
5.7 Type II Errors, Power of a Test and the Neyman-Pearson Lemma

Recall that for a target parameter θ, we are testing

H0 : θ = θ0, versus one of

H1 :


θ < θ0

θ > θ0

θ ̸= θ0,

(5.1)

The “goodness” of a test is measured by the two probabilities of risk

α = P (type I error) = P (reject H0 | H0)

β = P (type II error) = P (not reject H0 | H1).

The smaller both of them are, the more reliable the test is. For some problems, a type I error is more
dangerous, while for others, a significant type II error is unacceptable. In general, α is preset, at
most 0.05 and the test is designed so that β is also small enough to be acceptable.

Type II Errors and Power of a Test

So far, type II errors were not discussed much. As we have seen in a few examples, the computation
of β can be more difficult. The condition that H1 is true does not specify an actual value for the
unknown parameter and thus, does not identify a distribution, for which the probability can be
computed. The simple condition that a parameter θ is less than, greater than or not equal to a value
is not enough to help us compute the probability. However, if the alternate H1 is also a simple

hypothesis
H1 : θ = θ1,

then β can be computed. Thus, β, unlike α, depends on the value specified in the alternative hy-
pothesis,

β = β(θ1).

Example 5.1. Let us consider again the problem in Example 5.2. in Lecture 11 (or Example 5.4 in
Lecture 10): The number of monthly sales at a firm is known to have a mean of 20 and a standard
deviation of 4 and all salary, tax and bonus figures are based on these values. However, in times of
economical recession, a sales manager fears that his employees do not average 20 sales per month,
but less, which could seriously hurt the company. For a number of 36 randomly selected salespeople,
it was found that in one month they averaged 19 sales. At the 5% significance level, does the data
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confirm or contradict the manager’s suspicion?
Now let us find β for the test

H0 : µ = µ0 = 20

H1 : µ = µ1 = 18 < 20,

i.e. find β(µ1).

Solution. We tested a left-tailed alternative for the mean

H0 : µ = 20

H1 : µ < 20.

The population standard deviation was given, σ = 4 and for a sample of size n = 36, the sample
mean was X = 19. For the test statistic

TS = Z =
X − µ

σ√
n

∈ N(0, 1),

the observed value was

Z0 =
X − µ0

σ√
n

=
19− 20

4

6

= −1.5.

At the significance level α = 0.05, we have determined the rejection region

RR =

{
Z0 =

X − µ0
σ√
n

≤ z0.05

}
=

{
X − 20

4
6

≤ −1.645

}
=

{
X ≤ −1.645 · 4

6
+ 20

}
=
{
X ≤ 18.9

}
.

Then, in a similar fashion we compute

β(µ1) = P (not reject H0 | H1) = P
(
X > 18.9 | µ = µ1

)
.

If the true value of µ is µ1, then the statistic

Z1 =
X − µ1

σ√
n

=
X − 18

4
6
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has a Standard Normal N(0, 1) distribution. Hence,

β(µ1) = P
(
X > 18.9 | µ = µ1

)
= P

(
X − 18

4
6

>
18.9− 18

4
6

| µ = 18

)
= P (Z1 > 1.35 | Z1 ∈ N(0, 1))

= 1− P (Z1 ≤ 1.35 | Z1 ∈ N(0, 1))

= 1− normcdf(1.35) = 0.0885.

Remark 5.2. Let us take a closer look at the computation of α and β in the previous example. We
used the fact that the variable

Z =
X − µ

σ/
√
n

has a N(0, 1) distribution. So, when the true value of µ is µ0 = 20, then

Z0 = Z(µ = µ0) ∈ N(0, 1)

and when the value is µ1 = 18, then

Z1 = Z(µ = µ1) ∈ N(0, 1).

However, in the end, we expressed the error probabilities α and β, by looking at the distribution of
X by itself, not its reduced version. In other words, we used the fact that, when the true value of µ
is µ0 = 20, then

X ∈ N(µ0, σ/
√
n) and α = P (X ≤ 18.9),

while when the true value is µ1 = 18, then

X ∈ N(µ1, σ/
√
n) and β = P (X > 18.9).

This can be seen graphically in Figure 1.
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α β

X ∈ N (µ1, σ/
√
n) X ∈ N (µ0, σ/

√
n)

µ1 = 18 µ0 = 2018.9

Fig. 1: Type I and type II errors

In order to have a better control over β, we introduce the following notion.

Definition 5.3. The power of a test on a parameter θ, unknown, is the probability of rejecting the

null hypothesis

π(θ∗) = P (reject H0 | θ = θ∗) = P (TS ∈ RR | θ = θ∗), (5.2)

when the true value of the parameter is θ = θ∗.

Notice that the power of a test is, usually, a function of the parameter θ, because the alternative
hypothesis includes a set of parameter values.
Indeed, if the null hypothesis is true, i.e. θ = θ0, then

π(θ0) = P (TS ∈ RR | θ = θ0) = P (reject H0 | H0) = α. (5.3)

For any other true value (in the alternative hypothesis H1) θ = θ1 ̸= θ0,

π(θ1) = P (reject H0 | θ = θ1) = P (reject H0 | H1)

= 1− P (not reject H0 | H1) = 1− β(θ1). (5.4)

So, basically, the power of a test is the probability of rejecting a false null hypothesis. The larger the
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power is, the smaller β is, which is what we want in a test. Then we can state a hypothesis testing
problem the following way:
For a parametric test where both hypotheses are simple

H0 : θ = θ0

H1 : θ = θ1,

we preset α = π(θ0) and we determine a rejection region RR for which

π(θ1) = 1− β(θ1)

is the largest possible. Such a test is called a most powerful test.

