
Short review
Let us recall: we have a population characteristic X , whose pdf f(x; θ) depends on θ, the target
parameter to be estimated. The estimation is done based on a sample of size n, i.e. sample variables
X1, X2, . . . , Xn that are iid, with the same pdf as X .
We set up two hypotheses, the null hypothesis, always simple, i.e.

H0 : θ = θ0

and one of the alternative hypotheses

H1 : θ < θ0 (left-tailed test),
H1 : θ > θ0 (right-tailed test),
H1 : θ ̸= θ0 (two-tailed test).

(5.1)

We want to decide if H0 is rejected (in favor of H1) or not rejected (accepted). We use a test statistic

TS (with the same properties as the pivot in CI’s) and a rejection (critical) region RR, such that for
a given significance level α ∈ (0, 1),

P (type I error) = P ( reject H0 | H0) = P (TS ∈ RR | H0) = α. (5.2)

The probability of a type II error is

P ( type II error) = P ( not reject H0 | H1) = P (TS /∈ RR | H1) = β.

In general, the significance level α is preset and a procedure is given for finding an appropriate
rejection region, such that β is also reasonably small.

5.3 Significance Testing, P -Values

There is a problem that might occur in hypothesis testing: We preset α, the probability of a type I
error and henceforth determine a rejection region. We get a value of the test statistic that does not

belong to it, so we cannot reject the null hypothesis H0, i.e. we accept it as being true. However,
when we compute the probability of getting that value of the test statistic under the assumption that
H0 is true, we find it is very small, comparable with our preset α. So, we accept H0, yet considering
it to be true, we find that it is very unlikely (very improbable) that the test statistic takes the observed
value we found for it. That makes us wonder if we set our RR right and if we didn’t “accept” H0 too
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easily, by hastily dismissing values of the test statistic that did not fall into our RR. So we should
take a look at how “far-fetched” does the value of the test statistic seem, under the assumption that
H0 is true. If it seems really implausible to occur by chance, i.e. if its probability is small, then
maybe we should reject the null hypothesis H0.

To avoid this situation, we perform what is called a significance test: for a given random sample
(X1, . . . , Xn), we still set up H0 and H1 as before and we choose an appropriate test statistic.
Then, we compute the probability of observing a value at least as extreme (in the sense of the test
conducted) of the test statistic TS as the value observed from the sample, TS0, under the assumption
that H0 is true. This probability is called the critical value, the descriptive significance level, the
probability of the test, or, simply the P -value of the test. If it is small, we reject H0, otherwise we
do not reject it. The P -value is a numerical value assigned to the test, it depends only on the sample
data and its distribution, but not on α.
In general, for the three alternatives (5.1), if TS0 is the value of the test statistic TS under the
assumption that H0 is true and F is the cdf of TS, the P -value is computed by

P =


P (TS ≤ TS0 | H0) = F (TS0)

P (TS ≥ TS0 | H0) = 1− F (TS0)

2 ·min{P (TS ≤ TS0 | H0), P (TS ≥ TS0 | H0)} = 2 ·min{F (TS0), 1− F (TS0)}.
(5.3)

Then the decision will be
if P ≤ α, reject H0,

if P > α, do not reject H0.
(5.4)

So, more precisely, the P -value of a test is the smallest level at which we could have preset α and
still have been able to reject H0, or the lowest significance level that forces rejection of H0, i.e. the
minimum rejection level.

Remark 5.1.
1. Thus, we can avoid the costly computation of the rejection region (costly because of the quantiles)
and compute the P -value instead. Then, we simply compare it to the significance level α. If α is
above the P -value, we reject H0, but if it is below that minimum rejection level, we can no longer
reject the null hypothesis.
2. Hypothesis testing (determining the rejection region) and significance testing (computing the
P -value) are two methods for testing the same thing (the same two hypotheses), so, of course, the
outcome (the decision of rejecting or not H0) will be the same, for the same data. Significance
testing is preferable to hypothesis testing, especially from the computer implementation point of
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view, since it avoids the inversion of a cdf, which is, oftenly, a complicated improper integral.

Example 5.2. Recall the problem in Example 5.4 (Lecture 10): The number of monthly sales at a
firm is known to have a mean of 20 and a standard deviation of 4 and all salary, tax and bonus figures
are based on these values. However, in times of economical recession, a sales manager fears that
his employees do not average 20 sales per month, but less, which could seriously hurt the company.
For a number of 36 randomly selected salespeople, it was found that in one month they averaged 19

sales. At the 5% significance level, does the data confirm or contradict the manager’s suspicion?
Let us now perform a significance test.

Solution. We tested a left-tailed alternative for the mean

H0 : µ = 20

H1 : µ < 20.

The population standard deviation was given, σ = 4, and for a sample of size n = 36, the sample
mean was X = 19. For the test statistic

Z =
X − µ

σ√
n

∈ N(0, 1),

the observed value was

Z0 =
X − µ0

σ√
n

=
19− 20

4

6

= −1.5.

