Power of a Test and the Neyman-Pearson Lemma

Recall that for a target parameter θ, we are testing

$$
\begin{align*}
& H_{0}: \quad \theta=\theta_{0}, \text { versus one of } \\
& H_{1}:\left\{\begin{array}{l}
\theta<\theta_{0} \\
\theta>\theta_{0} \\
\theta \neq \theta_{0},
\end{array}\right. \tag{5.1}
\end{align*}
$$

The "goodness" of a test is measured by the two probabilities of risk

$$
\begin{aligned}
& \alpha=P(\text { type I error }) \\
&=P\left(\text { reject } H_{0} \mid H_{0}\right) \\
& \beta=P(\text { type II error })=P\left(\text { not reject } H_{0} \mid H_{1}\right) .
\end{aligned}
$$

The smaller both of them are, the more reliable the test is. For some problems, a type I error is more dangerous, while for others, a significant type II error is unacceptable. In general, α is preset, at most 0.05 and the test is designed so that β is also small enough to be acceptable.

Type II Errors and Power of a Test

So far, type II errors were not discussed much. As we have seen in a few examples, the computation of β can be more difficult. The condition that H_{1} is true does not specify an actual value for the unknown parameter and thus, does not identify a distribution, for which the probability can be computed. The simple condition that a parameter θ is less than, greater than or not equal to a value is not enough to help us compute the probability. However, if the alternate H_{1} is also a simple hypothesis

$$
H_{1}: \theta=\theta_{1}
$$

then β can be computed. Thus, β, unlike α, depends on the value specified in the alternative hypothesis,

$$
\beta=\beta\left(\theta_{1}\right)
$$

Example 5.1. Let us consider again the problem in Example 5.2. in Lecture 11 (or Example 5.4 in Lecture 10): The number of monthly sales at a firm is known to have a mean of 20 and a standard deviation of 4 and all salary, tax and bonus figures are based on these values. However, in times of economical recession, a sales manager fears that his employees do not average 20 sales per month, but less, which could seriously hurt the company. For a number of 36 randomly selected salespeople, it was found that in one month they averaged 19 sales. At the 5% significance level, does the data
confirm or contradict the manager's suspicion?
Now let us find β for the test

$$
\begin{array}{ll}
H_{0}: & \mu=\mu_{0}=20 \\
H_{1}: & \mu=\mu_{1}=18<20
\end{array}
$$

i.e. find $\beta\left(\mu_{1}\right)$.

Solution. We tested a left-tailed alternative for the mean

$$
\begin{array}{ll}
H_{0}: & \mu=20 \\
H_{1}: & \mu<20 .
\end{array}
$$

The population standard deviation was given, $\sigma=4$ and for a sample of size $n=36$, the sample mean was $\bar{X}=19$. For the test statistic

$$
T S=Z=\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}} \in N(0,1)
$$

the observed value was

$$
Z_{0}=\frac{\bar{X}-\mu_{0}}{\frac{\sigma}{\sqrt{n}}}=\frac{19-20}{\frac{4}{6}}=-1.5 .
$$

At the significance level $\alpha=0.05$, we have determined the rejection region

$$
\begin{aligned}
R R & =\left\{Z_{0}=\frac{\bar{X}-\mu_{0}}{\frac{\sigma}{\sqrt{n}}} \leq z_{0.05}\right\}=\left\{\frac{\bar{X}-20}{\frac{4}{6}} \leq-1.645\right\} \\
& =\left\{\bar{X} \leq-1.645 \cdot \frac{4}{6}+20\right\}=\{\bar{X} \leq 18.9\}
\end{aligned}
$$

Then, in a similar fashion we compute

$$
\beta\left(\mu_{1}\right)=P\left(\text { not reject } H_{0} \mid H_{1}\right)=P\left(\bar{X}>18.9 \mid \mu=\mu_{1}\right)
$$

