
Short review
Let us recall: we have a population characteristic X , whose pdf f(x; θ) depends on θ, the target
parameter to be estimated. The estimation is done based on a sample of size n, i.e. sample variables
X1, X2, . . . , Xn that are iid, with the same pdf as X .
We set up two hypotheses, the null hypothesis, always simple, i.e.

H0 : θ = θ0

and one of the alternative hypotheses

H1 : θ < θ0 (left-tailed test),
H1 : θ > θ0 (right-tailed test),
H1 : θ ̸= θ0 (two-tailed test).

(5.1)

We want to decide if H0 is rejected (in favor of H1) or not rejected (accepted). We use a test statistic

TS (with the same properties as the pivot in CI’s) and a rejection (critical) region RR, such that for
a given significance level α ∈ (0, 1),

P (type I error) = P ( reject H0 | H0) = P (TS ∈ RR | H0) = α. (5.2)

The probability of a type II error is

P ( type II error) = P ( not reject H0 | H1) = P (TS /∈ RR | H1) = β.

In general, the significance level α is preset and a procedure is given for finding an appropriate
rejection region, such that β is also reasonably small.

We considered the case where for a target parameter θ, θ is an unbiased estimator (E(θ) = θ),
with standard error σθ, such that, under certain conditions, it is known that

Z =
θ − θ

σθ

(
=

θ − E(θ)

σ(θ)

)
(5.3)

has an approximately Standard Normal N(0, 1) distribution. Using Z as a test statistic, we found
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the rejection regions for the three alternatives (5.1) as

RR :


{Z0 ≤ zα}
{Z0 ≥ z1−α}
{Z0 ≤ zα

2
or Z0 ≥ z1−α

2
} = {|Z0| ≥ z1−α

2
}.

(5.4)

Alternatively, we perform a significance test. We compute the P -value of the test, the probabil-
ity of observing a value at least as extreme (in the sense of the test conducted) of the test statistic
TS as the value observed from the sample, TS0, under the assumption that H0 is true. In general,
for the three alternatives (5.1), if TS0 is the value of the test statistic TS under the assumption that
H0 is true and F is the cdf of TS, the P -value is computed by

P =


P (TS ≤ TS0 | H0) = F (TS0)

P (TS ≥ TS0 | H0) = 1− F (TS0)

2 ·min{P (TS ≤ TS0 | H0), P (TS ≥ TS0 | H0)} = 2 ·min{F (TS0), 1− F (TS0)}.
(5.5)

Then the decision will be
if P ≤ α, reject H0,

if P > α, do not reject H0.
(5.6)

So, more precisely, the P -value of a test is the smallest level at which we could have preset α and
still have been able to reject H0, or the lowest significance level that forces rejection of H0, i.e. the
minimum rejection level.

5.5 Tests for the Parameters of One Population

Let X be a population characteristic, with pdf f(x; θ), mean E(X) = µ and variance V (X) = σ2.
Let X1, X2, . . . , Xn be sample variables.

Tests for the mean of a population, θ = µ

We test the hypotheses
H0 : µ = µ0, versus one of

H1 :


µ < µ0

µ > µ0

µ ̸= µ0,

(5.7)
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under the assumption that either X is approximately Normally N(µ, σ) distributed or that the sample
is large (n > 30).

Case σ known ( ztest )
We use the test statistic

TS = Z =
X − µ

σ√
n

∈ N(0, 1), (5.8)

with observed value

Z0 =
X − µ0

σ√
n

. (5.9)

Then, as before, at the α ∈ (0, 1) significance level, the rejection region for each test will be given
by

RR :


{Z0 ≤ zα}
{Z0 ≥ z1−α}
{|Z0| ≥ z1−α

2
}

(5.10)

and the P -value will be computed as

P =


P (Z ≤ Z0 | H0) = Φ(Z0)

P (Z ≥ Z0 | H0) = 1− Φ(Z0)

P (|Z| ≥ |Z0| | H0) = 2 (1− Φ(|Z0|)) ,
(5.11)

since N(0, 1) is symmetric, where

Φ(x) =
1√
2π

x∫
−∞

e−
t2

2 dt

is Laplace’s function, the cdf for the Standard Normal N(0, 1)distribution.