Now, we compute the P -value

P = P (Z ≤ Z0) = P (Z ≤ −1.5) = 0.0668.

Since
α = 0.05 < 0.0668 = P,

(is below the minimum rejection level), we do not reject H0, so, at the 5% significance level, we
conclude that the data contradicts the manager’s suspicion.
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5.4 Tests for Proportions

Tests for a population proportion, θ = p

Let us recall that, when estimating a population proportion p, if the sample size is large enough
(n > 30), then the variable

Z =
p− p√
p(1− p)

n

∈ N(0, 1), (5.5)

where p is the sample proportion. So this case fits the general Z-test framework.
To test

H0 : p = p0,

with one of the alternatives

H1 :


p < p0

p > p0

p ̸= p0.

, (5.6)

we use the test statistic TS = Z from (5.5). Then, as before, at the α ∈ (0, 1) significance level, the
rejection region for each test will be given by

RR :


{Z0 ≤ zα}
{Z0 ≥ z1−α}
{|Z0| ≥ z1−α

2
},

(5.7)

and the P -value will be computed as

P =


P (Z ≤ Z0 | H0) = Φ(Z0)

P (Z ≥ Z0 | H0) = 1− Φ(Z0)

P (|Z| ≥ |Z0| | H0) = 2 (1− Φ(|Z0|)) ,
(5.8)

since N(0, 1) is symmetric, where

Φ(x) =
1√
2π

x∫
−∞

e−
t2

2 dt

is Laplace’s function, the cdf for the Standard Normal N(0, 1) distribution.
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Example 5.3. A company is receiving a large shipment of items. For quality control purposes, they
collect a sample of 200 items and find 24 defective ones in it.
a) The manufacturer claims that at most 1 in 10 items in the shipment is defective. At the 5%

significance level, does the data confirm or contradict his claim?
b) Find the P -value of the test in part a).
c) Find the probability of a type II error, β, for testing

H0 : p = 0.1

H1 : p = 0.15.

d) What sample size would ensure that both α = β = 0.05 for the test in part c)?

Solution.
We have a sample of size n = 200 for which the sample proportion is

p =
24

200
=

3

25
= 0.12.

a) The manufacturer claims that at most 1 in 10 items is defective, i.e. that p ≤ 0.1. So, we are
testing a right- tailed alternative

H0 : p = 0.1

H1 : p > 0.1.

If we decide to reject H0, that means the data contradicts the manufacturer’s claim, whereas if we
do not reject it, it means the data is insufficient to contradict his claim, so we consider it to be true.
We have a significance level α = 0.05, so for the rejection region we need the quantile

z1−α = z0.95 = 1.645

and the rejection region is
RR = [1.645,∞).

The test statistic is
Z =

p− p√
p(1− p)

n
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and its observed value is
Z0 =

0.12− 0.1√
0.1 · 0.9
200

= 0.943.

Since Z0 /∈ RR, we do not reject H0 at this significance level, i.e. conclude that the data seems to
confirm the manufacturer’s claim that at most 10% of items are defective. Notice that even though
the sample proportion was 0.12, bigger than 0.1, the inference on the entire population proportion
is that it does not exceed 0.1 (data from a sample may be misleading, if it is not used properly ...)

b) The P -value is

P = P (Z ≥ Z0) = 1− P (Z ≤ 0.943) = 1− Φ(0.843) = 0.173.

Since
α = 0.05 < 0.173 = P,

the decision is to not reject the null hypothesis. i.e. accept the manufacturer’s claim.
Notice that the significance test tells us more! Since the P -value is so large (remember, it is com-
parable to a probability of an error, so a small quantity), not only at the 5% significance level we
decide to accept H0, but at any reasonable significance level the decision would be the same. That
means that the data strongly suggests that H0 is true and should not be rejected. So, even more we
see that we should be careful not to extrapolate the property of one sample to the entire population.

c) We are now testing two simple hypotheses

H0 : p = 0.1 = p0

H1 : p = 0.15 = p1.

From part a), we found the rejection region

Z0 ≥ z0.95,

which means
p− p0√
p0(1− p0)

n

≥ z0.95.
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If we rewrite this inequality (the way we did when we found confidence intervals), we find that H0

is rejected if

p ≥ p0 + z0.95

√
p0(1− p0)

n
= 0.1349.

So, we reject H0 if p ≥ 0.1349. Then we do not reject the null hypothesis if

p < 0.1349.

Also, recall that the test statistic Z =
p− p√
p(1− p)

n

has a N(0, 1) distribution, when we replace p

by its true value. So, if we assume that the true value is p = p1, then

Z1 =
p− p1√
p1(1− p1)

n

∈ N(0, 1).