If the true value of μ is μ_{1}, then the statistic

$$
Z_{1}=\frac{\bar{X}-\mu_{1}}{\frac{\sigma}{\sqrt{n}}}=\frac{\bar{X}-18}{\frac{4}{6}}
$$

has a Standard Normal $N(0,1)$ distribution. Hence,

$$
\begin{aligned}
\beta\left(\mu_{1}\right) & =P\left(\bar{X}>18.9 \mid \mu=\mu_{1}\right) \\
& =P\left(\left.\frac{\bar{X}-18}{\frac{4}{6}}>\frac{18.9-18}{\frac{4}{6}} \right\rvert\, \mu=18\right) \\
& =P\left(Z_{1}>1.35 \mid Z_{1} \in N(0,1)\right) \\
& =1-P\left(Z_{1} \leq 1.35 \mid Z_{1} \in N(0,1)\right) \\
& =1-\text { normcdf }(1.35)=0.0885 .
\end{aligned}
$$

Remark 5.2. Let us take a closer look at the computation of α and β in the previous example. We used the fact that the variable

$$
Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}
$$

has a $N(0,1)$ distribution. So, when the true value of μ is $\mu_{0}=20$, then

$$
Z_{0}=Z\left(\mu=\mu_{0}\right) \in N(0,1)
$$

and when the value is $\mu_{1}=18$, then

$$
Z_{1}=Z\left(\mu=\mu_{1}\right) \in N(0,1)
$$

However, in the end, we expressed the error probabilities α and β, by looking at the distribution of \bar{X} by itself, not its reduced version. In other words, we used the fact that, when the true value of μ is $\mu_{0}=20$, then

$$
\bar{X} \in N\left(\mu_{0}, \sigma / \sqrt{n}\right) \text { and } \alpha=P(\bar{X} \leq 18.9),
$$

while when the true value is $\mu_{1}=18$, then

$$
\bar{X} \in N\left(\mu_{1}, \sigma / \sqrt{n}\right) \text { and } \beta=P(\bar{X}>18.9)
$$

This can be seen graphically in Figure 1.

Fig. 1: Type I and type II errors

In order to have a better control over β, we introduce the following notion.
Definition 5.3. The power of a test on a parameter θ, unknown, is the probability of rejecting the null hypothesis

$$
\begin{equation*}
\pi\left(\theta^{*}\right)=P\left(\text { reject } H_{0} \mid \theta=\theta^{*}\right)=P\left(T S \in R R \mid \theta=\theta^{*}\right) \tag{5.2}
\end{equation*}
$$

when the true value of the parameter is $\theta=\theta^{*}$.
Notice that the power of a test is, usually, a function of the parameter θ, because the alternative hypothesis includes a set of parameter values.
Indeed, if the null hypothesis is true, i.e. $\theta=\theta_{0}$, then

$$
\begin{equation*}
\pi\left(\theta_{0}\right)=P\left(T S \in R R \mid \theta=\theta_{0}\right)=P\left(\text { reject } H_{0} \mid H_{0}\right)=\alpha \tag{5.3}
\end{equation*}
$$

For any other true value (in the alternative hypothesis $\left.H_{1}\right) \theta=\theta_{1} \neq \theta_{0}$,

$$
\begin{align*}
\pi\left(\theta_{1}\right) & =P\left(\text { reject } H_{0} \mid \theta=\theta_{1}\right)=P\left(\text { reject } H_{0} \mid H_{1}\right) \\
& =1-P\left(\text { not reject } H_{0} \mid H_{1}\right)=1-\beta\left(\theta_{1}\right) . \tag{5.4}
\end{align*}
$$

So, basically, the power of a test is the probability of rejecting a false null hypothesis. The larger the
power is, the smaller β is, which is what we want in a test. Then we can state a hypothesis testing problem the following way:
For a parametric test where both hypotheses are simple

$$
\begin{array}{ll}
H_{0}: & \theta=\theta_{0} \\
H_{1}: & \theta=\theta_{1}
\end{array}
$$

we preset $\alpha=\pi\left(\theta_{0}\right)$ and we determine a rejection region $R R$ for which

$$
\pi\left(\theta_{1}\right)=1-\beta\left(\theta_{1}\right)
$$

is the largest possible. Such a test is called a most powerful test.

The Neyman-Pearson Lemma (NPL)

Most powerful tests cannot always be found. The following result gives a procedure for finding a most powerful test, when both hypotheses tested are simple.