Case σ unknown ( ttest )
In this case, we use the test statistic

TS = T =
X − µ

s√
n

∈ T (n− 1), (5.12)
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with observed value

T0 =
X − µ0

s√
n

. (5.13)

Similarly to the previous case, we find the rejection region for the three alternatives as

RR :


{T0 ≤ tα}
{T0 ≥ t1−α}
{|T0| ≥ t1−α

2
},

(5.14)

and compute the P -value by

P =


P (T ≤ T0 | H0) = F (T0)

P (T ≥ T0 | H0) = 1− F (T0)

P (|T | ≥ |T0| | H0) = 2 (1− F (|T0|)) ,
(5.15)

where the cdf F and the quantiles refer to the T (n− 1) distribution.

Tests for the variance of a population, θ = σ2 ( vartest )

Assuming that X has a Normal N(µ, σ) distribution, we test the hypotheses

H0 : σ2 = σ2
0,

H1 :


σ2 < σ2

0

σ2 > σ2
0

σ2 ̸= σ2
0,

equivalent to

H0 : σ = σ0,

H1 :


σ < σ0

σ > σ0

σ ̸= σ0.

(5.16)

The test statistic will be

TS = V =
(n− 1)s2

σ2
∈ χ2(n− 1), (5.17)

with observed value

V0 =
(n− 1)s2

σ2
0

. (5.18)
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Even though the χ2(n − 1) distribution is not symmetric, we use the same line of reasoning and
computations to find the rejection region for the three alternatives:

RR :


{V0 ≤ χ2

α}
{V0 ≥ χ2

1−α}
{V0 ≤ χ2

α
2

or V0 ≥ χ2
1−α

2
}.

(5.19)

Same goes for the computation of the P -values:

P =


P (V ≤ V0 | H0) = F (V0)

P (V ≥ V0 | H0) = 1− F (V0)

2 ·min{P (V ≤ V0 | H0), P (V ≥ V0 | H0)} = 2 ·min{F (V0), 1− F (V0)},
(5.20)

where the cdf F and the quantiles refer to the χ2(n− 1)distribution.

Example 5.1. Let us consider again the problem in Example 5.4 (Lecture 10): The number of
monthly sales at a firm is known to have a mean of 20 and a standard deviation of 4 and all salary,
tax and bonus figures are based on these values. However, in times of economical recession, a sales
manager fears that his employees do not average 20 sales per month, but less, which could seriously
hurt the company. For a number of 36 randomly selected salespeople, it was found that in one month
they averaged 19 sales.
Now, suppose that for the sample considered, the standard deviation is found to be s = 4.5. As-
suming that the number of monthly sales at that firm is Normally distributed, at the 5% significance
level, does the assumption on σ seem to be correct?

Solution. We are now testing the variance. We want to know if the value σ = 4 is correct or not,
so, this will be a two-tailed test.

H0 : σ = 4

H1 : σ ̸= 4,

i.e.,
H0 : σ2 = 16 = σ2

0

H1 : σ2 ̸= 16 = σ2
0,

We have n = 36 and s2 = (4.5)2 = 20.25. The observed value of the test statistic is

V0 =
(n− 1)s2

σ2
0

=
35 · 20.25

16
= 44.2969.
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The significance level is α = 0.05 and the two quantiles for the χ2(35) distribution are

χ2
0.025 = 20.5694,

χ2
0.975 = 53.2033.

Then the rejection region is

RR = (−∞, 20.5694] ∪ [53.2033,∞),

which does not include the value V0. Therefore, the decision is to not reject the null hypothesis, i.e.
to conclude that the assumption σ = 4 is correct.

On the other hand, the P -value is

P = 2 ·min{P (V ≤ V0), P (V ≥ V0)} = 2 ·min{0.8652, 0.1348} = 0.2697.

Since
α = 0.05 < 0.2697 = P,

the decision is to not reject the null hypothesis.
Notice, again, that the significance test tells us more! Since the P -value is so large (remember, it is
comparable to a probability of an error, so a small quantity), not only at the 5% significance level
we decide to accept H0, but at any reasonable significance level the decision would be the same.
That means that the data strongly suggests that H0 is true and should not be rejected. Even though
the sample standard deviation is not equal to 4, still, statistically, the data strongly suggests that
the population standard deviation is 4. We should be careful not to extrapolate the property of one
sample to the entire population (data from a sample may be misleading, if it is not used properly ...)