The Neyman-Pearson Lemma (NPL)

Most powerful tests cannot always be found. The following result gives a procedure for finding a
most powerful test, when both hypotheses tested are simple.

Lemma 5.4 (Neyman-Pearson (NPL)). Let X be a characteristic with pdf f(x; θ), with θ ∈ A ⊂ R,

unknown. Suppose we test on θ the simple hypotheses

H0 : θ = θ0

H1 : θ = θ1,

based on a random sample X1, . . . , Xn. Let L(θ) = L(X1, . . . , Xn; θ) denote the likelihood func-

tion of this sample. Then for a fixed α ∈ (0, 1), a most powerful test is the test with rejection region

given by

RR =

{
L(θ1)

L(θ0)
≥ kα

}
, (5.5)

where the constant kα > 0 depends only on α and the sample variables.

Example 5.5. Suppose X1 represents a single observation from a probability density given by

f(x; θ) =

{
θxθ−1, if x ∈ (0, 1)

0, otherwise.
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Find the NPL most powerful test that at the 5% significance level tests

H0 : θ = 1 (= θ0)

H1 : θ = 30 (= θ1).

Also, find β for that test.

Solution. Since our sample has size 1, we have

L(θ1)

L(θ0)
=

f(X1; θ1)

f(X1; θ0)
=

30X29
1

1
= 30X29

1 .

So the rejection region given by the NPL is

RR = {30X29
1 ≥ kα} = {X1 ≥ Kα},

where Kα =

(
1

30
kα

)1/29

.

We find the value of Kα from

α = P (X1 ∈ RR | H0) = P (X1 ≥ Kα | θ = 1)

=

1∫
Kα

dx = 1−Kα,

i.e. Kα = 1− α = 0.95.

So, of all tests for testing H0 versus H1, based on a sample of size 1, the observation X1, at the
significance level α = 0.05, the most powerful test has rejection region

RR = {X1 ≥ 0.95}.

For this test,

β(θ1) = P (X1 < Kα | θ = 30) =

Kα∫
0

30x29 dx

= x30
∣∣∣Kα

0
= (Kα)

30 = (1− α)30 = 0.166
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and the power is
π(θ1) = 1− β(θ1) = 0.834.

Note that the error probability β that we obtained is unacceptably large, but considering that the
estimation was based on a sample of size one, we cannot expect too much accuracy.

Remark 5.6. Notice that the rejection region and, hence, the most powerful test we found in Ex-
ample 5.5, depend on the value stated in H1. For a different value of θ1, we would have found a
different rejection region. That is usually the case. However, sometimes, a test obtained with the
NPL actually maximizes the power for every value in H1, i.e. even if H1 is not a simple hypothesis.
Such a test is called a uniformly most powerful test.

Example 5.7. Let X1, . . . , Xn be a random sample drawn from a Normal N(µ, σ) distribution, with
µ ∈ R unknown and σ > 0 known. At the significance level α ∈ (0, 1), find the most powerful
right-tailed test for testing

H0 : µ = µ0

H1 : µ > µ0.

Solution. First we use the NPL to find a most powerful test for a simple alternative, i.e.

H0 : µ = µ0

H1 : µ = µ1 > µ0.

We have the Normal pdf

f(x;µ) =
1

σ
√
2π

exp
(
− (x− µ)2

2σ2

)
, ∀x ∈ R.

The likelihood function is

L(µ) =
n∏

i=1

f(Xi;µ)

=
( 1

σ
√
2π

)n
exp
(
− 1

2σ2

n∑
i=1

(Xi − µ)2
)
.

Then, by the NPL, we find

L(µ1)

L(µ0)
= exp

( 1

2σ2

[ n∑
i=1

(Xi − µ0)
2 −

n∑
i=1

(Xi − µ1)
2
])

≥ kα,
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or, taking the logarithm ln (which is an increasing function) on both sides,

1

2σ2

[ n∑
i=1

(Xi − µ0)
2 −

n∑
i=1

(Xi − µ1)
2
]

≥ ln kα,

n∑
i=1

X2
i − 2µ0

n∑
i=1

Xi + nµ2
0 −

(
n∑

i=1

X2
i − 2µ1

n∑
i=1

Xi + nµ2
1

)
≥ 2σ2 ln kα.

After cancellations and using X =
1

n

n∑
i=1

Xi, we have

2nX(µ1 − µ0) ≥ 2σ2 ln kα + n(µ2
1 − µ2

0).

Since µ1 > µ0, we get

X ≥ σ2 ln kα
n(µ1 − µ0)

+
µ1 + µ0

2
= Kα.

Then we use the test statistic TS = X , for which we found the rejection region

RR = {X ≥ Kα}.

But

α = P
(
X ≥ Kα | µ = µ0

)
= P

(X − µ0

σ/
√
n

≥ Kα − µ0

σ/
√
n

| µ = µ0

)
= P

(
Z0 ≥

Kα − µ0

σ/
√
n

| Z0 ∈ N(0, 1)
)

= P
(
Z0 ≥ z1−α

)
,

since Z0 =
X − µ0

σ/
√
n

∈ N(0, 1). Then we must have

Kα − µ0

σ/
√
n

= z1−α, Kα = µ0 + z1−α
σ√
n
,

8



so Kα is independent of µ1. Then the test with RR = {X ≥ Kα} is a uniformly most powerful test
for testing

H0 : µ = µ0

H1 : µ > µ0,

at the significance level α.

Remark 5.8. In a similar manner, we can find a uniformly most powerful test for the left-tailed case

H0 : µ = µ0

H1 : µ < µ0.
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