Lemma 5.4 (Neyman-Pearson (NPL)). Let X be a characteristic with pdf $f(x ; \theta)$, with $\theta \in A \subset \mathbb{R}$, unknown. Suppose we test on θ the simple hypotheses

$$
\begin{array}{ll}
H_{0}: & \theta=\theta_{0} \\
H_{1}: & \theta=\theta_{1},
\end{array}
$$

based on a random sample X_{1}, \ldots, X_{n}. Let $L(\theta)=L\left(X_{1}, \ldots, X_{n} ; \theta\right)$ denote the likelihood function of this sample. Then for a fixed $\alpha \in(0,1)$, a most powerful test is the test with rejection region given by

$$
\begin{equation*}
R R=\left\{\frac{L\left(\theta_{1}\right)}{L\left(\theta_{0}\right)} \geq k_{\alpha}\right\} \tag{5.5}
\end{equation*}
$$

where the constant $k_{\alpha}>0$ depends only on α and the sample variables.
Example 5.5. Suppose X_{1} represents a single observation from a probability density given by

$$
f(x ; \theta)= \begin{cases}\theta x^{\theta-1}, & \text { if } x \in(0,1) \\ 0, & \text { otherwise }\end{cases}
$$

Find the NPL most powerful test that at the 5% significance level tests

$$
\begin{array}{lll}
H_{0}: & \theta=1 & \left(=\theta_{0}\right) \\
H_{1}: & \theta=30 & \left(=\theta_{1}\right) .
\end{array}
$$

Also, find β for that test.
Solution. Since our sample has size 1, we have

$$
\frac{L\left(\theta_{1}\right)}{L\left(\theta_{0}\right)}=\frac{f\left(X_{1} ; \theta_{1}\right)}{f\left(X_{1} ; \theta_{0}\right)}=\frac{30 X_{1}^{29}}{1}=30 X_{1}^{29}
$$

So the rejection region given by the NPL is

$$
R R=\left\{30 X_{1}^{29} \geq k_{\alpha}\right\}=\left\{X_{1} \geq K_{\alpha}\right\}
$$

where $K_{\alpha}=\left(\frac{1}{30} k_{\alpha}\right)^{1 / 29}$.
We find the value of K_{α} from

$$
\begin{aligned}
\alpha & =P\left(X_{1} \in R R \mid H_{0}\right)=P\left(X_{1} \geq K_{\alpha} \mid \theta=1\right) \\
& =\int_{K_{\alpha}}^{1} d x=1-K_{\alpha}
\end{aligned}
$$

i.e. $K_{\alpha}=1-\alpha=0.95$.

So, of all tests for testing H_{0} versus H_{1}, based on a sample of size 1 , the observation X_{1}, at the significance level $\alpha=0.05$, the most powerful test has rejection region

$$
R R=\left\{X_{1} \geq 0.95\right\}
$$

For this test,

$$
\begin{aligned}
\beta\left(\theta_{1}\right) & =P\left(X_{1}<K_{\alpha} \mid \theta=30\right)=\int_{0}^{K_{\alpha}} 30 x^{29} d x \\
& =\left.x^{30}\right|_{0} ^{K_{\alpha}}=\left(K_{\alpha}\right)^{30}=(1-\alpha)^{30}=0.166
\end{aligned}
$$

and the power is

$$
\pi\left(\theta_{1}\right)=1-\beta\left(\theta_{1}\right)=0.834
$$

Note that the error probability β that we obtained is unacceptably large, but considering that the estimation was based on a sample of size one, we cannot expect too much accuracy.

Remark 5.6. Notice that the rejection region and, hence, the most powerful test we found in Example 5.5, depend on the value stated in H_{1}. For a different value of θ_{1}, we would have found a different rejection region. That is usually the case. However, sometimes, a test obtained with the NPL actually maximizes the power for every value in H_{1}, i.e. even if H_{1} is not a simple hypothesis. Such a test is called a uniformly most powerful test.