5.6 Tests for Comparing the Parameters of Two Populations

Assume we have two population characteristics X(1) and X(2), with means and variances E(X(1)) =

µ1, V (X(1)) = σ2
1 and E(X(2)) = µ2, V (X(2)) = σ2

2 , respectively. We draw two independent
random samples X11, . . . , X1n1 and X21, . . . , X2n2 , with sample means X1, X2, sample variances
s21, s

2
2, respectively and pooled variance

s2p =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
.
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Tests for the difference of means, θ = µ1 − µ2

We test the hypotheses

H0 : µ1 − µ2 = 0,

H1 :


µ1 − µ2 < 0

µ1 − µ2 > 0

µ1 − µ2 ̸= 0,

equivalent to

H0 : µ1 = µ2,

H1 :


µ1 < µ2

µ1 > µ2

µ1 ̸= µ2,

(5.21)

under the assumption that either X(1) and X(2) have approximately Normal distributions or that the
samples are large enough (n1 + n2 > 40).

Case σ1, σ2 known
We use the test statistic

TS = Z =
(X1 −X2)− (µ1 − µ2)√

σ2
1

n1

+
σ2
2

n2

∈ N(0, 1), (5.22)

with observed value

Z0 =
X1 −X2√
σ2
1

n1

+
σ2
2

n2

. (5.23)

The rejection regions and P -values for the three alternatives are then given by equations (5.10)-
(5.11), with Z0 from (5.23).
Case σ1 = σ2 unknown ( ttest2 )
The test statistic is

TS = T =
(X1 −X2)− (µ1 − µ2)

sp

√
1

n1

+
1

n2

∈ T (n1 + n2 − 2), (5.24)

with observed value

T0 =
X1 −X2

sp

√
1

n1

+
1

n2

. (5.25)

The rejection regions and P -values for the three alternatives are then given by equations (5.14)-
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(5.15), where T0 is given in (5.25) and the cdf F and the quantiles refer to the T (n1 + n2 − 2)

distribution.

Case σ1, σ2 unknown ( ttest2 )
We now use the test statistic

TS = T ∗ =
(X1 −X2)− (µ1 − µ2)√

s21
n1

+
s22
n2

∈ T (n), (5.26)

where
1

n
=

c2

n1 − 1
+

(1− c)2

n2 − 1
and c =

s21
n1

s21
n1

+
s22
n2

.

The observed value of the test statistic is

T ∗
0 =

X1 −X2√
s21
n1

+
s22
n2

. (5.27)

The rejection regions and P -values for the three alternatives are again as in equations (5.14)-(5.15),
with T0 replaced by T ∗

0 from (5.27). The cdf F and the quantiles refer to the T (n) distribution.

Remark 5.2. The same Matlab command ttest2 performs a T -test for the difference of two popu-
lation means, when the variances are not assumed equal, with the option vartype set on “unequal”
(the default being “equal”, when it can be omitted).

Tests for the ratio of variances, θ =
σ2
1

σ2
2

( vartest2 )

Assuming that both X(1) and X(1) have Normal distributions, we test the hypotheses

H0 :
σ2
1

σ2
2

= 1,

H1 :



σ2
1

σ2
2

< 1

σ2
1

σ2
2

> 1

σ2
1

σ2
2

̸= 1,

<=>

H0 : σ2
1 = σ2

2,

H1 :


σ2
1 < σ2

2

σ2
1 > σ2

2

σ2
1 ̸= σ2

2,

<=>

H0 : σ1 = σ2,

H1 :


σ1 < σ2

σ1 > σ2

σ1 ̸= σ2.

(5.28)
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The test statistic used is

TS = F =
s21/σ

2
1

s22/σ
2
2

∈ F (n1 − 1, n2 − 1), (5.29)

with observed value

F0 =
s21
s22
. (5.30)

Again, just like in the case of one population variance, the F (n1 − 1, n2 − 1) distribution is not
symmetric, but proceeding as before, we find the rejection region for the three alternatives as

RR :


{F0 ≤ fα}
{F0 ≥ f1−α}
{F0 ≤ fα

2
or F0 ≥ f1−α

2
}.