Now, let us proceed to compute β(p1). We have

β(p1) = P (not reject H0 | H1) = P (p < 0.1349 | p = p1)

= P

 p− p1√
p1(1− p1)

n

<
0.1349− p1√
p1(1− p1)

n

∣∣∣∣ p = p1


= P (Z1 < −0.598 | Z1 ∈ N(0, 1))

= Φ(−0.598) = 0.275,

very large! Such a probability of error is not acceptable, under any circumstances!

d) So, let us see how large should the sample size be so that the probability of type II error be-
comes acceptable, i.e. β = 0.05.
The idea stems from the computations we did in part c) to find β. Now, we go backwards: presetting
both α and β, we find that cutoff value for p (that was 0.1349 before), say k, from both conditions.
Setting them equal, we solve for n.
So, on one hand, we have

α = P ( reject H0 | H0) = P (p ≥ k | p = p0)
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= P

 p− p0√
p0(1− p0)

n

≥ k − p0√
p0(1− p0)

n

∣∣∣∣ p = p0



= P

Z0 ≥
k − p0√
p0(1− p0)

n

∣∣∣∣ Z0 ∈ N(0, 1)


= P (Z0 ≥ z1−α | Z0 ∈ N(0, 1)),

since the quantile z1−α is the only value with the property that P (Z0 > z1−α) = α, for a N(0, 1)

variable. Then,

k − p0√
p0(1− p0)

n

= z1−α, i.e. k = p0 + z1−α

√
p0(1− p0)

n
.

On the other hand, as we did in part c), we have

β = P ( not reject H0 | H1) = P (p < k | p = p1)

= P

 p− p1√
p1(1− p1)

n

<
k − p1√
p1(1− p1)

n

∣∣∣∣ p = p1



= P

Z1 <
k − p1√
p1(1− p1)

n

∣∣∣∣ Z1 ∈ N(0, 1)


= P (Z1 < zβ | Z1 ∈ N(0, 1)),

so

k − p1√
p1(1− p1)

n

= zβ, i.e. k = p1 + zβ

√
p1(1− p1)

n
.

From the two equations, we find

p0 + z1−α

√
p0(1− p0)

n
= p1 + zβ

√
p1(1− p1)

n
,
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z1−α

√
p0(1− p0)

n
− zβ

√
p1(1− p1)

n
= p1 − p0,

1.0808√
n

= 0.05,

so

n =

(
1.0809

0.05

)2

= 467.34

Thus, a sample of size at least n = 468 items should be selected in order to ensure that both
probabilities of error are at most 0.05.

Tests for a comparing population proportions, θ = p1 − p2

Similarly, in this case, if the samples are large enough (n1 + n2 > 40), then the variable

Z =
p1 − p2 − (p1 − p2)√

p1q1
n1

+
p2q2
n2

∈ N(0, 1), (5.9)

where p1 and p2 are the two sample proportions. To test

H0 : p1 − p2 = 0, versus

H1 :


p1 − p2 < 0

p1 − p2 > 0

p1 − p2 ̸= 0,

which is equivalent to
H0 : p1 = p2, versus

H1 :


p1 < p2

p1 > p2

p1 ̸= p2,

(5.10)

we use TS = Z from (5.9) as test statistic. Let us see what the observed value Z0 would be. Since
under the null hypothesis, p1 = p2, it makes sense to estimate both proportions in (5.9) by the
overall proportion

p̂ =
n1p1 + n2p2
n1 + n2

, (5.11)
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called the pooled proportion (a proportion that takes into account data from both samples). Then
the observed value of the test statistic Z0 is

Z0 =
p1 − p2√

p̂(1− p̂)

(
1

n1

+
1

n2

) . (5.12)

The rejection regions and P -values for the three alternatives are then given by equations (5.7)-(5.8),
with Z0 from (5.12).

Example 5.4. Suppose now that the company in Example 5.3 is trying a new supplier. A sample
of 150 items produced by the second supplier contains 21 defective parts. Considering that now
14% of items are defective (and with the first supplier the percentage was 12%), the company is in
a serious bind. At the 5% significance level, does the new supplier seem worse than the first one?

Solution. For the first supplier the data was n1 = 200, p1 = 0.12, for the new one, we have n2 = 150

and p2 = 0.14, this is why the company is afraid the second supplier may be worse than the first
one. Now, “worse” would mean that for the entire populations the proportions satisfy p1 < p2. So,
we perform a left-tailed test

H0 : p1 = p2

H1 : p1 < p2.

For a left-tailed test and significance level α = 0.05, the rejection region is

RR = (−∞, z0.05] = (−∞,−1.654].

The pooled proportion from (5.11) is

p̂ =
n1p1 + n2p2
n1 + n2

=
24 + 21

350
= 0.1286.

Then the observed value of the test statistic (from (5.12)) is

Z0 =
p1 − p2√

p̂(1− p̂)

(
1

n1

+
1

n2

) = −0.5531.
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Since Z0 /∈ RR, we do not reject the null hypothesis, i.e. we conclude that overall, the second
supplier is not worse than the first one.
For significance testing, the P -value of the test is

P = P (Z ≤ Z0) = P (Z ≤ −0.5531) = Φ(−0.5531) = 0.29,

again, very large, much larger than this (or any reasonable) α, so the decision is to not reject H0, a
decision that seems strongly supported by the data.
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