Example 5.7. Let X_{1}, \ldots, X_{n} be a random sample drawn from a Normal $N(\mu, \sigma)$ distribution, with $\mu \in \mathbb{R}$ unknown and $\sigma>0$ known. At the significance level $\alpha \in(0,1)$, find the most powerful right-tailed test for testing

$$
\begin{aligned}
H_{0}: & \mu=\mu_{0} \\
H_{1}: & \mu>\mu_{0} .
\end{aligned}
$$

Solution. First we use the NPL to find a most powerful test for a simple alternative, i.e.

$$
\begin{aligned}
H_{0}: & \mu=\mu_{0} \\
H_{1}: & \mu=\mu_{1}>\mu_{0}
\end{aligned}
$$

We have the Normal pdf

$$
f(x ; \mu)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right), \forall x \in \mathbb{R}
$$

The likelihood function is

$$
\begin{aligned}
L(\mu) & =\prod_{i=1}^{n} f\left(X_{i} ; \mu\right) \\
& =\left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{n} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}\right)
\end{aligned}
$$

Then, by the NPL, we find

$$
\frac{L\left(\mu_{1}\right)}{L\left(\mu_{0}\right)}=\exp \left(\frac{1}{2 \sigma^{2}}\left[\sum_{i=1}^{n}\left(X_{i}-\mu_{0}\right)^{2}-\sum_{i=1}^{n}\left(X_{i}-\mu_{1}\right)^{2}\right]\right) \geq k_{\alpha}
$$

or, taking the logarithm \ln (which is an increasing function) on both sides,

$$
\begin{aligned}
\frac{1}{2 \sigma^{2}}\left[\sum_{i=1}^{n}\left(X_{i}-\mu_{0}\right)^{2}-\sum_{i=1}^{n}\left(X_{i}-\mu_{1}\right)^{2}\right] & \geq \ln k_{\alpha} \\
\sum_{i=1}^{n} X_{i}^{2}-2 \mu_{0} \sum_{i=1}^{n} X_{i}+n \mu_{0}^{2}-\left(\sum_{i=1}^{n} X_{i}^{2}-2 \mu_{1} \sum_{i=1}^{n} X_{i}+n \mu_{1}^{2}\right) & \geq 2 \sigma^{2} \ln k_{\alpha} .
\end{aligned}
$$

After cancellations and using $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$, we have

$$
2 n \bar{X}\left(\mu_{1}-\mu_{0}\right) \geq 2 \sigma^{2} \ln k_{\alpha}+n\left(\mu_{1}^{2}-\mu_{0}^{2}\right)
$$

Since $\mu_{1}>\mu_{0}$, we get

$$
\bar{X} \geq \frac{\sigma^{2} \ln k_{\alpha}}{n\left(\mu_{1}-\mu_{0}\right)}+\frac{\mu_{1}+\mu_{0}}{2}=K_{\alpha} .
$$

Then we use the test statistic $T S=\bar{X}$, for which we found the rejection region

$$
R R=\left\{\bar{X} \geq K_{\alpha}\right\}
$$

But

$$
\begin{aligned}
\alpha & =P\left(\bar{X} \geq K_{\alpha} \mid \mu=\mu_{0}\right) \\
& =P\left(\left.\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}} \geq \frac{K_{\alpha}-\mu_{0}}{\sigma / \sqrt{n}} \right\rvert\, \mu=\mu_{0}\right) \\
& =P\left(\left.Z_{0} \geq \frac{K_{\alpha}-\mu_{0}}{\sigma / \sqrt{n}} \right\rvert\, Z_{0} \in N(0,1)\right) \\
& =P\left(Z_{0} \geq z_{1-\alpha}\right),
\end{aligned}
$$

since $Z_{0}=\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}} \in N(0,1)$. Then we must have

$$
\frac{K_{\alpha}-\mu_{0}}{\sigma / \sqrt{n}}=z_{1-\alpha}, \quad K_{\alpha}=\mu_{0}+z_{1-\alpha} \frac{\sigma}{\sqrt{n}}
$$

so K_{α} is independent of μ_{1}. Then the test with $R R=\left\{\bar{X} \geq K_{\alpha}\right\}$ is a uniformly most powerful test for testing

$$
\begin{aligned}
H_{0}: & \mu=\mu_{0} \\
H_{1}: & \mu>\mu_{0}
\end{aligned}
$$

at the significance level α.

Remark 5.8. In a similar manner, we can find a uniformly most powerful test for the left-tailed case

$$
\begin{array}{ll}
H_{0}: & \mu=\mu_{0} \\
H_{1}: & \mu<\mu_{0}
\end{array}
$$