(5.31)

and the P -values given by

P =


P (F ≤ F0 | H0) = F (F0)

P (F ≥ F0 | H0) = 1− F (F0)

2 ·min{P (F ≤ F0 | H0), P (F ≥ F0 | H0)} = 2 ·min{F (F0), 1− F (F0)},
(5.32)

where the cdf F and the quantiles refer to the F (n1 − 1, n2 − 1) distribution.

Example 5.3. Suppose the strengths to a certain load of two types of material, M1 and M2, are
studied, knowing that they are approximately Normally distributed. The more weight they can resist
to, the stronger they are. Two independent random samples are drawn and they yield the following
data.

M1 M2

n1 = 25 n2 = 16

X1 = 380 X2 = 370

s21 = 537 s22 = 196

a) At the 5% significance level, do the variances of the two populations seem to be equal or not?
b) At the same significance level, does the data suggest that on average, M1 is stronger than M2?
(In both parts, perform both hypothesis and significance testing).

Solution.
a) First, we compare the variances of the two populations, so we know which way to proceed for
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comparing the means. We want to know if they are equal or not, so it is a two-tailed test. Hence,
our hypotheses are

H0 : σ2
1 = σ2

2

H1 : σ2
1 ̸= σ2

2.

The observed value of the test statistic is

F0 =
s21
s22

=
537

196
= 2.7398.

For α = 0.05, n1 = 25 and n2 = 16, the quantiles for the F (24, 15) distribution are

fα
2

= f0.025 = 0.4103

f1−α
2

= f0.975 = 2.7006.

Thus, the rejection region for our test is

RR = (−∞, 0.4103] ∪ [2.7006,∞)

and clearly, F0 ∈ RR. Thus we reject H0 in favor of H1, i.e. we conclude that the data suggests that
the population variances are different.
Let us also perform a significance test. The P -value of this (two-tailed) test is

P = 2 ·min{P (F ≤ F0), P (F ≥ F0)} = 2 ·min{0.9765, 0.0235} = 0.0469.

Since our α > P , the “minimum rejection significance level”, we reject H0.
Note. We now know that for instance, at 1% significance level (or any level less than 4.69%), we
would have not rejected the null hypothesis. This goes to show that the data can be “misleading”.
Simply comparing the values of the sample functions does not necessarily mean that the same thing
will be true for the corresponding population parameters. Here, s21 is much larger than s22, yet at 1%
significance level, we would have concluded that the population variances seem to be equal.

b) Next we want to compare the population means. If M1 is to be stronger than M2 on average,
than we must perform a right-tailed test:

H0 : µ1 = µ2

H1 : µ1 > µ2
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Which one of the tests for the difference of means should we use? The answer is in part a). At this
significance level, the variances are unknown and different.
Then the value of the test statistic is, by (5.27)

T ∗
0 =

X1 −X2√
s21
n1

+
s22
n2

=
380− 370√
537

25
+

196

16

= 1.7218.

To find the rejection region, we compute

c = 0.6368, n = 38.9244 ≈ 39

and the quantile for the T (39) distribution

t1−α = t0.95 = 1.6849.

Then the rejection region of the test is

RR = [1.6849,∞),

which includes the value T ∗
0 , so we reject H0 in favor of H1. So we conclude that yes, the data

suggests that material M1 is, on average, stronger than material M2.
On the other hand, the P -value of this test is

P = P (T ∗ ≥ T ∗
0 ) = 1− F (T ∗

0 ) = 1− F (1.7218) = 0.0465,

where F is the cdf of the T (39) distribution. Again, the P -value is lower than α = 0.05, which
forces the rejection of H0.

Tests for the difference of means, paired data, θ = µ1 − µ2

Recall that in some applications, we want to compare the means of two populations, when two
random samples (one from each population) are available, which are not independent, where each
observation in one sample is naturally or by design paired with an observation in the other sample
(usually cases best described by “before and after” situations).
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In such cases, both samples have the same length, n:

X11, . . . , X1n and X21, . . . , X2n

and we consider the sample of their differences,

D1, . . . , Dn,

where
Di = X1i −X2i, i = 1, n.

For this sample, we have

Xd =
1

n

n∑
i=1

Di, the sample mean and

s2d =
1

n− 1

n∑
i=1

(
Di −Xd

)2
, the sample variance.

Then, it is known that when n is large enough (n > 30) or the two populations that the samples are
drawn from have approximately Normal distributions N(µ1, σ1), N(µ2, σ2), the statistic

T =
Xd − (µ1 − µ2)

sd√
n

(5.33)

has a Student T (n − 1) distribution, so we can use it as a test statistic for testing the hypotheses
(5.21). Its observed value is

T0 =
Xd

sd√
n

. (5.34)

Then, as before, we determine the rejection region corresponding to the three alternatives to be

RR :


{T0 ≤ tα}
{T0 ≥ t1−α}
{|T0| ≥ |t1−α

2
|}

(5.35)
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and compute the P -value by

P =


P (T ≤ T0 | H0) = F (T0)

P (T ≥ T0 | H0) = 1− F (T0)

P (|T | ≥ |T0| | H0) = 2 (1− F (|T0|)) ,
(5.36)

where the quantiles and the cdf F refer to the T (n− 1) distribution.

Example 5.4. Information about ocean weather can be extracted from radar returns with the aid of
special algorithms. A study is conducted to estimate the difference in wind speed as measured on
the ground, at 12 specified times, using two methods simultaneously. These data result:

Times 1 2 3 4 5 6 7 8 9 10 11 12

Method I 4.46 3.99 3.73 3.29 4.82 6.71 4.61 3.87 3.17 4.42 3.76 3.3
Method II 4.08 3.94 5.00 5.2 3.92 6.21 5.95 3.07 4.76 3.25 4.89 4.8

Assuming the measurements taken by the two methods are approximately Normally distributed,
at the 1% significance level, does the data suggest that, on average, the two sets of measurements
differ?

Solution. By looking at the data, we see that at some times the measurement taken by the first
method is higher, at others, the one given by the second. So we cannot say if, on average, these
differences will cancel each other, to yield about the same mean value.

So, we want to test
H0 : µ1 = µ2

H1 : µ1 ̸= µ2,

a two-tailed alternative. The samples yield the following data: sample size n = 12, sample mean
Xd = −0.4117 and sample variance s2d = 1.2973, so sd = 1.139.
The observed value of the test statistic from (5.34) is

T0 =
Xd

sd√
n

= −1.2521.

For α = 0.01, the quantiles for the T (11) distribution are

tα/2 = t0.005 = −3.1058,

t1−α/2 = −tα/2 = 3.1058,
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so the rejection region is

RR = (−∞,−3.1058] ∪ [3.1058,∞).

Since T0 /∈ RR, we cannot reject the null hypothesis, which means we decide that the two popula-
tion means are approximately equal.
On the other hand, the P -value of this test is

P = 2 (1− F (|T0|)) = 0.2365,

We have
α = 0.01 < 0.2365 = P,

the minimum rejection level, so the decision is to not reject the null hypothesis. Notice that, again,
the P -value is much larger than any conceivable significance level α, so that means that the data
strongly suggests that H0 should not be rejected, i.e., that the two population means do not differ.

Remark 5.5.
1. As mentioned before, both hypothesis and significance testing lead to the same conclusion. From
the implementation point of view, significance testing is more efficient, since it avoids the inversion
of a cdf (i.e. computation of quantiles), which is often a complicated improper integral. This is
the reason why, although the main tests are implemented in Matlab, the rejection regions are not

computed.
2. Many tests (and formulas for CI’s) work under the assumption of Normality of the population
from which the sample was drawn. In practice, when there are outliers in the data, that is rarely
the case. How important is this assumption of Normality and how affected are the results of these
tests by small departures from model assumptions? Z-tests and T -tests work well even when the
underlying population is not quite Normally distributed. From this point of view, they are called
robust tests. χ2-tests and F -tests, however, are not robust, they perform very poorly when the
assumption of Normality is breached. In modern Statistics there is an ongoing search for finding
robust methods of estimation for variances.
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